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Abstract. Let x: L" — S ¢ R?*? be a minimal submanifold in S***'. In this note, we show
that Lis Legendrian ifand only iffor any 4 € su(n + 1) the restriction to L of (Ax, ~/—1x) satisfies
Af = 2(n+ 1)f. In this case, 2(n + 1) is an eigenvalue of the Laplacian with multiplicity at least
%(n(n + 3)). Moreover if the multiplicity equals to %(n(n + 3)), then L" is totally geodesic.
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1. Introduction

Let x: L" — S ¢ R?*2 = C"*! be an embedded submanifold in the standard
unit sphere S Let (-, -) be the standard inner product on R?*"*2. For any

X = (X1, V1, X2, Y2, + + s Xt 1y Y1)

we identify it with the constant vector field
n+l 5 3
,; (x./ g +; @-) :

By this identification, x, the position vector can be seen as the normal vector field of
S*™1. Let J be the standard complex structure, i.e., J9/dx; =9/dy; and
J9/dy; = —(9/0x;). The standard contact structure ¢ on S is determined by
the distribution

E=1{Y e T.S"" (Y, Jx) = 0}.

Clearly, Jx is the corresponding Reeb vector field. A submanifold L" — S¥H s
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called Legendrian if T.L C ¢ for any x € L. It is easy to see that L is Legendrian if
and only if JTL & {Jx} is the normal bundle of the embedding L — Shans

Let CLbe a cone in C"! over L. In other words, L is the link of CL with S?"*!. Tt is
easy to check that L is minimal Legendrian submanifold if and only if CL is a special
Lagrangian cone w.r.t. some constant calibrated form (see, for instance, [5] and [6]).
Such special Lagrangian cones are possible tangent cones of special Lagrangian
varieties. In order to study the regularity of special Lagrangian varieties, we have
to understand (or classify) all possible special Lagrangian cones, thus minimal
Legendrian submanifolds in S*™'. In this note, we give a characterization of mini-
mal Legendrian submanifolds.

THEOREM 1.1. Let x:L" — S ¢ R¥*? be a minimal submanifold. L is
Legendrian if and only if for any matrix M € su(n+ 1), the function fy:=
(Mx, Jx), as a function on L, satisfies Af =+ 2)f. Here A is the (positive)
Laplacian w.r.t. the induced metric.

THEOREM 1.2. If L is minimal Legendrian submanifold in S*"*', then 2(n + 1) is
an eigenvalue of the Laplacian with multiplicity at least %(n(n + 3)), the dimension
of su(n+ 1)/so(n+1). If the multiplicity equals to %(n(n+ 3)), then L is totally
geodesic.

We hope that this characterization can be used to construct minimal Legendrian
submanifolds in S*"*!, as in [1] and [7] for minimal submanifolds in the unit
sphere. When n =2, generalized Clifford tori are minimal Legendrian sub-
manifolds. More minimal Legendrian tori with invariance under an S! action
was constructed in [5].

Throughout this note we will adopt the following ranges of indices:

1<A4,B,C--- <2n+1,
I<ij---<n

n+l<a<<2n+1,

2. Minimal Legendrian Submanifolds

Let x: 1" — S ¢ R”?2 = C"*! be an embedded submanifold in S**'. Let

e1,€,...,eyy1 be an orthonormal frame of tangent vectors to S at x and
01,03, ...,0.41 be the dual frame. We have (see [1, 2])

dx=0,®ey 2.1
and

dey =w p®ep—0,4Rey, (2.2)
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where
wyp~+ wpyg =0.
Exterior differentiation of (2.2) gives
dw p — W4p — Wgc AN OCEp = —W4 A Wp. (2.3)

Here we have used the summation convention. It is well-known that L is minimal if
and only if for any constant vector a € R2+2, (x, a), as a function on L, satisfies

A(x, a) = n(x, a), (2.4)

where A is the (positive) Laplacian operator w.r.t. the induced metric, see [1]. In this
note we characterize the Legendrian property of minimal submanifolds in terms of
the embedding x and su(z + 1). A matrix M € su(n + 1), as a real one, means that
M satisfies

