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AN APPLICATION OF PAIRWISE INDEPENDENCE 
OF RANDOM VARIABLES TO REGRESSION 

ANALYSIS 

BY 

RONALD A. SCHAUFELE 

ABSTRACT. The exact probability of making an error at the 
first stage of a stepwise regression is found, both when the indepen
dent variables are fixed and when they are random. The proba
bilities differ in the two cases because the random variables 
involved are pairwise independent but not jointly independent. 

1. Introduction. In linear regression, an ^-statistic (or /-statistic) is used to 
test the hypothesis that the slope is zero. The null distribution of each of these 
statistics does not depend on whether the independent variable is random or is 
fixed by the experimenter. The purpose of this paper is to show that the property 
does not carry over to multilinear regression and that the explanation for this lies 
in the pairwise independence but not joint independence of the various random 
variables that are involved. As well, it may serve to bring more attention to a 
"natural" example of random variables that are pairwise independent but not 
jointly independent, an example that does not seem to have achieved much notice. 

Lastly, a 1971 result of Draper, Guttman and Kanemasu [3] is generalized to 
include non-orthogonal estimators in the case where the independent variables are 
fixed. 

2. Preliminaries. Throughout this paper, we will use the following convention. 
Capital letters will represent random variables. Small letters will represent fixed 
variables or values of random variables. For example, if X is a random variable, 
E(Y\x) will represent the conditional expected value of the random variable 7, 
given X=x. Otherwise, E(Y \ x) will imply that the expected value of Y depends 
functionally on a (non-random) variable x. 

If Y9Xl9... 9 Z^are random variables, wedefine/M0=EF,/ai=£Zi(/=l,... , k)9 

<r00= VY, aH= VXi (f= 1 , . . . , Jc), a0i=Cov(Y9 Xt) ( / = 1 , . . . , Jc), air=Cov(Xi9 Xr) 
(i, r = l , . . . , k; i?£r). We let fx=(//0,... , ftk) and 2 be the k+l by k+l matrix 
whose (i,j)th entry is aij(i,j=09 . . . , £ ) . We let St7 be the cofactor of au in 2 and 
let 2 be determinant of 2. 
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(2.1) E(Y\x)^p0+2Pixi 

Assume the following model. 7 is a normal random variable such that 

k 

I-
(2.2) V(Y | x) = er0|1...fc 

where x=(xl9... , xk). If (F , X) has a multivariate normal distribution with 
parameters fji and S (2 positive definite), then 

(2.3) î o = l*o- 2 Aft» 
i=l 

(2.4) ft = [(<%, . . . , CToJSô1]; Î = 1, . . . , fc, 

(2.5) (To|i fc = ôo—(<%> • • • > o'ofc)?ô'1(0'oi> • • • > <%)T 

where 2 0 is obtained from S by deleting its first row and first column. In any case, 
we assume that — oo<f t< + oo 0*=0, 1 , . . . ,fc) and that o^! fc>0. Within 
this model, let 

Q = {P = ( f t , . . . , ft):-co < ft < +oo, i = 1 , . . . , fc}, 

let o>î={pe 0 : ^ = 0 } and ^ ^ { P e u : f t # 0 } ( i = l , 2 , . . . , fc) and consider 
the 2k subsets of Q given by f |L i ^7 as x~ ± 1, i = 1, 2 , . . . , fc. These 2fc subsets 
form a partition of Q from which we wish to choose one subset and assert that /? 
lies in it, i.e. we wish to assert some subset of the ft s are zero and the rest non
zero. This choice will be based on independent observations Yl9 F 2 , . . . , Yn 

associated with vectors x l5 x 2 , . . . , xn (n>k) where x{ is the value of Xt if the 
vector (Yi9 X{) is multivariate normal ( /=1 , 2 , . . . , n). 

In Chapter 6 of Draper and Smith [4], six possible methods are listed for 
choosing one of the subsets of O. In this paper, we discuss some problems that 
arise from the forward selection procedure, the stepwise procedure, and variations 
thereof. These procedures successively add one more /? at each stage to those that 
are stated as being non-zero until a stage is reached at which any remaining ft s are 
stated to be zero. At stage one, either one /? is asserted to be non-zero or all ft s are 
asserted to be zero. 

