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The motion of a finite-size particle in the cuboidal lid-driven cavity flow is investigated
experimentally for Reynolds numbers 100 and 200 for which the flow is steady. These
steady three-dimensional flows exhibit chaotic and regular streamlines, where the latter are
confined to Kolmogorov–Arnold–Moser (KAM) tori. The interaction between the moving
wall and the particle creates global particle attractors. For neutrally buoyant particles, these
attractors are periodic or quasi-periodic, strongly attracting and located in or near KAM
tori of the flow. As the density mismatch between particle and fluid increases, buoyancy
and inertia become important, and the attractors evolve from those for neutrally buoyant
particles, changing their shape, position and attraction rates.
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1. Introduction

The motion of particles in fluids depends on various factors, an important one being
particle size. Sufficiently small particles almost perfectly follow the flow, while trajectories
of larger particles deviate from fluid trajectories and may settle on preferential orbits.
Related phenomena can be observed in various situations, ranging from the transport
of dust and debris in hurricanes (Sapsis & Haller 2009) over water purification (Seo,
Lean & Kole 2007) to biomedical applications such as blood cell coagulation and platelet
aggregation (Leiderman & Fogelson 2011). Another example is cell sorting and particle
manipulation on the microscale using the flow over topography, which often consists of
open cavities (Hur, Mach & Di Carlo 2011; Karimi, Yazdi & Ardekani 2013).
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Most work has been devoted to spherical particles. In an unbounded fluid and when
the particle Reynolds and Stokes numbers are small, the motion of a spherical particle
can be described by the Maxey–Riley equation (Maxey & Riley 1983), which includes
the Stokes drag, the effect of added mass, inertia, buoyancy, the Basset history term and
Faxén’s correction. A further simplification results from an expansion of the Maxey–Riley
equation in terms of a small Stokes number leading to the so-called inertial equation
(Lasheras & Tio 1994; Haller & Sapsis 2008) for the particle’s velocity. At leading order
in St, only inertia and buoyancy forces cause deviations from perfect advection of the
particle.

For neutrally buoyant and finite-size particles, Babiano et al. (2000) considered a variant
of the Maxey–Riley equation including the inertial term and the Stokes drag. While
neutrally buoyant particles initialised with a velocity equal to the flow velocity follow
the flow perfectly, the particle trajectories must not be stable. Small deviations of the
particle motion from that of the fluid can amplify exponentially, even if the particle has
the same density as the fluid. This was demonstrated for a neutrally buoyant particle in a
two-dimensional Taylor–Green flow, where the particle trajectory diverges exponentially
from streamlines in flow regions with high strain rates and settles in regions where
fluid rotation is dominant. For this pure particle-size effect to become operative, the
Okubo–Weiss parameter Q must locally exceed Q > 4/(9 St2). Experimentally, Ouellette,
O’Malley & Gollub (2008) provided evidence for a size effect on the motion of nearly
density-matched particles in a two-dimensional time-dependent chaotic flow. Apart from
the pure size effect, Sapsis & Haller (2008) provided a rigorous criterion for weakly
inertial particles to distinguish flow regions that attract or repel particles, and generalised
the criterion to three-dimensional flow. Finally, in the presence of strong shear or when
the particle Reynolds number is no longer small, the Maxey–Riley equation breaks down.
Under such conditions, the inertia term of the flow perturbed by the presence of the particle
needs to be taken into account. This causes lateral lift forces on the particle, resulting in
a particle migration across the unperturbed streamlines (Saffman 1965; Asmolov 1990;
McLaughlin 1991).

When a particle is transported to a solid wall or a free surface, the Maxey–Riley equation
cannot predict the particle motion correctly, because the presence of the boundary will
largely modify the flow around the particle compared to the case of an unbounded fluid.
The lateral migration and clustering of particles in pipe flow was first observed by Segré
& Silberberg (1961, 1962). The effect was initially attributed to shear-induced lift forces
(Saffman 1965). Later, it was proven that the Segré–Silberberg phenomenon is caused by
a combination of shear-induced lateral forces and a wall effect (Cox & Brenner 1968; Ho
& Leal 1974), because a particle moving parallel to a boundary experiences additional
drag and lift forces. In the case when a particle is moving far away and perpendicularly
towards a boundary, it is subject to a repulsive force due to the wall-normal gradient of
the background flow (Rallabandi, Hilgenfeldt & Stone 2017; Li et al. 2020; Magnaudet &
Abbas 2021). Closer to the boundary, in a distance of the order of the particle size, the
particle experiences strong lubrication forces in the wall-normal direction (Brenner 1961).
As a result, in the near-wall region, the particle will lag behind the flow significantly. In
the case where there is an additional component of fluid motion parallel to the boundary,
the particle can migrate significantly across the streamlines. Such particle–boundary
interaction due to the finite size of the particle can play an important role in the particle
clustering in confined recirculating laminar flows, where particles have been found to be
attracted to so-called finite-size coherent structures (FSCS; Romanò, Wu & Kuhlmann
2019b).
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Finite-size particle motion attractors

Finite-size coherent structures are frequently found in thermocapillary liquid bridges
when the flow arises as a travelling hydrothermal wave (Wanschura et al. 1995). In this
system, FSCS are also called particle accumulation structures (PAS; Schwabe, Hintz &
Frank 1996). Tanaka et al. (2006) found that initially well-mixed particles with appropriate
size can accumulate rapidly on coherent structures. In the same flow system, Schwabe
et al. (2007) observed that neutrally buoyant particles are more rapidly attracted to PAS
as compared to particles that are heavier or lighter than the fluid. Both experimental
observations imply that the origin of such particle clustering is the finite size of the
particles. Hofmann & Kuhlmann (2011) and Romanò & Kuhlmann (2017) explained the
rapid PAS formation by a collision of the particle with the free surface. In their model, this
collision is inelastic in the direction normal to the interface. The mechanism is operative
provided that the underlying flow exhibits chaotic and regular streamlines in some
reference frame (the co-moving frame in the case of hydrothermal waves) and the regular
streamlines in the Kolmogorov–Arnold–Moser (KAM) tori (Ottino 1989; Bajer 1994)
of the incompressible flow approach the boundary closely. Repeated particle–boundary
interaction can then rapidly transfer suitably-sized particles initially moving in the region
of chaotic streamlines to a quasi-periodic trajectory closely resembling a KAM torus, or
to a closed trajectory resembling a periodic streamline. While inertia due to the density
difference between particle and fluid can also lead to periodic attractors, such inertial
attraction is typically much slower in a hydrothermal wave in a liquid bridge than the
attraction due to the particle–boundary effect (Muldoon & Kuhlmann 2016; Romanò &
Kuhlmann 2018). FSCS in thermocapillary liquid bridges have been reviewed by Romanò
& Kuhlmann (2019).

Finite-size coherent structures can also arise in cavity flows. Romanò, Kunchi Kannan
& Kuhlmann (2019a) simulated numerically the particle motion in an incompressible
two-sided lid-driven cavity flow with chaotic and regular streamlines coexisting. Using
a model based on lubrication theory (Brenner 1961; Breugem 2010) to describe the effect
of the moving walls on a nearby particle, they found periodic or quasi-periodic particle
attractors that resemble closely the structure of KAM tori of the background flow. For
neutrally buoyant particles, Wu, Romanó & Kuhlmann (2021) verified experimentally the
existence of FSCS created by the particle–boundary interaction. They also demonstrated
that the combined action of the wall effect, inertia effect and buoyancy can create attractors
for weakly inertial particles that differ from those for neutrally buoyant particles. A related
phenomenon is the creation of particle limit cycles in a two-dimensional vortex flow by
centrifugal buoyancy that is balanced by a repulsion from the boundary (Romanò et al.
2017). Furthermore, Haddadi & di Carlo (2017) found limit cycles for neutrally buoyant
spheres in an open micro-cavity. The mechanism was explained as a combination of
shear-induced migration and particle–boundary interaction.

Apart from the studies and flow systems mentioned, the effect of a three-dimensional
confinement by impermeable boundaries on the motion of finite-size particles in an
incompressible flow has not yet been fully understood. The above studies have indicated
that non-trivial particle attractors in steady flows can be created by a confinement, in
particular, in the presence of tangentially moving boundaries. Except for the spatially
periodic flow system investigated by Wu et al. (2021), the balance between inertia and
confinement effects has not been analysed in detail for particles being attracted to limit
cycles near a moving boundary. It is desirable, therefore, to better understand the interplay
between inertia and confinement in a canonical flow system such as e.g. the lid-driven cube
(Kuhlmann & Romanò 2019). On a macroscopic scale, the confinement effects are subtle,
because inertia effects on the motion of small particles grow quadratically with the particle
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size and may easily dominate those caused by the presence of boundaries. On the other
hand, confinement effects become dominant in micro systems. Since micro systems are
not easily amenable to measurement, we investigate a generic macro system, the lid-driven
cube, and consider neutrally and almost neutrally buoyant spherical particles to elucidate
the roles of KAM tori in the flow, and inertia and buoyancy forces for the existence, shape
and strength of attractors for the particle motion. Such knowledge is expected to enable
better understanding of the particle dynamics in confined two- and three-dimensional flows
in micro systems such as the creation of particle depletion zones (Orlishausen et al. 2017)
or the limit cycles in an open cavity flow (Haddadi & di Carlo 2017). Also, the design
of microscale particle handling systems like filtration platforms or cell separation devices
should benefit from a more complete understanding of the underlying flow physics.

The flow in the iconic lid-driven cube has been investigated by many authors (e.g.
De Vahl Davis & Mallinson 1976; Goda 1979; Feldman & Gelfgat 2010; Kuhlmann &
Albensoeder 2014; Lopez et al. 2017). For reviews, see Shankar & Deshpande (2000)
and Kuhlmann & Romanò (2019). Owing to its simplicity, this system provides an ideal
test bed for studying particle motion in a steady three-dimensional flow. For a moderate
Reynolds number Re = UH/ν (where H is the cavity height) for which the flow is
steady and three-dimensional, Tsorng et al. (2006, 2008) have measured the motion of
a macroscale spherical particle. Particles were found to settle on preferential trajectories.
The phenomenon was explained in terms of shear-induced migration, but wall-induced
forces were not taken into consideration. Furthermore, since the particle trajectory was not
measured for a sufficiently long period of time, the final state of the particle motion was
not fully revealed. More precise studies of the particle motion in the lid-driven cube are
lacking. Numerical simulations of the flow in the lid-driven cube by Ishii, Ota & Adachi
(2012) and Romanò, Türkbay & Kuhlmann (2020) have shown the coexistence of chaotic
streamlines with a large variety of KAM tori at moderate Reynolds numbers ranging from
Re = 100 to 300. The existence of these structures suggests that particle attractors due to
the confinement may well exist in this system.

To put the interpretation of the motion of finite size particles in the lid-driven cube
on more solid ground, we track experimentally the motion of neutrally buoyant and
non-neutrally buoyant spherical particles for Re = 100 and 200, at which KAM tori are
most abundant. The experimental set-up and the particle properties are described in § 2.
In § 3, the numerical reconstructed topologies of the cavity flow are presented for the two
Reynolds numbers. The key mechanisms by which particle attractors can be created are
introduced in § 4, followed in § 5 by an explanation of the measurement procedure and
the method of analysis of the particle trajectories. Measured particle trajectories for both
neutrally buoyant and inertial particles with various radii and densities are presented and
discussed in §§ 6 and 7 for Re = 100 and 200, respectively. Finally, conclusions are drawn
in § 8.