M+M =0 and JM =MJ
and
MJ is traceless. (2.5)

We first have

PROPOSITION 2.1. Let x: L — S™' ¢ R¥*2 = C"™ be a minimal submanifold in
Shand If L is Legendrian, then for any matrix M €su(n+ 1) the function
fu:= (Mx, Jx), as a function on L, satisfies

Afyy = 2(n+ Dfy. (2.6)
Proof. By definition, L is Legendrian if and only if in any small neighborhood of

x € L, there is a orthonormal frame ej,es,...,e, of L so that ej, e, ...,
en, eny1 = Jei, enyn = Jea, ..., en, = Je,, ea,01 = Jx is an orthonormal frame of

S Let 0,,0,,. .., 0,,1 be the dual frame. On L, 0,=0 for o=
n+1,...,2n,2n+1.
From (2.1) and (2.2), on L we have

dx = 9,’ ® e; (27)
and
dey=04pRep—0,4® x. (2.8)

Here 045 = x*w 5. The 0;; are connection forms of the induced metric on L and 0,;
are the second fundamental forms. Let 0, =hy;0;. For any matrix
M e su(n+ 1), define f)y = (Mx, Jx). In view of (2.7) and (2.8), we have

dfM = ((Mei, Jx) + (Mx, Jei))O[ ::f,-G,- (29)
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and

Dfi = —(2(Me;, Jej) — 20,;{Mx, Jx) — ((Me,, Jx) + (Mx, Je,))h,;)0;.
Together with the minimality of M, it follows

Af =2nf —2(Me;, Je;).

Since M € su(n+ 1), form (2.5) and a simple fact (Me,;, Je,1;) = (Me;, Je;), we
have

(Me;, Jei) + (Mx, Jx) =0, (2.10)
for any M € su(n+ 1). Hence, we have Af =2(n+ 1)f. O

Conversely, we have

PROPOSITION 2.2. Let x: L — S*' ¢ R**2 = C"! be a minimal submanifold in
Shand If for any matrix M € su(n+ 1) the function fyr:= (Mx, Jx) satisfies (2.6),
then L is Legendrian.

Proof. In order to prove this Proposition, we have to show that there is an
orthonormal basis e, e,, ..., e, of L such that ey, e, ..., e, Jey,Jes, ..., Je,, Jx
is an orthonormal basis of S?*!. Let ¢y, es, ..., e, be an orthonormal basis of L.

Case 1. nis odd. Set p = (n+ 1)/2 and ¢,; = x. Applying Lemma 6.13 in [4] to the
simple 2p-vector § =e; Aey A---e, A ey, We have a unitary basis e, Jey, e,

Jes, ..., eur1, Jeps for C"! and angles
0<0<O < - <01 <7/2, 0,1 <0,<m
such that
n=-e A(JercosO +eysinf) Ae3 A(Je3coslOy +eqsinOy) A --- @.11)
A @yp_1 A (Jeyp, cosl, + &, sin 0,). '
We choose a new basis ¢q, e, ..., e, of L such that
éZi—l = Z’Zi—l and éz,' = Jéz,'_l COS 01‘ + éz,' sin 0,‘, fori= 1, RN /B
In view of (2.10), we have
n+1
> (M&,Je) =0 for M € su(n+1). (2.12)
=1
We claim that
0h=0,=---=0,=mn/2. (2.13)
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For any fixed i, we first choose a matrix M; satisfying

Mieyi— = e,

Miey; = —eyi-1,

Miey =0, forke{l,2,...,n+1}/{2i—1,2i}.
It is clear that M; € su(n + 1). Inserting such M; into (2.12), we get

sin20; = 0. (2.14)
Then we choose another M € su(n + 1) such that

Meyi = Jeyi,
Mey = —Jey;,
M, =0, forke{l,2,....n+1}/{2i—1,2i}.