To describe the mechanics of stage one, we assume, for the moment, that (F, X) 
is multivariate normal with ? = £ where D is a diagonal matrix and that 
( i ^ X ^ , (F2 ,X2), . . . , ( F n , X J are a random sample on (F,X). We let 

n n n 

Soo = 2 ( 7j -— F) , S a = ^ (Xti—Xt) , S0i = 2,(Yj— F)(X^- — JQ 
3=1 3=1 3 = 1 

and 
n __ 

Sir = Z, \Xij ~~ Xùfàrj ~~ ^r) 
3=1 
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where /, r = l , . 

(2.6) 

(2.7) 

REGRESSION ANALYSIS 

. . , k (/^r). Now let 

Ri — SoiKSa s00 ) 

(n-2)S*JSH 
^i = Ô 

Soow~~S0iISii 

399 

for i = l , . . . , k. It is easily seen that F < =(W-2) J RJ/(1-J?J) SO that F{ and R\ are 
1-1 monotone increasing functions of each other. At stage one, one looks at 
Soi/Siu • • • > SoklSkk a nd chooses the largest quantity, say Sw/S«- It is conventional 
to assert that ft5*0 if and only if, for the corresponding i^, i^>;/i,n_2,a where 
fi.n-2.a is ^ e upper 100a percent point for the central F(l,n—2) distribution. 
Otherwise, all the ft s are said to be zero. 

If we let S*=max(S%1]Sll9 • • • , S2
0klSkk) and let F*=(«-2)S*/(S0o-S*)> then 

(2.8) P(^*>/1,n-2.«|? = ^) 

is the probability of making the error at stage one of saying that some /? is non
zero, when, in fact, all the ft s are zero. 

By inspection, it is seen that S^jSu is largest if and only if JR? is largest (amongst 
the R's) if and only if Ft is largest (amongst the F's). Thus, 

(2-9) {F* < /1>n_2..} = h{F4< A . ^ . J . 

In later sections, we show that the F{ are jointly independent central F(l9 n—2 
random variables when ? = £>. Thus, 

P(F*-£/!,„-*.« | ? = J?) = 1-[P(F </1,n_2,a)]
fc 

(2.10) = l - ( l - a ) f c 

^ fca. 

The procedure for choosing a non-zero /? in the fixed case is the same but we show 
that the probability corresponding to (2.8) is different and is a function of the 
fixed x's, as well as n and a. 

3. Bilinear regression. Since the formulas are easiest when k=2, we study 
this problem in more detail. Recall that «>2. Let H0 be co1 n <o2> i-e-> ^i^ft— 
&=o. 

THEOREM 3.1. If (Y9Xl9X2) is a multivariate N(\i9 2) random vector with 2 
positive definite and (Yl9 Yll9 X21)9 (Y29 X12, Z2 2) , . . . , (Yn9 Xln9 X2n) are a 
random sample on (Y9Xl9X2), then Rt and R2 are independent under H09 with 
joint density 
(3.1) /(r1 , r2)=/(r1)/(r2) 

on - l < r x , ra< + l where/(ri)=r((«-l)/2)(l-r,2)<«-«'2/r(|)r((«-2)/2)) i = l , 2. 
Likewise Flt F2 are independent F(l, n—2) random variables under H0. 
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Proof. Using (2.4), we can write 

(3.2) ft = °01 q22-" ' 0 l02 q12 
2 

O l l o r22'~~ 0 ' l2 

(3.3) ft 
°'01c r22~O ,12 

where the denominators are positive since 2 is positive definite. Under if0, the 
numerators are zero. If <r017*09 a02y^09 and a12^0, then o\2-=axxa229 as can be 
quickly computed. Since this is impossible, o,

12=0 and this implies cr01=cr02=0. 
Thus, from (29.13.1) on p. 411 of Cramer [2], the joint density of Rl9 R2 and R= 
SuKSl^Sli*), under H0 is 

m 
r<i>T(^)r(V) 

(3.4) f(rl9 r2, r) = , % " ' , IT ( l - r | - r ^ r 2 + 2 r 1 r 2 r ) ( n - 5 ) / 2 

on — l < r x , r2, r < l and 1— r\—r\—r2—2r1rar>0. Integrating out r [using the 
change of variable w==(r~r1r2)/(l-r1

2)1/2(l-r2)1/2] yields (3.1). Thus, Rx and R2 

are independent under H0. Hence, F± and F2 are independent F(l, n—2) random 
variables under H0 because of the functional relationship between F and R. 