2. Experiment set-up

2.1. The lid-driven cavity
We target the motion of a Newtonian fluid and of a suspended particle in a cube, where
the flow is driven by the tangential motion of one of its walls (the lid). Since a permanent
and precise tangential motion of a plane wall over a cube requires a relatively complex
hardware, the cubic geometry is approximated experimentally by a cuboidal cavity
based on the apparatus used before by Siegmann-Hegerfeld (2010), Siegmann-Hegerfeld,
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Figure 1. Sketch of the cavity (solid lines) with coordinates and dimensions. Two facing side walls are curved
and realised by large cylinders. The cylinder located at x < 0 is stationary, while the cylinder at x > 0 rotates
with constant angular velocityΩ . The wall curvature (R−1) is shown exaggerated. The origin of the coordinate
system is placed in the centre point of the cavity. The acceleration due to gravity g acts in the negative y
direction.

Albensoeder & Kuhlmann (2008, 2013) and Wu et al. (2021). In this set-up, sketched
in figure 1, two of the facing lateral walls of the cube are realised by independently
rotating stainless steel cylinders of radius R = 135 mm, large compared to the cavity
height H = 40.5 mm. The maximum and minimum horizontal distances between the
two parallel cylinder are Wmax = 41.9 mm and Wmin = 38.9 mm, respectively, yielding an
algebraic mean distance W̄ = 40.4 mm. The top, bottom and lateral side walls are made
from Plexiglas. To convert the previous set-up into a cuboidal geometry, the length in
the spanwise direction has been fixed at L = 40.0 mm by mounting a correspondingly
machined Plexiglas block into the originally spanwise extended cavity. These dimensions
yield a nearly cubic cavity with aspect ratios Γ = W̄/H = 0.998 and Λ = L/H = 0.988.

We consider the case in which one cylinder is kept at rest. The other cylinder is rotating
with surface velocityΩR, whereΩ is the angular velocity of the cylinder, driving the fluid
motion. The working fluid is Bayer silicon oil M20 with kinematic viscosity ν = 20 cSt
and density ρf = 0.95 g cm−3 at 20 ◦C. The dependence of the kinematic viscosity on the
temperature has been measured by Wu et al. (2021) and was fitted by

ν

cSt
= 31.6717 − 0.5976 × T

◦C
+ 0.0044 ×

(
T
◦C

)2

. (2.1)

Since the viscosity depends on the temperature, the temperature of the fluid is measured
every 5 s by two resistance temperature devices of type PT1000, and the rotation speed of
the cylinderΩ is adjusted in order to keep the Reynolds number Re = ΩRH/ν(T) constant
during the measurements. In order to control the temperature and keep it homogeneous,
the cavity including the two cylinders is immersed in a larger container filled with the same
fluid. The fluid in the outer bath is recirculated through a thermostat that can maintain the
temperature at a specific value with a tolerance of ±0.1 ◦C. To facilitate optical access,
the top wall of the cavity as well as one side wall at z = L/2 are not immersed in the
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ap (mm) a T (◦C) � �� St (� − 1) St ReSt
p Rep

0.25 0.0062 24.00 0.959 ±0.001 8.64 × 10−6 −3.54 × 10−7 3.54 × 10−3

0.25 0.0062 24.00 1.042 ±0.001 8.64 × 10−6 3.63 × 10−7 3.62 × 10−3

0.26 0.0064 24.30 1.0001 ±0.00001 9.34 × 10−6 9.34 × 10−10 0.97 × 10−5

0.26 0.0064 24.00 1.051 ±0.001 9.34 × 10−6 4.76 × 10−7 4.95 × 10−3

0.28 0.0069 24.00 1.022 ±0.001 1.08 × 10−5 2.38 × 10−7 2.67 × 10−3

0.45 0.0111 25.50 0.940 ±0.005 2.80 × 10−5 −1.68 × 10−7 3.02 × 10−2

0.45 0.0111 26.10 1.0001 ±0.00001 2.80 × 10−5 2.80 × 10−9 0.51 × 10−4 0.10
0.48 0.0119 25.50 1.052 ±0.002 3.18 × 10−5 1.65 × 10−6 3.18 × 10−2

0.49 0.0120 25.50 1.019 ±0.002 3.25 × 10−5 6.18 × 10−7 1.24 × 10−2

0.53 0.0130 25.50 1.061 ±0.004 3.81 × 10−5 2.32 × 10−6 0.50 × 10−1

1.10 0.0272 24.40 1.0001 ±0.00001 1.67 × 10−4 1.67 × 10−8 0.75 × 10−3

1.58 0.0390 24.20 1.0001 ±0.00001 3.45 × 10−4 3.45 × 10−8 0.22 × 10−2 0.28
2.00 0.0494 26.80 1.0001 ±0.00001 5.53 × 10−4 5.53 × 10−8 0.44 × 10−3

2.37 0.0586 25.00 1.0001 ±0.00001 7.80 × 10−4 7.80 × 10−8 0.74 × 10−2

2.85 0.0704 25.30 1.0001 ±0.00001 1.12 × 10−3 1.12 × 10−7 1.29 × 10−2 0.46

Table 1. Particle radius ap, non-dimensional particle radius a = ap/H, operating temperature T , and
particle-to-fluid density ratio � = ρp/ρf determined by measuring the settling velocity in the quiescent fluid
of temperature T , error ��, and St = 2a2/9. Note that the error �� made in this process is smaller here due
to the better temperature control up to ±0.01 ◦C. Also provided are the inertial factor (� − 1) St, the particle
Reynolds number ReSt

p = apVStokes/ν based on the Stokes settling velocity, and the particle Reynolds number

Rep = ap Vslip/ν based on the average slip velocity Vslip = |u − Ẋ | at Re = 200.

temperature bath. For further details on the apparatus, we refer to Siegmann-Hegerfeld
(2010) and Wu et al. (2021).

2.2. Suspended particles
The fluid in the cavity is seeded with a single spherical particle made from polyethylene.
Different particle radii are considered in the range ap ∈ [0.25, 2.86] mm. Apart from
the particle size, the particle-to-fluid density ratio � = ρp/ρf is of key importance. The
fluid density ρf (T) = [0.97891 − 0.0010184 × (T/◦C)] g cm−3 was obtained by linear
approximation of the discrete data at [0, 25, 50] ◦C specified by the manufacturer (see also
Wu et al. 2021). Due to the error in the temperature, this leads to a relative uncertainty of
�ρf /ρf ≈ ±0.0001 for the fluid density. The density of the particle ρp is varied such that
the density ratio ranges in � ∈ [0.94, 1.06]. Neutrally buoyant particles have been realised
by adjusting the fluid temperature. In a separate experiment with a better temperature
control of ±0.01 ◦C, the relative density � of the particles was determined by measuring
settling velocity. The properties of the particles used are specified in table 1. Note
that while the density for particles with � = 1.0001 could be determined with accuracy
�� = ±0.00001 in the settling experiment, the accuracy of � in the cavity experiments
was reduced to ±0.0001, owing to the less accurate temperature control.

To determine precisely the trajectory of the particle inside the cuboidal cavity, it is
illuminated by a halogen lamp and the particle motion is recorded by two synchronised
cameras (FLIR Grasshopper, model GS3-U3-32S4M-C), one equipped with a NIKKOR
24 mm f/2.8D lens and the other with a NIKKOR 35 mm f/2.0D lens. The sampling
frequency is 20 Hz. The cameras view the interior of the cavity in the y and z directions,
respectively, through the plane side and top walls, both of which are made from transparent
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Plexiglas. The side wall at z = −L/2 and the bottom wall at y = −H/2 are made from
black Plexiglas to provide a black background for both cameras. During post-processing
of the recorded movies, the centroid of the particle is determined for each frame of each
camera. This is accomplished essentially by application of the Laplacian of a Gaussian
filter after which the position of the centroid is identified by the local brightness maximum.
After obtaining the two-dimensional position of the particle’s centroid in the sensor plane
of each camera, the three-dimensional coordinate of the particle relative to the cavity
can be found by a triangulation process that also takes into account the refractive index
variations at the interfaces between air, Plexiglas and silicone oil, based on Snell’s law.
The details of the algorithm can be found in Wu et al. (2021).

In the following, we will frequently use non-dimensional quantities based on the length
scale H, the viscous time scale tν = H2/ν(T) ≈ 80 s, which is temperature dependent, and
the viscous velocity scale ν(T)/H. If required, the temperature of the fluid is specified. A
table of the properties of the particles employed and the fluid temperatures at which they
were tracked is provided in table 1.

3. Flow field without particles: flow topology

The flow in a cubic or cuboidal cavity is three-dimensional for all Reynolds numbers
(Kuhlmann & Romanò 2019). Moreover, the flow in a lid-driven cube is steady for Re <
1906 (Kuhlmann & Albensoeder 2014), and for Reynolds numbers Re = 100, 200 and
300, chaotic and regular streamlines in the form of KAM tori coexist (Ishii & Adachi
2010; Romanò et al. 2020).

The steady flow in the present cuboidal cavity differs slightly from the flow in a
lid-driven cube due to the presence of the curved walls. The wall curvature has little effect
on the gross flow structure and on the major KAM structures. However, the finer KAM
structures differ between the cases. Therefore, we carried out numerical simulations of the
flow in the cuboidal cavity with NEK5000, and analysed the streamline structure using
the same criteria and methodology as in Romanò, des Boscs & Kuhlmann (2020) for the
cubic cavity. Accordingly, we employ 20 Legendre–Gauss–Lobatto spectral elements of
7th degree per space direction, resulting in a total of approximately 4 million spectral
points. To discretise the Navier–Stokes and continuity equations, we employ a spectral
interpolation consistent with degree 7 in x, y and z. After having computed the steady
flow, the same Runge–Kutta Dormand–Prince method (Dormand & Prince 1980) as in
Romanò et al. (2020) is employed to compute streamlines by integrating the trajectories
of individual fluid elements with absolute and relative tolerances of 10−7. From these
streamlines in the form of a sequence of discrete points, a Poincaré section is obtained
as the set of intersection points of the streamline with a plane surface given by a specific
coordinate value. From many such Poincaré sections, the KAM tori can be reconstructed
as three-dimensional toroidal surfaces as described in Romanò et al. (2020).

The flow topology in the present cuboidal cavity for Re = 100 and 200 is interesting,
because of the complex structure of the more slender KAM tori. For both Reynolds
numbers, the flow is reflection symmetric with respect to the midplane z = 0. Figure 2(a)
shows a three-dimensional view of the KAM tori for Re = 100, whose structure can
be better seen in the Poincaré section at y = 0 (figure 2b) with cross section (x, z) ∈
[−0.48125, 0.48125] × [−0.5, 0.5]. The topology is dominated by two mirror-symmetric
sets of KAM tori with period one (light grey) surrounded by chaotic streamlines (not
shown). Inside these period-one sets of tori (figure 2b), we find two layers of chaotic
streamlines (not shown) within which slender KAM tori of higher period – six (green)
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Figure 2. Numerically calculated KAM tori for Re = 100. (a) Three-dimensional view of the innermost KAM
tori of period one (light grey), surrounded by the largest reconstructible KAM tori of period six (green)
and period seven (dark grey). The lid motion is indicated by an arrow. (b) Poincaré section on y = 0 of
quasi-periodic streamlines on the KAM tori shown in (a). The KAM tori SA and SB represent transport barriers
to the chaotic streamlines (not shown) surrounding the KAM tori T6 and T7. The dashed lines indicate the
boundary of the domain in the plane shown.

and seven (dark grey) – are embedded. These tori with higher periodicity must have been
created by a 1 : 6 and a 1 : 7 resonance, respectively. The two chaotic layers with embedded
higher-order KAM tori are sealed by the contiguous KAM tori of T1 and by thin layers of
period-one KAM tori denoted SA and SB. In figure 2(a), the outermost sealing layers of
period-one tori (SA, SB) have been omitted to show T6 (green) and T7 (dark grey/black).