Inserting it into (2.12), we get

1 + cos® 6; — sin? 0; = 0. (2.15)
(2.14) and (2.15) imply that 0, ==n/2. The claim follows. Thus e; = ey,
€ = e, -, e, = e, This implies that L is Legendrian.

Case 2. n is even. Let e, = x. Choose a new basis ¢}, ¢, ..., ¢, such that

(€ 1) = (e, 1. Jer) =0, fork=1,2,...,n.

The existence of such e, follows simply from that n+1 is odd. Set 2p =n.

Decompose C"' = C" @ {€},,1,J€,,}. Now, we can apply Lemma 6.13 in [4] again
to the simple 2p-vector

=€ Aesn---ne,
to get a normal form as in Case 1. The similar argument shows that L is Legendrian
in this case. O

Proof of Theorem 1.1. 1t follows from Propositions 2.1 and 2.2. O

Proof of Theorem 1.2. The proof is inspired by [9], see also [6]. Fix a point x( in L
and let 1, 3, . . ., ¢, be an orthonormal basis of L in a neighborhood U of xy. Since
L is Legendrian, ey, Jey, ..., e,, Je,, x, Jx is a unitary basis of ™! for any point
x € U. Denote e,,; = Je; and ey, = Jx.

Define a linear map F:su(n + 1) - C*(L) by

F(M) = fu = (MXx, Ix)\L,

where C*°(L) is the space of smooth functions. We want to show that the image
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F(su(n+ 1)) of F is of dimension not less than %(n(n + 3)). Considering the point
xo € L as a vector as before, we define

K(xg) = {M esu(n+1)|Mxy € JTy L, M(Ty,L) C JTXOL}
and

P(xo) = {M c su(n+ 1| Mxy € Ty, L @ {x0} ® {Jx0}, }

M(TX()L) € TX()L D {XO} 2] {JXO}-
It is easy to check that
su(n + 1) = P(xo) ® K(xo).

Now we claim that if M € K(xo) satisfies F(M) = 0, then M = 0 . Assume that there
is a matrix M € K(xp) such that F(M) =0, i.e., fyy = 0. By (2.9) we know

(Me;, Jx) + (Mx, Je;) =0, on U,

forany i=1,2,...,n. Since M € su(n+ 1), it follows that

(Mx, Je;) = (Me;, Jx) =0, on U (2.16)
fori=1,2,...,n. Thus Mx, = 0, for Mxy € JTy, L. Exterior differentiation of (2.16)
gives

(Me;, Jej) + hyj(Me,, Jx) =0, on U. (2.17)

Since M e K(xo), we have (Me,;, Jxo) = (Me;, xo) = 0. We also have A,41y; = 0 by
Lemma 2.3 below. Hence, (2.17) implies that

(Me;, Jej) =0 at xo, fori,j=1,2,...,n.
which, in turn, implies that M = 0. This proves the claim. It is clear that the
dimension of K is %(n(n 4+ 3)). Now the first statement of the Proposition follows
from the claim.
If the multiplicity equals to %(n(n + 3)), then from the argument above we know

that, for any point xo € L and any M € P(xy), F(M) =0 and (2.17) holds in any
small neighborhood of x¢. In this case, we claim that

hyij = 0. (2.18)
By definition, for any M € P(xy), (Me;, Je;) = 0. It follows from (2.17) that
hyij{Me,, Jx) = 0. (2.19)

For any k, choosing M € P such that Me;, = x and inserting it into (2.19) we get that
htiyi = 0. This together with Lemma 2.3 below, implies the claim, i.e., L is totally
geodesic. [
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SZn-H

Clearly if L" is totally geodesic in then L is a great sphere.

LEMMA 2.3. Let L be a minimal Legendrian submanifold in S™. We have
honiny; =0, foranyi,j=1,2,...,n.
Proof. 1t is a known fact. For convenience, we give a proof. From (2.6), we have
dey,p1 = Jdx = 0; ® Je;,
which implies that 0,11) =0, i.e., fut1); = 0. O

Remark. The dimension of su(n+ 1)/so(n+ 1) is %(n(n + 3)).
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