Figure 3 illustrates the KAM tori for Re = 200 with a three-dimensional view shown in
figure 3(a). The topology has become more complex, and the main KAM tori T1 of period
one (light grey) have shrunk at the expense of the chaotic region. As for Re = 100, we
also find secondary tori T7 of period seven (dark grey/black), embedded in a thin chaotic
layer between the outermost tori of T1, best seen in figure 3(b). The thin chaotic layer is
separated from the outer chaotic region by a transport barrier SA (shown only in figure 3b).
In addition, we find in the outer chaotic sea a secondary KAM torus T4 of period four
(blue), which is closely surrounded by another system of tori T4×7 (red), which closes after
a total of 28 revolutions about T1. Further, we identify a slender KAM torus T5 (green) of
period five, of which only four returns are visible in figure 3(b) due to the location of the
Poincaré section at y = 0. For the same reason, the slender KAM torus T5×2 (orange) of
period ten that winds around T5 exhibits only nine returns in the Poincaré plane y = 0.

For both Reynolds numbers, we find that all KAM tori approach the moving wall closely,
separated from the lid only by a thin layer of chaotic streamlines. According to Hofmann
& Kuhlmann (2011), Romanò & Kuhlmann (2017) and Barmak, Romanò & Kuhlmann
(2021), such a situation can promote the creation of stable limit cycles for suspended
particles with � = 1, i.e. for particles that tend to move similarly to the fluid in the
absence of particles. The attractors are created by a localised particle–wall interaction that
is communicated by lubrication forces and must be distinguished from attractors created
by inertia when � /= 1 (Romanò et al. 2019a). Even though the former attractors rely on
KAM tori located at a distance from the wall comparable to the particle size, we will
often call the localised particle–wall interaction simply the wall effect. Although this wall
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T7
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SA
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0.5

(a)

z
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0
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x 0
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−0.4
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z
0 0.2 0.4−0.2

Figure 3. Numerically calculated KAM tori for Re = 200. (a) Three-dimensional view of the largest
reconstructible KAM tori T1 (light grey), T7 (dark grey), T4 (blue), T5 (green) and T10 (orange). The arrow
indicates the direction of the lid motion. (b) Poincaré section on y = 0 of quasi-periodic streamlines on the
KAM tori shown in (a). In addition, the KAM tori T4×7 (red) can be identified. The dashed lines indicate the
boundary of the domain in the plane shown.

effect depends on the particle size, it differs from a size effect in the bulk (e.g. the Faxén
correction).

The existence of such attractors has already been demonstrated by Wu et al. (2021),
who investigated particle motion attractors in a steady periodic cellular flow in a cavity
extended in the z direction and driven by an opposing motion of the two facing walls.
In the following, we inquire into the existence of particle motion attractors in the present
cuboidal cavity flow. The cuboidal flow differs from the periodic flow investigated by Wu
et al. (2021) by the characteristic end wall effect, which causes the three-dimensionality
of the flow. The existence and location of particle motion attractors depend on the location
of the KAM tori relative to the boundaries. Therefore, the characteristic properties of the
main numerically computed KAM tori of interest are collected in table 2, providing the
minimum distancesΔψ of the central closed streamline and the minimum distancesΔT of
the largest reconstructible KAM tori from the top and bottom walls (superscripts ‘y+’ and
‘y−’, respectively) and from the two curved walls (superscripts ‘x−’ and ‘lid’). In addition,
the orbit time τL of the closed streamline is provided in units of the viscous diffusion time,
i.e. τL = tL/tν . Obviously, the closed streamlines and tori always approach the moving
wall (superscript ‘lid’) the closest. The torus T5 for Re = 200 is so slender that we did not
distinguish it from its closed streamline.

4. Key factors influencing the particle motion

Particles that have nearly the same density as the fluid are mainly advected. Since attractors
for exactly advected particles are impossible, deviations from pure particle advection are
necessary for attractors to exit. Three main factors contribute to the formation of attractors
in steady three-dimensional closed flows.

One such factor is the repulsive action on the particle caused by the boundaries, in
particular the moving wall. This effect becomes prominent if other forces like inertia and
buoyancy are absent. Hofmann & Kuhlmann (2011) have shown that stable limit cycles
for the particle motion can be created by the repulsion of tangentially moving boundaries,
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Re L,T τL Δ
y+
L,T Δ

y−
L,T Δ

x−
L,T Δlid

L,T τL Re/n

100 L1 0.07003 0.2121 0.1049 0.4233 0.0484 7.003
T1 0.0526 0.0375 0.2264 0.0126
L6 0.51251 0.0433 0.0322 0.2203 0.0104 8.5418
T6 0.0357 0.0277 0.1842 0.0087
L7 0.77256 0.0142 0.0125 0.1435 0.0027 11.037
T7 0.0133 0.0118 0.1268 0.0025

200 L1 0.03786 0.2441 0.0818 0.3553 0.0446 7.572
T1 0.1087 0.0479 0.2554 0.0210
L4 0.17576 0.0674 0.0399 0.1548 0.0151 8.788
T4 0.0361 0.0239 0.1390 0.0081
L5 0.28456 0.0355 0.0236 0.0715 0.0079 11.382
T5 — — — —
L7 0.27636 0.1055 0.0464 0.2404 0.0202 7.896
T7 0.0921 0.0428 0.2337 0.0181
L10 0.57710 0.0203 0.0161 0.0736 0.0043 11.542
T10 0.0184 0.0149 0.0730 0.0037

Table 2. Numerically computed properties of the largest reconstructible KAM tori (T) and closed streamlines
(L). Specified are the period τL of the closed streamline and the minimum distances of the closed streamline
(ΔL) and KAM tori (ΔT ) from the boundaries. The superscript indicates the boundary to which the distance
relates: y+ for y = 0.5; y− for y = −0.5; x− for the curved wall at x < 0; lid for the moving curved wall at
x > 0. Also given is the mean time for a single turnover in convective scaling τL Re/n, where n is the period of
the orbit.

if the closed streamline of a KAM torus approaches the moving boundary closer than the
centroid of a spherical particle can do. The resulting limit cycle is a trajectory on a KAM
torus in the bulk that is closed by a relatively short segment near the boundary within
which the boundary effect is acting. This effect is very important in thermocapillary flows
(Muldoon & Kuhlmann 2016; Barmak et al. 2021), for which various particle motion
attractors have been observed (Schwabe et al. 2007, see e.g.). Romanò & Kuhlmann
(2017) have pointed out that the onset criterion of Hofmann & Kuhlmann (2011) must
be modified if lubrication forces between particle and boundary are taken into account.
The existence of limit cycles due to the boundary effect can be understood in terms of
a localised dissipation that is introduced in the dynamical system governing the particle
motion. The boundary-induced limit cycles are stable (Hofmann & Kuhlmann 2011).

The other important factors are buoyancy and inertia, both caused by a density mismatch
between particle and fluid. Inertia forces also introduce a dissipation in the dynamical
system for the particle motion, thus allowing for limit cycles to exist. Different from the
boundary effect, however, the particle limit cycles caused by particle inertia in a flow that
is steady in the absence of the particle can be either stable or unstable. While buoyancy
forces alone cannot lead to attractors, because they derive from a potential (see also Sapsis
& Haller 2010), they can determine the stability of the inertia-induced limit cycles (Wu
et al. 2021) and boundary-induced attractors (Romanò, des Boscs & Kuhlmann 2021).

Using the above-mentioned diffusive scaling for a fluid with constant properties, the
motion of a small particle with radius a = ap/H sufficiently far from the boundary can be
modelled, to first order in a2, by the inertial equation (Lasheras & Tio 1994)

Ẋ = u − (� − 1) St
(

Du
Dτ

+ ey

Fr2

)
, (4.1)
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Finite-size particle motion attractors

where X (τ ) is the trajectory of the particle, τ is the dimensionless time, u = uex + vey +
wez is the flow field expressed in Cartesian components (ex, ey and ez are the unit vectors in
the coordinate directions; see figure 1), St = 2a2/9 is the Stokes number, Fr =

√
ν2/(gH3)

is the diffusively scaled Froude number, and D/Dt is the material derivative following the
flow. For the present steady flow, D/Dτ = u · ∇u. From (4.1), to leading order in a, both
buoyancy and inertia effects scale with (� − 1) St.

In pure advection with Ẋ (τ ) = u, a particle can move on a KAM torus just like a fluid
element. This particle motion is, however, structurally unstable: a weak inertial effect
(� − 1) St � 1 destroys the KAM structure of the particle’s trajectory. In particular, the
neutrally stable periodic particle orbit on the closed streamline in the case of advection
becomes a stable or an unstable limit cycle. The stability property of the resulting limit
cycle depends on the topological properties of the flow field, the sign of � − 1, and the
strength and orientation of the buoyancy force. It is interesting to note that for constant
Reynolds number, the relative importance of inertia to buoyancy forces remains constant.
The squared inverse Froude number evaluated for the nominal viscosity 20 cSt amounts to
Fr−2 = gH3/ν2 = 1.63 × 106. The related Stokes number based on the settling velocity
can be obtained easily by multiplication with (� − 1) St (see table 1).

From these considerations, inertia-induced limit cycles can be expected to form near
closed streamlines, i.e. near the centres of KAM tori. In the two-sided lid-driven cavity
investigated by Wu et al. (2021), the KAM tori arise in periodic pairs. The two main tori
existing in a single convection cell were located point symmetrically to each other with
respect to the cell centre. Due to this symmetry and the direction of the gravity vector in
their experiment, the effect of gravity on a particle moving in one of the two main tori was
exactly opposite to the effect of gravity on a particle moving in the point-symmetrically
located torus. As a result of buoyancy, the equivalence of the inertia-induced attractors
near the two closed streamlines was found to be destroyed such that one of the two
attractors even turned into a repeller (Wu et al. 2021). In the present lid-driven cuboid,
the KAM tori arise in reflection-symmetric pairs such that the inertial-buoyant action on a
moving particle is equivalent for both tori. Therefore, it is expected to find in the present
system either two inertial-buoyant attractors or two inertial-buoyant repellers.

5. Experimental procedure and analysis of measured trajectories

The motion of a single spherical particle with non-dimensional particle radius a and
relative density � in the cavity is measured for Re = 100 and 200 following the procedures
described in Wu et al. (2021). In short, after the particle has been placed in the cavity,
the flow is ramped up linearly at rate �Re/�t = 1000 s−1 and driven at Re = 400 for one
minute. Since the flow is transient and the steady flow at Re = 400 in the cuboidal cavity
exhibits only chaotic streamlines, as in the cubic cavity (Ishii et al. 2012; Romanò et al.
2020), this initial phase randomises the position of the particle. Thereafter, the Reynolds
number is ramped down at the same rate as the ramp-up until the targeted Reynolds
number is reached. From this instant, which defines t = τ = 0, the Reynolds number is
kept constant at Re = 100 or 200, and the particle motion is recorded.

Particles with different sizes and densities are considered (table 1). To study the pure
geometrical confinement effect on the particle motion, the trajectories of small particles
with density � = 1.0001 almost matched to that of the fluid are measured. By varying
the density ratio �, the relative importance of inertia and buoyancy compared to the
confinement effect can be assessed. In order to prove reproducibility of the recorded data
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and to arrive at statistically reliable results, each experiment is repeated several times. Of
particular interest are the shapes of the attracting orbits and the rate of attraction. Following
Wu et al. (2021), the temporal evolution is monitored in the Poincaré plane defined by
y = 0. Provided that the asymptotic state is a limit cycle, the distance

dn = [(xn − x∗)2 + (zn − z∗)2]1/2 (5.1)

between each Poincaré point (xn, zn) of the particle’s trajectory and the fixed point (x∗, z∗)
corresponding to the limit cycle is measured as a function of time τn, where n enumerates
successive Poincaré points. In the case where the attractor is quasi-periodic, (x∗, z∗) is
defined as the geometric centre

(x∗, z∗) = 1
K

Nmax∑
k=Nmax−K+1

(xk, zk) (5.2)

of the last K Poincaré points, where Nmax is the total number of Poincaré points registered.
Here, we use K = 20.

The rate of attraction is also determined from dn. To that end, only Poincaré points in the
plane y = 0 are taken into account, which have approached the attractor closely, satisfying
dn < d∗ = 0.15. The time it takes to satisfy this condition is called the initial transient
time τI = min{τ ′ | ∀τ>τ ′ dn(τ ) < d∗}. The decay function

d(τ ) = A e−σ(τ−τI) + B (5.3)

is then fitted by least squares to the sequence of distances dn to obtain the constants
A and B, and the attraction rate σ . Ideally, B = 0 for a periodic attractor, while B > 0
for a quasi-periodic attractor. Experimentally, however, B > 0 always, because of small
measurement errors in the positive distance function (dn ≥ 0), even for a periodic orbit.

Alternatively, the asymptotic attraction rate to a periodic orbit or to a slender torus can
be determined by monitoring the extremum values of any coordinate of the trajectory. An
example is shown in figure 4. Here, the minima of X (dots) vary in a certain range. From the
upper and lower envelopes of the minima, the attraction rate(s) and the asymptotic values
for τ → ∞ can be obtained. A persistent variation of the minima indicates a toroidal
motion, while the motion is periodic if the upper and lower envelopes converge to the
same value for τ → ∞.

6. Results for Re = 100

6.1. Motion of nearly neutrally buoyant particles
To target attractors for the particle motion that are caused mainly by particle–wall
interaction, any inertia effects must be minimised. Therefore, we first consider particles
whose density is nearly matched to that of the fluid. Nearly neutrally buoyant conditions
were realised by adjusting the temperature of the fluid in the cavity experiment, yielding
relative density � = 1.0001 ± 0.0001 for all particles considered in this section, i.e. for
particles with sizes a = 0.0064, 0.0111, 0.0272, 0.0390, 0.0494, 0.0586 and 0.0703. Their
motion is considered for Re = 100.

6.1.1. Limit cycles of period one
For � = 1.0001, we find a periodic attractor with period one in very close vicinity of the
closed streamline L1 for all particle sizes mentioned above. Figure 5 shows the locations
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Figure 4. Example for the coordinate X(τ ) of a trajectory (line) and the local minima (dots) for Re = 100,
a = 0.0064 and � = 1.0001.

of the limit cycles in the Poincaré plane y = 0 (here and in the following, the dashed lines
indicate the location of the curved walls in this plane). As can be seen, the attractors arise
as mirror symmetric pairs and they grow out of the closed streamline (white diamond in
figure 5b) as the particle size (coded by colour) increases from a = 0.0111. With increasing
a, the attractors move away from the moving wall in the y = 0 plane, and closer to the
symmetry plane z = 0. The growth of the distance from the moving wall with increasing
particle size is also seen in the projections of the limit cycles onto the (x, y) plane shown in
figure 6. In addition, the periodic orbits extend slightly further in the positive y direction as
a increases. The Poincaré points for the smallest particle with a = 0.0064 – corresponding
to the dark grey crosses in figure 5(b) – near the closed streamline belong to a transient
state at t ∈ [6700, 7200] s, which finally converges to a limit cycle for much longer time
(see figure 19(b) below).

As a typical example, we consider in more detail the trajectory of a particle with
a = 0.0272 and � = 1.0001. Initially, the particle is transferred by the boundary repulsion
effect to one of the regions occupied by the two main sets of KAM tori T1 of the flow.
There, the particle approximately moves on KAM tori, but slowly spirals into the limit
cycle. A three-dimensional view of the resulting limit cycle is shown in figure 7(a),
where 40 trajectories have been superimposed. The close agreement of the trajectories
demonstrates the reproducibility of the two limit cycles. Figure 7(b) shows all Poincaré
points for two realisations. It is seen that during the asymptotic transient motion, the
trajectories are characterised by two incommensurate frequencies whose ratio is close to
five.

A particle moving on a limit cycle makes a periodic motion in which the components of
the trajectory X (t) are periodic functions of time. A characteristic quantity of this motion
is the period τ1 that is the inverse of the fundamental frequency f1 of the Fourier spectrum
of any of the periodic coordinate functions. The amplitude spectrum X̂ of the x coordinate
of the limit cycle is presented in figure 8 (solid line). The fundamental frequency of the
limit cycle is f1 = 0.165 Hz, corresponding to the non-dimensional frequency F1 = 13.33.
The spectrum of the limit cycle compares very well with the spectrum of the fluid motion
on the closed streamline that is shown by a dashed line for comparison. To determine the
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Figure 5. (a) Poincaré section on y = 0 of trajectories of nearly neutrally buoyant spherical particles
(� = 1.0001) on their respective attractors (colours). The colour indicates the particle radius a: 0.0064 dark
grey, 0.0111 blue, 0.0272 yellow, 0.0390 cyan, 0.0494 green, 0.0586 orange, and 0.0704 red. For comparison,
the Poincaré section of KAM tori and closed streamlines are shown as light grey dots. The black dots represent
the Poincaré section of the attractors for an inertial particle with a = 0.0119 and � = 1.052. The large square
indicates the zoom shown in (b), where attractors are shown by crosses and streamlines on KAM tori by light
grey dots. The dashed lines indicate the boundary of the domain in the plane shown.
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Figure 6. (a) Projection of all trajectories onto the (x, y) plane of nearly neutrally buoyant spherical particles
(� = 1.0001) moving on their respective attractors. The colour indicates the particle radius a: 0.0064 light grey
and dark grey, 0.0111 blue, 0.0272 yellow, 0.0390 cyan, 0.0494 green, 0.0586 orange, and 0.0704 red. Black
and maroon lines indicate numerically computed closed streamlines of periods one and six, respectively. (b)
Zoom, the x and y axes are scaled differently.

asymptotic decay to the limit cycle, the distance functions dn from the fixed point in the
Poincaré plane for all forty realisations are fitted by (5.3). The result is shown in figure 9(b),
yielding the decay rate σ = 0.743.

In addition, figure 9(a) shows the Poincaré section of a representative trajectory (black
and red dots) in relation to the largest of the inner contiguous KAM tori (grey dots),
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x

z

−0.25

−0.25
−0.50

0

0

0.25

0.25

0.50

y

−0.5

0

0.5

z
0

0.5

x
−0.5

0

0.5

(b)(a)

Figure 7. (a) Forty trajectories for a = 0.0272 (ap = 1.1 mm) and � = 1.0001 recorded during t ∈
[500, 600] s. Shown is a three-dimensional view of the two periodic attractors. The arrow indicates the direction
of the motion of the lid/cylinder. (b) Poincaré section (black dots) of two such particle trajectories on the plane
y = 0 recorded during t ∈ [0, 600] s. The particles are initially located in different half domains (z > 0 or
z < 0) of the cavity. Poincaré sections of numerically computed streamlines on KAM tori are shown as light
grey dots.

0.1 0.2 0.3 0.4 0.50

0.05

0.10
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0.30
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f2

X̂

X̂
X̂ L1

Figure 8. Amplitude spectrum X̂( f ) (solid line) of the trajectory of a particle with a = 0.0272 (ap = 1.1 mm)
and � = 1.0001 moving on its periodic attractor with fundamental frequency f1 = 0.165 Hz (F1 = 13.33) in
comparison with the spectrum X̂L1 of the numerically determined closed streamline (dashed line).

the closed streamline (diamond) and the threshold condition (circle with radius d∗ about
(x∗, z∗)).

Figure 10 shows the mean attraction rate σ̄ := N−1 ∑N
n=1 σn, where σn is determined

according to (5.3), n numbers the samples, and N is the number of repeated experiments
for each particle. Data (×) are collected for all particles with � = 1.0001. As can be
seen, the rate of attraction to the limit cycle increases with the particle size a. As will
be shown below, the density difference between the particles and the fluid is too small to
relate the attraction to inertial effects. Therefore, the attraction rates found are attributed
mainly to the wall effect, i.e. the confinement effect of a finite size particle, and will be
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Figure 9. (a) Poincaré section on y = 0 of a trajectory of a single particle (black dots and lines) with a =
0.0272 and � = 1.0001. The final phase from τ = 6.4335 onwards is shown by red dots. Grey dots indicate
the largest contiguous KAM torus; the white diamond marks the closed streamline; and the circle defines the
threshold distance d∗ for Poincaré points to be included in the fit (5.3). (b) The distance function dn for 40
realisations (grey plus signs). A fit (solid black line) of the data according to (5.3) yields the attraction rate
σ̄ = 0.766 ± 0.07.
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Figure 10. Mean attraction rates σ̄w to the period-one attractors for nearly neutrally buoyant particles with radii
a = 0.0064, 0.0111, 0.0272, 0.0390, 0.0494, 0.0586, 0.0704, corresponding to ap = 0.26, 0.45, 1.10, 1.58, 2.00,
2.37, 2.85 mm. The solid line is a fit σ̄w = cab (c = 3968, b = 2.32) to the data for the smallest particle sizes
(see text).

denoted σ̄w henceforth. Also included in the graph is a power-law fit (solid line) to the
three points given by the origin (0, 0) and the data for the two smallest particles. We find
the approximation σ̄w = cab with c = 3968 and b = 2.32 valid for a < 0.012. Other fit
functions, e.g. polynomials, have been tested as well. They all lead to similar implications
regarding the contribution of the wall effect to the attraction rate of heavier particles with
size up to a = 0.0120 (figure 15 below).

6.1.2. Limit cycle of period six
For the smallest particle size a = 0.0064 and for � = 1.0001, we find, in addition to
the limit cycle of period one near L1, another limit cycle of period six. The limit cycle
to which the particle is attracted depends on the initial conditions. The period-six limit
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Figure 11. Sixteen trajectories for a = 0.0064 (ap = 0.26 mm) and � = 1.0001 recorded during t ∈
[6700, 7200] s. (a) Three-dimensional view of the period-six attractors (blue) and transient toroidal trajectories
that are ultimately attracted to one of the two period-one limit cycles. (b) Poincaré sections on the plane y = 0
(black, blue) of the particle trajectories shown in (a). Poincaré sections of numerically computed streamlines
are shown as light grey dots.

cycle is found near the closed streamline L6. Figure 11 shows a three-dimensional view
of trajectories on the two attractors (blue) and Poincaré sections on y = 0 during the
time interval t ∈ [6700, 7200] s. At this time, particle trajectories have converged to the
period-six attractor up the size of the blue dots shown in figure 11(b). The period-six
KAM tori seem to be a robust feature of the flow, because they also exist in the exactly
cubical cavity at the same Reynolds number (Romanò et al. 2020).

Also shown in figure 11 is a three-dimensional view of trajectories and a Poincaré
section of particles that end up on one of the two period-one limit cycles near L1. The
attraction is so weak that these particles have not yet reached their periodic orbit at
t = 7200 s (see figure 19b). In comparison, the attraction to the period-six orbit is one
order of magnitude faster (table 3). This can be explained by the close proximity to the
moving wall of the closed streamline L6 and the period-six limit cycle, which are shown in
maroon and light grey, respectively, in figure 6(b). Therefore, a particle near L6 repeatedly
experiences a much stronger wall-induced repulsive force than the same particle (dark
grey in figure 6b) when it moves near L1. From the spectrum of the period-six attractor
shown in figure 12, we find the fundamental frequency f1 = 0.133 Hz. The subharmonics
at f1/6 of order six and its integer multiples clearly indicate the period-six motion on
this attractor. Properties of the limit cycles for all nearly neutrally buoyant particles found
are collected in table 3. The correlation between the limit cycles for the particles and
numerically computed closed streamlines can be seen by comparing tables 3 and 2.

Even though period-seven KAM tori exist in the flow, embedded in the period-one KAM
system, we have not found a period-seven attractor. This may be related to not having
probed a particle size suitable for attraction. Since L7 approaches the moving wall even
closer than L6 (table 2), the particles that could be attracted to a limit cycle of period
seven are expected to be even smaller than a = 0.0064. A further difficulty of finding such
attractors may arise from the particle size selectivity, which is related to the small diameter
of the period-seven KAM structures.
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Figure 12. Amplitude spectrum X̂ of a trajectory on the period-six attractor with f1 = 0.133 Hz (F1 = 10.91)
for a = 0.0064 (ap = 0.26 mm), � = 1.0001, Re = 100 and T = 24.3 ◦C. For comparison, the spectrum X̂L6
of the numerically determined closed streamline is shown as a dashed line.

a Type f1 (Hz) F1 τ1 τ̄I σ̄w Δ
y+
p Δ

y−
p Δ

x−
p Δlid

p N

0.0064 P-6 0.133 11.03 0.0907 — 0.223a 0.0371 0.0259 0.1866 0.0083 3
0.0064 P-1 0.169 14.22 0.0703 15.84 0.030 0.1908 0.0922 0.3941 0.0459 11
0.0111 P-1 0.172 14.61 0.0684 3.47 0.114 0.2149 0.0962 0.4132 0.0503 25
0.0272 P-1 0.165 13.71 0.0729 0.66 0.766 0.2099 0.1001 0.4092 0.0508 40
0.0390 P-1 0.170 14.01 0.0714 0.28 1.561 0.2060 0.1033 0.4099 0.0579 10
0.0494 P-1 0.157 13.612 0.0735 0.22 2.000 0.1976 0.1086 0.4010 0.0606 15
0.0586 P-1 0.160 13.448 0.0744 0.22 2.329 0.1896 0.1120 0.3905 0.0661 9
0.0704 P-1 0.156 13.192 0.0758 0.16 2.354 0.1695 0.1112 0.3848 0.0723 10

Table 3. Properties of measured trajectories of nearly neutrally buoyant particles on their periodic attractors
for Re = 100 and � = 1.0001. Specified are the type (period), fundamental frequencies f1 (dimensional) and
F1 (dimensionless), turnover time τ1 = F−1

1 , initial transient time τ̄I required to approach the attractor up to
the distance dn ≤ 0.15 (in the plane y = 0), asymptotic attraction rate σ̄w, the closest wall-normal distances
from the boundaries Δp (the boundary is indicated by the superscript), and the number of samples N used for
averages.

aThe attraction rate for the P-6 attractor was evaluated by fitting exponentially the local minima of the X(τ )
coordinate of the trajectory.

6.2. Forces along the trajectories of density-matched particles
In order to assess major forces acting on the particle during its motion, we used a
measured particle trajectory and computed all flow gradients along this trajectory from
the unperturbed flow field obtained numerically. The flow velocity at the position of the
particle is determined by polynomial interpolation of the numerical velocity field, while
the velocity of the particle is calculated by central differences of the measured discrete
position data. For small particles, the forces arising in the Maxey–Riley equation (Maxey
& Riley 1983) are of interest.

Results for a particle with a = 0.0111 and � = 1.0001 for Re = 100 are shown in
figure 13(a) during the initial (transient) phase, and in figure 13(b) during the motion
on the limit cycle. Figures 13(a i) and 13(b i) show the particle location in the form of x(τ )
(black), y(τ ) (red) and z(τ ) (green). Figures 13(a ii–iv) and 13(b ii–iv) show the x, y and
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Finite-size particle motion attractors

z components of the acceleration terms evaluated. For the x component, figures 13(a ii)
and 13(b ii) show the pressure force, including the added mass effect (3/2)R Du/Dτ
(black), Faxén’s correction to the added mass (a2/20)D(∇2u)/Dτ (red), the Stokes drag
−R St−1 (Ẋ − u) (green) and Faxén’s correction to the Stokes drag (a2/6)R St−1∇2u
(blue). Here, R = 2/(1 + 2�). The lines in the plots for the y and z components have the
corresponding meanings.

In addition to the above terms, we show forces which are not contained in the
Maxey–Riley equation. They derive from the particle velocity, the unperturbed velocity
gradient and the distances to the walls. These forces were computed to estimate the
magnitude of the corresponding effect on the particle motion. The additional drag force on
a particle viscously settling according to Brenner’s correction to the drag coefficient λ has
been computed as −R St−1 ∑3

i=1(λi − 1)Ẋ i,⊥, where the sum runs over the contributions
from the top wall (i = 1), the curved moving wall (i = 2) and the bottom wall (i = 3), λi

is the drag coefficient evaluated corresponding to the distance from the ith wall, and Ẋ i,⊥
is the particle velocity normal to the ith wall. The resulting contributions, decomposed
into Cartesian components, are shown in orange in figure 13. To estimate a possible
migration effect, we also monitor (in the x plot only) Saffman’s lift force in the x direction
0.727�−1 St−1/2 (v − Ẏ) |∂v/∂x|1/2sgn(∂v/∂x) (cyan; Saffman 1965, 1968). Finally, we
also consider the lift force (in the x plot only) for a freely rotating particle near a plane
wall according to the formula given by Cherukat & Mclaughlin (1994) (brown).

Throughout its motion, the largest forces on the particle arise during the closest approach
to the moving wall. Of these forces, viscous forces (green, orange) dominate. We first
consider the motion on the attractor. From figure 13(b iii), one can see that the passage of
the particle near the moving wall experiences a viscous drag (green) that is directed in the
negative y direction due to the flow acceleration caused by the wall motion and the particle
being slightly heavier than the fluid. In the x direction, viscous forces dominate as well. It
is seen that the particle starts lagging behind the flow even upon approaching the moving
wall. The positive drag forces indicate that the particle is kept away from the moving wall.
This is an important property of the lump wall effect (see also the model of Hofmann &
Kuhlmann 2011). The repulsion effect is also signalled by the positive contribution of the
correction to the viscous drag according to Brenner’s drag coefficient λ (orange). On the
other hand, Saffman’s lift force (cyan) tends to push the particle towards the wall. Since
the Saffman lift may not be correct near a moving wall, we also included the lift force
according to the formula of Cherukat & Mclaughlin (1994) for a freely rotating particle
(brown). The lift force of Cherukat & Mclaughlin (1994) is much smaller than Saffman’s
formula suggests, and particle lift seems to be insignificant overall.

The initial transient phase is shown in figure 13(a). This phase is very important for the
attraction rate of the particle attraction to the limit cycle (see e.g. figure 9 for a = 0.0272).
One can see that the forces experienced by the particle upon the interaction with the
moving wall are even stronger and more impulsive than during its motion on the attractor
(figure 13b). The reason is that during the initial phase, the particle approaches the wall
even closer and in more irregular intervals. Therefore, the overall dynamics is clearly
dominated by the particle–wall interaction.

Finally, we consider the largest density-matched particle with a = 0.0704 and � =
1.0001 for Re = 100. The forces acting during the motion on the attractor are displayed
in figure 14. For this large particle, the wall interaction is even more dominant. Again,
viscous forces (green, orange) are dominant and signal the wall repulsion effect. This is
plausible, since the particle approaches the moving wall much closer than its radius (see
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Figure 13. Trajectory (x, y, z) (plot (i)) of the particle with a = 0.0111 and � = 1.0001 for Re = 100. Plots
(ii)–(iv) show different components of the acceleration in the x, y and z directions, respectively. For an
explanation of the colour code, see the text. (a) Initial transient phase. (b) Final phase when the particle moves
on its attractor.
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Figure 14. (a) Trajectory (x, y, z) of the particle with a = 0.0704 and � = 1.0001 for Re = 100 moving on
its attractor. (b–d) Different components of the acceleration in the x, y and z directions, respectively. For an
explanation of the colour code, see the text.

table 3). For this larger particle, also the pressure force becomes relevant, because of the
larger Stokes number. The two negative peaks (black) in the x component tend to keep
the particle away from the wall. From these considerations, viscous forces seem to play an
important role for the particle dynamics. Since these forces arise predominantly during the
passage of the particle past the moving wall, its attraction to the limit cycle is attributed
to a lump wall effect. Faxén’s forces are insignificant, and also lift forces appear to play a
very minor role for the particle motion in the present fully three-dimensional flow.

From the Stokes drag force shown in figures 13(b) and 14, the slip velocity along the
limit cycle seems to remain considerable even between the particles’ visits of the moving
wall. The y component Ẏ − v of the slip velocity computed varies almost linearly from 5 %
to −7 % of the wall velocity during the particle’s motion in the bulk (from the departure
from to the arrival at the moving wall). We cannot rule out completely that a certain
amount of slip is caused by extra drag forces on the particle provoked by the confinement
of the system by the stationary and moving walls. However, the computed slip velocity
in the bulk was found to be almost identical for the particles with a = 0.0704, 0.0111
and 0.0064 (not shown). This indicates that the computed data overestimate the slip due
to different sources of error. The most obvious source of error, which alone can account
for the above residual slip, is the accuracy of |�X | = 0.0074 (±0.3 mm) by which the
position of the particle can be measured. Other errors arise from the sampling time of
�t ≈ 6.1 × 10−4 (0.05 s) due to which the direction of the particle velocity computed from
secants of the trajectory deviates from the true particle velocity in regions of fast motion
on curved trajectories. Other sources of error are the limited resolutions of the camera
sensors. To illustrate this point, the Stokes drag is the only quantity that is shown unfiltered
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a � Type f1 (Hz) F1 τ1 τ̄I σ̄ Δ
y+
p Δ

y−
p Δ

x−
p Δlid

p N

0.0069 1.022 P-1 0.164 14.01 0.0714 9.35 0.058 0.2182 0.0984 0.4075 0.0513 4
0.0062 1.042 P-1 0.162 13.84 0.0723 6.68 0.071 0.2180 0.1023 0.4033 0.0513 4
0.0064 1.051 P-6 0.110 9.35 0.1069 — — 0.0522 0.0345 0.1023 0.0128 1
0.0064 1.051 P-1 0.168 14.35 0.0697 4.53 0.081 0.2216 0.1056 0.4005 0.0521 3
0.0062 0.959 P-6 0.143 12.17 0.0821 — — 0.0421 0.0221 0.2175 0.0090 2
0.0062 0.959 QP-1 0.169 14.39 0.0695 17.29 0.013 0.1453 0.0710 0.3583 0.0324 7
0.0120 1.019 P-1 0.160 13.59 0.0736 1.95 0.221 0.2308 0.0953 0.3946 0.0523 5
0.0119 1.052 P-1 0.142 12.06 0.0829 1.30 0.337 0.2487 0.1105 0.3565 0.0617 4

Table 4. Properties of measured trajectories of inertial particles on their attractors for Re = 100. Specified are
the type of attractor (P means periodic, QP means quasi-periodic), fundamental frequencies f1(dimensional)
and F1(dimensionless), turnover time τ1 = F−1

1 , initial transient time τ̄I required to approach the attractor up
to the distance dn ≤ 0.15 (in the plane y = 0), asymptotic attraction rate σ̄ , the closest wall-normal distances
from the boundaries Δp (the boundary is indicated by the superscript), and the number of samples N used for
averages.

in figures 13 and 14, and thus appears noisy. Finally, the flow in the experiment can deviate
from the numerically computed flow such that also the measured particle velocity Ẋ can
deviate from the numerical flow velocity at the position but in the absence of the particle.
An elimination of these errors and a clarification of the magnitude and character of the true
residual drag forces acting in the bulk are very difficult due to the nature of the problem.

6.3. Motion of inertial particles
For particles heavier than the fluid with density difference up to 5 %, a picture emerges
that is similar to that for density-matched particles. For all particle sizes investigated, there
always exists a period-one attractor near the closed streamline L1. The properties of the
attractors are provided in table 4. Among the cases considered, the limit cycle with the
largest displacement from L1 in the Poincaré plane arises for a = 0.0119 (ap = 0.48 mm)
and � = 1.052. The Poincaré section of the attractor is shown by black symbols in
figure 5. From the Poincaré section, the location of the periodic orbit relative to the closed
streamline does not follow the systematic trend exhibited by the neutrally buoyant particles.
In the Poincaré plane shown, the inertial particle (black) is displaced from the closed
streamline much further and in a different direction as compared to a neutrally buoyant
particle of comparable size (blue).

From (4.1), the attraction/repulsion rate for weakly inertial-buoyant particles is expected
to scale ∼ (� − 1) St (see also Muldoon & Kuhlmann 2016; Wu et al. 2021). However,
the attraction rates measured and shown as red dots in figure 15 do not exhibit the
expected overall linear dependence. It is striking, however, that the attraction rates for
small particles of nearly the same size with a ∈ [0.0062, 0.0064, 0.0069] as well as the
attraction rate for the neutrally buoyant particle with � = 1.0001 (blue square) exhibit a
linear dependence on (� − 1) St, merely offset from the linear law (shown as a solid line)
that passes through zero. Furthermore, the slope of the line connecting the growth rates
of the two larger particles of similar size (a ∈ [0.0119, 0.0120]) is almost the same as
for the smaller particles. These observations, in particular the offset of the growth rate
for the nearly neutrally buoyant particle (blue square), suggest that the attraction rate
σ̄ = σ̄w + σ̄i comprises a superposition of a size effect (σ̄w, due to the wall repulsion)

955 A16-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
44

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1044


Finite-size particle motion attractors

and an inertial effect (σ̄i). A linear superposition is a valid assumption here, because
the forces responsible for the attraction are small, which is confirmed by the small
particle Reynolds number (table 1), leading to a small attraction rate, which justifies
a linearisation of the dynamics. We note that the particle Reynolds number Rep and
corresponding Stokes drag are possibly smaller, because of the difference due to numerical
error and imperfections between the numerically computed velocity at the location of the
particle and the unperturbed experimental velocity, respectively, which could not have
been measured.

To test the superposition principle, we compute the inertial attraction rate σ̄i by
subtracting from the measured total attraction rate σ̄ the wall-induced attraction rate σ̄w
found for nearly neutrally buoyant particles. Since the particle sizes in figure 15 range
up to a ≈ 0.012, we use the power-law fit to the three smallest data points (including
(σ̄w, a) = (0, 0)), which is shown by the solid line in figure 10. As a result, we obtain
the inertial attraction rate σ̄i to the period-one limit cycle, which is shown by crosses
in figure 15. As can be seen, the data for σ̄i are consistent with the expected linear
dependence. A linear regression (solid line) yields σ̄i = c(� − 1) St with c = 1.24 × 105.
Based on this correlation, the inertial attraction rate for the largest density-matched particle
from figure 10 with a = 0.0704 is σ̄i = 1.39 × 10−2. This is only 0.6 % of the attraction
rate σ̄w = 2.354 measured. This indeed shows that the attraction to the limit cycle is almost
entirely due to the wall effect for the particles with � = 1.0001 (figure 10).

In a similar way as for nearly neutrally buoyant particles, we also find period-six
attractors for heavier and lighter particles than the fluid. An example for a heavy particle
is shown in figure 16 for a = 0.0064 and � = 1.051. In three out of four realisations,
the heavy particle is attracted to one of the period-one limit cycles (black), whereas
one realisation shows attraction to a period-six attractor (blue) in the vicinity of one of
the period-six KAM tori. The attraction rate to the period-six limit cycle is difficult to
determine due to the very short asymptotic phase (the KAM tori are small) such that the
time required for the attraction depends sensitively on the initial conditions, i.e. on the
initial chaotic motion.

The attractors for a light particle with a = 0.0062 and � = 0.959 are shown in figure 17.
We find attractors near L1 (black) and L6 (blue). Now, however, the attractors are not
periodic, but quasi-periodic. The reason is the change of the sign of � − 1 which renders
a pure inertial-buoyant limit cycle emerging from the closed streamlines to change its
stability. Therefore, unstable limit cycles of period one and six must exist for � − 1 < 0
if the motion would be purely inertial-buoyant. Obviously, such unstable limit cycles also
exits under the present (additional) wall effect. Therefore, the particle–wall interaction
cannot prevent the unstable limit cycles. However, the repulsion of the particles from the
moving wall stabilises the particle motion on a quasi-periodic orbit in some distance from
the respective unstable limit cycle.

The attraction dynamics of the same light single particle (a = 0.0062, � = 0.959) to the
period-one torus is shown in figure 18(a). The mean attraction rate is σ̄ = 0.0131, much
smaller than values for all other inertial particles with � > 1. This can be explained by
the quasi-periodic attractor being caused by a balance of opposing weak forces (inertia
and wall repulsion). The attraction rate has been computed as described in § 5 using data
from seven realisations (figure 18b). To check this result, the evolution of the minima of
X(τ ) for a single representative trajectory was considered. For a quasi-periodic orbit, the
minima of X(τ ) will vary within a certain range and would not converge. To monitor
the range of variation, the maximum and minimum over all minima of X(τ ) satisfying
X < 0.2 were considered. Within temporal bins of 5000 data points corresponding to
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Figure 15. Measured total mean attraction rate σ̄ (blue square, red dots) to the period-one limit cycle for
Re = 100 as function of (� − 1) St for six particles with different sizes and densities as indicated. The radii
are (from left to right) a ∈ [0.0064, 0.0069, 0.0062, 0.0064, 0.0120, 0.0119] with corresponding densities � ∈
[1.0001, 1.022, 1.042, 1.051, 1.019, 1.052]. The inertial part σ̄i of the attraction rate is shown by black crosses.
The solid line is a linear regression of σ̄i (see text).

x

z

−0.50

0

0

0.25

0.25

−0.25

−0.25

0.50

y

−0.5

0

0.5

(a) (b)

x
−0.5

0

0.5

z
0

0.5

Figure 16. Four trajectories for a = 0.0064 (ap = 0.26 mm) and � = 1.051 recorded during t ∈
[5500, 6000] s. (a) Three-dimensional view of the period-one (black) and period-six (blue) attractors for the
particle. (b) Poincaré sections on the plane y = 0 (black, blue) of the particle trajectories shown in (a). Poincaré
sections of numerically computed streamlines on the reconstructible KAM tori are shown as light grey dots.

�τbin = 2.926, the maximum (upper envelope) and the minimum (lower envelope) of
all minima of X(τ ) were obtained. Figure 19(a) shows the evolution of the maximum
(circles) and the minimum (squares) of the minima of X(τ ). Fitting the last two-thirds
(dotted rectangle) of the envelopes to exponentials (solid red and blue lines), we find
slightly different attraction rates σmax(min) = 0.0111 (red) and σmin(min) = 0.0105 (blue).
Both values are within the error bar by which σ̄ was determined from the ensemble average
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Figure 17. Nine trajectories for a = 0.0062 (ap = 0.25 mm) and � = 0.959 recorded during t ∈
[12000, 14000] s. The corresponding non-dimensional time interval is [140.5, 163.9]. (a) Three-dimensional
view of the toroidal period-one (black) and period-six (blue) attractors. (b) Poincaré sections on the plane y = 0
(black, blue) of the particle trajectories shown in (a). Poincaré sections of numerically computed streamlines
on the KAM tori are shown as light grey dots.
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Figure 18. (a) Poincaré section on y = 0 of the trajectory of a single particle (black lines) with a = 0.0062
and � = 0.959. The Poincaré points during the last phase τ ∈ [156.9, 163.8] are shown as red dots (the total
measurement time was 3.9 h). Grey dots indicate the largest numerically reconstructible contiguous KAM torus,
and the diamond marks the closed streamline. (b) The distance function dn for seven realisations (+). A fit of
the data according to (5.3) (solid black line) yields the attraction rate σ̄ = 0.0133 ± 0.0043.

(figure 18b). Since the two envelopes extrapolate to different values for τ → ∞ (horizontal
dotted lines), the asymptotic state is indeed quasi-periodic. Near its minimum x coordinate,
the attracting torus has diameter in the x direction Dx = 0.0439. The slight scatter of the
black Poincaré points (instead of a sharp torus) in figure 17(b) can be explained by the
particle not yet having reached its asymptotic attractor, which is confirmed by figure 19(a).
For comparison, figure 19(b) shows the same analysis for the smallest particle (a = 0.0064,
� = 1.0001), which is nearly density matched. It can be seen that the data extrapolate to a
limit cycle.
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Figure 19. Maxima (circles) and minima (squares) of the relative minima of the x coordinate of a
single trajectory for Re = 100. Each symbol circle (square) is the maximum (minimum) value of
the relative minima of X(τ ) within a temporal bin of width �τbin = 2.926. The red and blue solid
curves are exponential fits to the binned maxima and minima, respectively. The dotted horizontal lines
indicate asymptotic values for τ → ∞. (a) Plot of 56 bins for an inertial particle with a = 0.0062
(ap = 0.25 mm) and � = 0.959, yielding max{min[X(τ )]} = −0.0251 + 0.159 e−0.0116τ (red curve) and
min{min[X(τ )]} = −0.0690 − 0.211 e−0.0105τ (blue curve). (b) Plot of 28 bins for a neutrally buoyant particle
with a = 0.0064 (ap = 0.26 mm) and � = 1.0001, yielding max{min[X(τ )]} = −0.0740 + 0.220 e−0.0277τ

(red curve) and min{min[X(τ )]} = −0.0765 − 0.301 e−0.0368τ (blue curve).

7. Results for Re = 200

7.1. Motion of nearly neutrally buoyant particles
The behaviour of nearly neutrally buoyant particles in the flow with Re = 200 is similar to
that for Re = 100. However, the shape and multitude of the periodic attractors differ due
to the more intricate structure of the KAM tori for Re = 200. Furthermore, the attraction
rates are larger than for Re = 100 due to the higher flow velocities and the closer proximity
of the KAM structures to the moving wall, from which a stronger wall effect results.

Figure 20(a) shows an overview on the attracting sets in the Poincaré plane y = 0, with
a zoom into the lower left in figure 20(b). For all particle sizes, we find a period-one
attractor near L1, best seen in figure 20(b). As a increases, the limit cycles and their
mirror-symmetric counterparts near L1 are displaced in the negative x direction, away
from the moving wall and towards the symmetry plane z = 0, similarly as for Re = 100.
Moreover, as a increases, the projections of all the period-one limit cycles onto the (x, y)
plane (figure 21) are pushed away from the moving wall due to the hindered particle motion
caused by its size, and extend further into the positive y direction. This trend was observed
also for Re = 100, albeit not as clearly.

In addition to the period-one limit cycle, we also find limit cycles of periods four
(turquoise), seven (magenta) and ten (black) for the smallest particle size with a = 0.0064.
Note that due to its shape, the period-ten attractor returns only eight times to the Poincaré
plane y = 0. From the total of three full periods visible for the period-ten attractor, the
particle returned to the Poincaré plane only during one full period for the ninth return
(arrows in figure 20a) and never for the tenth. This effect is caused mainly by the location
of the Poinicaré plane (see also figure 21a). Also, particles with the next higher particle
size of a = 0.0112 can be attracted to different limit cycles: in addition to the period-one
limit cycle (blue), we find a limit cycle of period four (violet dots).
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Figure 20. (a) Poincaré sections on y = 0 of trajectories of nearly neutrally buoyant spherical particles
(� = 1.0001) moving on their respective periodic attractor for Re = 200. The colour indicates the particle
radius: a = 0.0064 (ap = 0.26 mm, P-10 black, P-7 magenta, P-4 turquoise, P-1 dark grey), a = 0.0111
(ap = 0.45 mm, P-4 violet, P-1 blue), a = 0.0272 (ap = 1.10 mm, P-1 yellow), a = 0.0390 (ap = 1.58 mm,
P-1 cyan), a = 0.0494 (ap = 2.00 mm, P-1 green), a = 0.0586 (ap = 2.37 mm, P-1 orange), and a = 0.0704
(ap = 2.85 mm, P-1 red). For comparison, the Poincaré sections of KAM tori and of closed streamlines are
shown as light grey dots. Diamonds indicate closed streamlines. (b) Zoom into the lower left of (a).
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Figure 21. (a) Projection onto the (x, y) plane of trajectories of nearly neutrally buoyant spherical particles
(� = 1.0001) moving on their limit cycles for Re = 200. The arrow indicates the moving wall. (b) Zoom into
(a) with the x and y axes scaled differently. The non-dimensional particle radius a and the periodicity of the
orbit is given in the legend in (b).

Characteristic properties of all limit cycles found for Re = 200 are collected in
table 5. All limit cycles found form near corresponding KAM tori and associated closed
streamlines that are indicated by open diamonds. The limit cycles are created because the
corresponding KAM tori approach the moving wall sufficiently closely (see table 5). This
property increases the probability for particles to be transferred from the chaotic sea to one
of the KAM tori. Once a neutrally buoyant particle is caught in a KAM torus sufficiently
close to the moving wall, it is attracted to a limit cycle by the interaction with the moving
wall as described by Hofmann & Kuhlmann (2011).
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a Type f1 (Hz) F1 τ1 τ̄I σ̄w Δ
y+
p Δ

y−
p Δ

x−
p Δlid

p N

0.0064 P-10 0.210 17.42 0.057 — — 0.0254 0.0083 0.0670 0.0054 1
0.0064 P-4 0.280 23.23 0.0430 — — 0.0562 0.0262 0.1445 0.0106 15
0.0064 P-7 0.311 25.82 0.0387 — — 0.0906 0.0336 0.2208 0.0179 8
0.0064 P-1 0.308 25.86 0.0387 6.018 0.098 0.2281 0.0764 0.3383 0.0421 8
0.0111 P-4 0.264 22.68 0.0441 — — 0.0560 0.0401 0.1477 0.0136 15
0.0111 P-1 0.303 26.06 0.0384 1.681 0.420 0.2385 0.0832 0.3454 0.0460 15
0.0272 P-1 0.310 25.68 0.0389 0.368 2.603 0.2374 0.0804 0.3510 0.0481 37
0.039 P-1 0.310 25.54 0.0392 0.158 5.497 0.2293 0.0830 0.3459 0.0553 40

0.0494 P-1 0.2867 24.92 0.0401 0.051 6.863 0.2124 0.0891 0.3344 0.0598 12
0.0586 P-1 0.2867 24.11 0.0415 0.077 7.319 0.2044 0.0939 0.3299 0.0641 8
0.0704 P-1 0.2833 23.96 0.0417 0.017 7.431 0.1799 0.0958 0.3206 0.0720 10

Table 5. Properties of measured trajectories on the attractor for nearly neutrally buoyant particles with � =
1.0001 as functions of the particle radius a at Re = 200. Specified are the type of attractor (P means periodic,
QP means quasi-periodic), fundamental frequencies f1(dimensional) and F1 (dimensionless), turnover time
τ1 = F−1

1 , initial transient time τ̄I , asymptotic attraction rate σ̄w, the closest wall-normal distances from the
boundaries Δp (the boundary is indicated by the superscript), and the number of samples N used for averages.

0.02 0.04 0.06 0.08

6

8

a

4

0

2

σ–w

Figure 22. Mean attraction rate σ̄w to the period-one limit cycle as a function of the particle radius for
Re = 200 and nearly neutrally buoyant particles with � = 1.0001 and radii a = 0.0064, 0.0111, 0.0272, 0.039,
0.0494, 0.0586, 0.0704, corresponding to ap = 0.26, 0.45, 1.10, 1.58, 2.00, 2.37, 2.85 mm. The solid curve
represents a power-law fit σ̄w = cab (c = 5.75 × 104, b = 2.63) to the data for small a.

The rates of attraction to the limit cycles have been determined as for Re = 100.
Figure 22 presents the mean attraction rate as a function of the particle size a. The
attraction rates are generally larger than for Re = 100, but follow a similar trend with
respect to a variation of the particle size. As for Re = 100, the mean attraction rate is
approximated by a power law σ̄w = cab, with c = 5.75 × 104 and b = 2.63, obtained by
fitting to the data for the two smallest particles and the origin.

7.2. Motion of inertial particles
As the particle density becomes larger, inertial forces cooperate with the forces from the
wall in attracting the particle to a limit cycle. Therefore, the attraction rate increases. For all
heavy particles, we find the period-one attractor near L1, as for Re = 100. However, owing
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Finite-size particle motion attractors
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Figure 23. Nine trajectories for a = 0.0069 (ap = 0.28 mm) and � = 1.022 recorded during t ∈
[3000, 3600] s. (a) Three-dimensional view of the period-one (black) and period-twelve (blue) attractors. (b)
Poincaré sections on the plane y = 0 (black, blue) of the particle trajectories shown in (a). Poincaré sections of
numerically computed streamlines on the corresponding largest reconstructible KAM tori are shown as light
grey dots.

to the different fine structure of the KAM template for Re = 200, we find other attractors
corresponding to the secondary KAM tori. For particles with small inertia, i.e. for
a = 0.0069, � = 1.022, and a = 0.0120, � = 1.019, we find an additional period-twelve
limit cycle. An example is shown in blue in figure 23 for a = 0.0069 and � = 1.022. The
period-twelve attractor forms in the close vicinity of the period-four KAM tori of the flow
field. For the heavier particle with a = 0.0130 and � = 1.061, the period-twelve attractor
is absent. Instead, an attracting period-three limit cycle is found. It cannot be associated
directly with a particular KAM structure, but it seems to reflect the shape of the primary
KAM tori around L1. The period-three limit cycle is shown in blue in figure 24.

In figure 25, the mean attraction rates for the three heavy particles to their main
period-one limit cycle for Re = 200 are shown by red dots as functions of (� − 1)St.
Numerical data are provided in table 6. After subtracting the attraction rate σw due to the
wall effect found for the neutrally buoyant particles (solid line in figure 22), the inertial
part σi of the attraction rate is almost a linear function of (� − 1) St (solid line in figure 25).

Finally, we investigate the behaviour of a light particle with a = 0.0112, � = 0.940. As
expected, the periodic attractor near L1 for heavy particles has become an unstable limit
cycle for light particles, which cannot be observed directly. Obviously, the repulsion is
strong enough to prevent a wall-induced stable limit cycle that would exist near L1 in the
absence of inertia. Only at a certain distance from L1 can the stabilising wall effect balance
the destabilising inertia effect leading to a toroidal equilibrium trajectory QP-1 with period
one (figure 26a).

Since inertial forces dominate in the bulk, and repulsive forces from the moving wall
decay from the wall within a distance of the order of a, the quasi-periodic attractor
should approach the moving wall up to a distance of the order of a. In fact, the minimum
distance of the quasi-periodic attractor QP-1 from the moving wall is ≈ 3a (table 6). The
Poincaré section of a particle trajectory on QP-1 is shown by black dots in figure 26(b).
In addition, a period-four attractor is found (blue in figure 26), similarly as for the
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Figure 24. Seventeen trajectories for a = 0.0130 (ap = 0.525 mm) and � = 1.061 recorded during t ∈
[400, 500] s. (a) Three-dimensional view of the period-one (black) and period-three (blue) limit cycles. (b)
Poincaré sections on the plane y = 0 (black, blue) of the particle trajectories shown in (a). Poincaré sections of
numerically computed streamlines on the corresponding largest reconstructible KAM tori are shown as light
grey dots.
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(� − 1) St × 106

Figure 25. Mean rates of attraction to the period-one limit cycle for inertial particles with � > 1 as functions
of (� − 1) St. Shown are the total attraction rates σ̄ (red dots, blue square) measured and the inertial
attraction rate σi (black crosses) after eliminating the wall effect. Three particles with different radii a ∈
[0.0069, 0.0120, 0.0130] and corresponding densities � ∈ [1.022, 1.019, 1.061] were tested. The solid line
represents the linear regression σ̄i = c(� − 1) St with c = 2.23 × 105. The blue square shows σ̄ for a particle
with a = 0.0064, � = 0.0001.

neutrally buoyant particle with a comparable size (violet in figure 20). Even though
this attractor is expected to be quasi-periodic, just like the toroidal attractor of period
six for Re = 100 for the light particle (blue in figure 17), the measured time-asymptotic
trajectories cannot be distinguished from a limit cycle. This behaviour might be caused by
a dominating wall effect on the particle that overcomes the expected destabilising inertia
effect. This interpretation is supported by the much closer approach to the moving wall of
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Finite-size particle motion attractors

a � Type f1 (Hz) F1 τ1 τ̄I σ̄ Δ
y+
p Δ

y−
p Δ

x−
p Δlid

p N

0.0069 1.022 P-12 0.261 22.30 0.0448 — — 0.0375 0.0128 0.1205 0.0072 2
0.0069 1.022 P-1 0.305 26.06 0.0384 4.52 0.1739 0.2394 0.0682 0.3324 0.0437 8
0.0120 1.019 P-12 0.249 21.54 0.0464 — — 0.0653 0.0373 0.1190 0.0152 5
0.0120 1.019 P-1 0.305 26.40 0.0379 0.92 0.605 0.2468 0.0777 0.3450 0.0422 9
0.0130 1.061 P-3 0.255 21.62 0.0463 — — 0.2005 0.0769 0.1691 0.0431 12
0.0130 1.061 P-1 0.290 24.58 0.0379 0.27 1.158 0.2612 0.0956 0.3015 0.0588 5
0.0111 0.940 P-4 0.2975 25.27 0.0396 — — 0.0713 0.0333 0.2289 0.0166 20
0.0111 0.940 QP-1 0.320 27.18 0.0368 1.02 0.2213 0.1667 0.0575 0.3402 0.0322 17

Table 6. Properties of measured trajectories of inertial particles on their attractors for Re = 200. Specified are
the type of attractor (P means periodic, QP means quasi-periodic), fundamental frequencies f1(dimensional)
and F1(dimensionless), turnover time τ1 = F−1

1 , initial transient time τ̄I , asymptotic attraction rate σ̄ , the
closest wall-normal distances from the boundaries Δp (the boundary is indicated by the superscript), and the
number of samples N used for averages.
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Figure 26. Thirty-seven trajectories for a = 0.0111 (ap = 0.45 mm) and � = 0.940 recorded during t ∈
[1000, 1180] s. (a) Three-dimensional view of the toroidal period-one attractors QP-1 (black) and the stable
period-four limit cycles P-4 (blue). (b) Poincaré sections on the plane y = 0 (black, blue) of the particle
trajectories shown in (a). Poincaré sections of numerically computed streamlines of characteristic KAM tori
are shown as light grey dots.

the period-four orbit P-4 as compared to the toroidal attractor QP-1 (table 6). The locus of
P-4 in the Poincaré plane is somewhat displaced from the closed streamline L4 of period
four.

It is interesting to note that the light particle has almost the same attractors as a heavy
particle with the same size and the same magnitude of the density mismatch, but with
the direction of the wall motion reversed, i.e. Re → −Re. This is demonstrated by the
side-by-side comparison in figure 27 of the Poincaré sections for the light particle with a =
0.0111, � = 0.94 and Re = 200 (on the left) and the ones for the heavy particle with a =
0.0130 and � = 1.061 and Re = −200 (reversed wall motion, on the right). This means,

955 A16-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
44

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1044


H. Wu, F. Romanò and H.C. Kuhlmann

A B

x

z

0

0

−0.50

0.50

−0.25

−0.25

0.25

0.25

Figure 27. Symmetry of the attractors QP-1 and P-4 with respect to the symmetry [Re, (� − 1)] → −[Re, (� −
1)]. Shown are Poincaré sections on the plane y = 0 of particle trajectories attracted to a period-four limit cycle
(blue) and a quasi-periodic orbit (black). For A (to the left of the red line), a = 0.0112, � = 0.94 and Re = 200.
For B (to the right of the red line), a = 0.0130, � = 1.061 and Re = −200. Poincaré sections of numerically
computed KAM tori are shown as light grey dots.

in both cases there exists an unstable limit cycle (periodic repeller) surrounded by the
observed QP-1 type of attractors (black).

This may appear surprising, because the sign of the density mismatch (� − 1)
determines the character of the limit cycle, being stable or unstable. To better understand
the situation, we consider the inertial equation (4.1) in components:

Ẋ = u − (� − 1) St[u ∂xu + v ∂yu + w ∂zu], (7.1a)

Ẏ = v − (� − 1) St[u ∂xv + v ∂yv + w ∂zv + Fr−2], (7.1b)

Ż = w − (� − 1) St[u ∂xw + v ∂yw + w ∂zw]. (7.1c)

The inertial equations (7.1) are invariant under a rotation by π about the x axis,
corresponding to a reversal of the Reynolds number (Re → −Re)

⎛
⎝u
v

w

⎞
⎠ (x, y, z) −→

⎛
⎝ u

−v
−w

⎞
⎠ (x,−y,−z), (7.2)

provided that gravity is reversed as well: Fr−2 → −Fr−2. This is just a change of the
coordinate system. The symmetry shown in figure 27 suggests that (7.1) is also invariant
under (7.2) (Re → −Re) combined with (� − 1) → −(� − 1), keeping the orientation of
the gravity vector (Fr) constant, as in the experiment. But obviously, (7.1) is not invariant
under [Re, (� − 1)] → −[Re, (� − 1)].

The fact that the QP-1 attractors are almost equal and encircle unstable limit cycles leads
us to conclude the following. The inertial term u · ∇u in (7.1) is not of critical importance
for the stability of the limit cycle, because its components change their signs relative
to the components of Ẋ upon [Re, (� − 1)] → −[Re, (� − 1)]. Thus the inertial terms
tend to predict a stable limit cycle for −[Re, (� − 1)] (right-hand side of figure 27) rather
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Finite-size particle motion attractors

than the observed repeller (surrounded by the QP-1 type of attractor). Only the buoyancy
term (� − 1) St Fr−2 keeps its sign (relative to Ẏ) upon [Re, (� − 1)] → −[Re, (� − 1)],
and thus favours an unstable limit cycle. We conclude that the buoyancy term is of
crucial importance for the stability property of the limit cycles emerging from the closed
streamline L1 in the present experiment, and must be dominant. Interestingly, this term
alone cannot create limit cycles, because it is conservative. But it does so in combination
with the inertial term u · ∇u. A similar conclusion was arrived at by Wu et al. (2021) for
attractors and repellers in the two-sided lid-driven cavity.

8. Discussion and conclusion

For Reynolds numbers Re = 100 and 200, the flow in a nearly cubical lid-driven cavity
is steady and three-dimensional. Numerically calculated streamlines reveal that the flow
topology consists of regions occupied by either chaotic streamlines or KAM tori that
permit attractors for the motion of suspended particles. These attractors have been
investigated by long-time tracking of individual spherical particles with densities close
to that of the fluid.

Since the KAM tori approach the moving wall closely, neutrally buoyant particles
can be attracted to limit cycles or quasi-periodic attractors due solely to their finite size
(Romanò et al. 2019b; Wu et al. 2021). The attraction relies on a particle-size effect
that causes repulsive hydrodynamic forces on the particle when it moves close to a
boundary (Hofmann & Kuhlmann 2011). Trajectories of quasi-neutrally buoyant particles
were recorded for a set of spheres of different non-dimensional radii a ≥ 0.0064. For all
sizes, neutrally buoyant particles were found to be attracted to limit cycles in the vicinity
of the closed streamlines of the KAM tori. Every limit cycle has the same period as the
neighbouring closed streamline. As the particle radius a increases from zero, the rate of
attraction to the limit cycle also increases from zero, consistent with a power law.

Figure 28(a) shows the minimum normalized gap (Δlid
p − a)/a between the surface

of the particle moving on the limit cycle P-1 and the moving wall for neutrally buoyant
particles (� = 1.0001). For both Reynolds numbers, we find a similar, approximately
exponential scaling with a. The larger the particle, the smaller the gap. For the largest
particle investigated, the lubrication gap width is less than 3 % of its radius. This indicates
that lubrication forces are dominant in this range of a. For small particles, the gap
reaches up to six times the particle radius. This is in qualitative agreement with the fully
resolved simulations reported in figure 9 of Romanò & Kuhlmann (2017) for a particle
approaching a constant-shear-stress surface. In this regime, also longer ranging forces
must have contributed to the attraction of the particle to the limit cycles. Candidates are
the shear-induced lift forces from the moving wall (Cox & Brenner 1968; Ho & Leal 1974)
and the repulsive force generated by the velocity gradient of the background flow in the
wall-normal direction (Rallabandi et al. 2017; Li et al. 2020; Magnaudet & Abbas 2021).

The deviation Δlid
p −Δlid

L1
between the minimal distance Δlid

p of the trajectory of a
neutrally buoyant particle from the moving wall and the minimum distance Δlid

L1
from

the moving wall of the closed streamline L1 is shown in figure 28(b) as function of the
particle radius a (open symbols). Except for very small a, the limit cycle is always found
to be further away from the wall than the closed streamline. The model of Hofmann
& Kuhlmann (2011) considers perfectly advected particles that interact only with the
boundary through inelastic contacts in the direction normal to the boundary. Their model
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Figure 28. (a) Normalized minimum gap (Δlid
p − a)/a between the surface of the particle and the moving

wall for Re = 100 (black, circles) and Re = 200 (red, squares) on a logarithmic scale. The solid lines are
weighted exponential fits according to 9.6 e−80.5a (black curve, Re = 100) and 8.7 e−82a (red curve, Re =
200). (b) Distance Δlid

p of the limit cycle P-1 from the moving wall relative to the distance Δlid
L1

of the closed
streamline L1 from the moving wall as a function of the particle radius a for Re = 100 (black, circles) and
Re = 200 (red, squares). The dashed lines are quadratic fits of the form ca2 with c = 103 (Re = 100) and
c = 129 (Re = 200). The solid lines indicate the prediction of the model of Hofmann & Kuhlmann (2011).

predicts a stable limit cycle when the particle radius a > a∗ := Δlid
L1

is larger than the
distance of the closed streamline from the boundary (filled symbols in figure 28b).
Moreover, for a > a∗, the distance of the limit cycle from the boundary is Δlid

p = a,
because the particle makes contact upon each return. For a < a∗, a quasi-periodic
attractor is predicted. Thus within their model, contact with the boundary is made when
Δlid

p −Δlid
L1

= a − a∗ (solid line in figure 28a). For large particle size, the experimental
data seem to approach asymptotically the model prediction of Hofmann & Kuhlmann
(2011). For a < a∗, however, the model of Hofmann & Kuhlmann (2011) fails to predict
the observed limit cycle. The reason is particle–wall interaction forces that are not included
in their model. These forces keep the particle further away from the wall and create a limit
cycle instead of a quasi-periodic attractor. Within the range of particle radii investigated,
the deviation Δlid

p −Δlid
L1

can be approximated phenomenologically by a quadratic law
(dashed lines). It must break down, however, for larger particle sizes for which the particle
tends to make contact.

For weakly inertial particles, in the absence of the wall effect, limit cycles are expected
to exist near closed streamlines of the flow, which can be either attractive or repelling,
depending on the sign of |� − 1|, the properties of the flow field, and the orientation of
the buoyancy force (Wu et al. 2021). When the direction of the wall motion is collinear
with the direction of the gravity vector, stable inertia-induced limit cycles were found to
exist. In this case, we were able to separate the wall effect on the attraction rate from
the period-one limit cycle P-1, using the results obtained for quasi-neutrally buoyant
particles. The separation is based on the observation that both pure inertial and pure
boundary-induced limit cycles are located very near the closed streamline L1 such that
both effects can be assumed to be additive. This assumption is motivated by both the
inertia and wall effects on the particle trajectory being small near the stable limit cycle,
both effects being essentially independent of each other, and each mechanism in isolation
leads to a limit cycle which grows out of the same closed streamline of the set of KAM tori
(for the wall effect, see Hofmann & Kuhlmann 2011). Evidence for a superposition of the
growth rates has been provided numerically by Romanò et al. (2019a) and experimentally
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by Wu et al. (2021). According to Hofmann & Kuhlmann (2011), limit cycles due to
the particle–wall interaction are always stable. Consistently, we find that the wall effect
enhances the attraction rate to the limit cycles. While the attraction rate due to inertia
scales like σi ∼ (� − 1) St, the attraction rate in the presence of both inertia and wall
effect does not exhibit a simple scaling. This is due to the dependence of the wall-induced
attraction rate σw(a) on the particle radius a and on the character of the winding of the
streamlines on the KAM tori (Hofmann & Kuhlmann 2011; Wu et al. 2021).

In the case when the direction of the wall motion is reversed to be antiparallel to the
gravity vector, inertial attractors for small inertia are replaced by inertial repellers. We find
that the inertial repulsion from the unstable limit cycle dominates in the close vicinity of
the limit cycle. The wall effect, however, stabilises the particle trajectory to a toroidal
motion about the unstable limit cycle. Furthermore, by increasing the particle-to-fluid
density ratio �, i.e. for stronger inertia and buoyancy, particle attractors with shape and
position are found that differ significantly from any of the closed streamlines and KAM
tori.

Tsorng et al. (2006) have performed similar experiments using a water–glycerol mixture
in a cubic cavity at Re = 470 and a single density-matched particle with a = 0.015. In their
experiments, the viscous diffusion time was approximately 4.5 min, and the observation
time was typically 7 min. Different from our set-up, the gravity vector was directed
perpendicular to the moving wall and into the liquid. The authors observed that the particle
tends to move along preferential pathways, but did not find any attractors. The most
likely explanation for the absence of attractors is the relatively large Reynolds number,
since KAM structures are absent in the cubic cavity for Re = 400 and above (Romanò
et al. 2020). While periodic attractors are conceptually possible also for pure chaotic
streamlines (Kuhlmann & Muldoon 2013), their existence is unlikely. Using the same
apparatus, Tsorng et al. (2008) extended the investigation to slightly heavy (� ≈ 1.0005)
and light (� ≈ 0.9993) particles, where the density mismatch was achieved by variation
of the composition of the water–glycerol mixture, keeping the temperature constant. They
likewise report preferential pathways, but no attractors. While the reason seems to be again
the absence of KAM structures for most of the Reynolds numbers (> 400) considered, they
did not find attractors even for Re = 130. Possibly, the observation time was too short to
be able to detect the attractors expected for Re = 130. Furthermore, the driving of the flow
with a conveyor belt might have introduced disturbances to the flow larger than the present
rotating cylinders.

The present results have elucidated the roles of flow structure, particle–boundary
interaction, inertia and buoyancy forces for the existence and properties of particle
attractors in the lid-driven cuboid. The fundamental results obtained are expected to
help an improved understanding of multiphase systems, in particular on the microscale,
in which similar phenomena arise. A dedicated design of micro-flow systems based on
shaping the flow topology and utilising the particle–boundary interaction may, moreover,
lead to novel micro-flow particle handling devices.

Interesting extensions of the current work would be the simultaneous measurement of
trajectories of several particles. This way, the particle–particle interaction could be studied,
and its impact on their motion near single-particle attractors. For very small particles
one may still observe many particles being attracted as e.g. in thermocapillary liquid
bridges (Schwabe et al. 2007), in which case the notion of finite-size coherent structures
(FSCS) would apply (Romanò et al. 2019a). Furthermore, better theoretical and numerical
particle–boundary interaction models could be developed and tested based on the particle
dynamics that we have found.
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