From Theorem 3.1, we see that (2.8) can be written as 

(3.5) PH°{F* ^ fl'n~2^ = PHO(FI ^ &-»-*-« o r F s ^ ^ - « - ^ 
= l - ( l - a ) 2 . 

Formula (3.5) does not follow when the x's are fixed as the following theorem 
shows. Let Yl9... , Yn be independent normal random variables associated with 
vectors (xll9 x21), (x129 x22)9... , (xlw, x2n). With some abuse of notation, let 

Soo=2*=i ( Yi ~~ ^) 2 » ^<H=2i=i ( ̂ i "~" ^0 (•% ~~ *«) > *=1 > 2, .s^=2i=i (x»i "-" *i)2' 
i = 1 , 2 , and ^ = 2 ^ 1 ( ^ - " ^ I ) ^ ^ - " ^ ) - Let R~SoiISo0 su , i = 1 , 2 , r=^12/^ii s2 2 , 
and i ^= (w—2)i?2/(l — i?2), i = 1 , 2. With this notation, we have the following theo
rem. 

THEOREM 3.2. If ( 1 , 1 , . . . , 1), x1=(xll9 x129... 9 xln)9 and x2=(x21 , x229... 9 

x2n) are fixed (linearly independent) n-vectors such that Yl9 Y29... , Yn are inde
pendent normal random variables with 

(3.6) E(Yt | x1? x2) = ft+ftx,,+ftx2, 
j = 1, 2 , . . . , n 

(3.7) F(Y,.|Xl ,x2)=:cr2 , 
then Rl9 R29 and S00 have joint density 

. (l-r^r^r2 + 2rir2r)(n-5)/25(n-3)/2g-(Q)/2(y2 

n x\ *^rii r 2' s ' X l ' x ^ ~" / i\ 
y } (2aï)(w-1)/2r(i)2r(^=^)(i-r2)(n-4)/2 
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where Q^s-lfo^V1*-!^^ on s>09 - 1 < 
rl9r2<\9 l-r1

2-r2
2-r2+2r1r2r>0. 

In particular, under H0, R1 and R2 (hence Fx and F2) are dependent random vari
ables and R± and R2 have joint density 

(3.9) f(rl9 r2 \ xl9 x2) = 
r(l)2r — (i-r2)(n-4)/2 

on —l<rl9r2<l and l—rl—rl—rz+2r1r2r>0. 

Proof. If xx and x2 are fixed, the joint density of F1 and F2 can be found directly 
by an extension of the matrix method that shows the independence of X and ̂ 2 

when Xl9 X29... , Xn are a random sample on X9 a normal random variable. 
Let A be the orthonormal matrix formed from (1, 1 , . . . , 1), xl9 x2, and n—Z 
additional linearly independent n-vectors. (Recall that ( 1 , 1 , . . . , 1), xl9 and x2 

are linearly independent vectors.) Using the fact that U=AZ is N(09 /) if Z is 
(O, J), changing variables carefully, and integrating out extraneous variables 
yields the joint density of Rl9 R29 and SQ0 as 

(3.10) f(r19 r29 s \ xl9 x2) =
 L 

( 2 ( r2 )(n-l)/2r (i )2r/!LZ£j(1_ra)(n-4)/2 

where Ô = s - 2 ^ { V ^ V / 2 - 2 ^ ^ ^ on the appro-
priate ranges. Note that this density depends on xx and x2 only through sll9 s229 

and s12. 
Equation (3.8) can be obtained in an alternate way by assuming that the x's, 

though fixed, are values of corresponding normal random variables. That is, 
write out the Wishart distribution for S00, Sou S02, Sll9 S129 and *S22 in terms of 
variances and covariances, divide it by the Wishart distribution of Sll9 S129 and 
S229 and obtain the distribution of 500, SQU S029 given (Sll9 S12, S22)=(sll9 s129 s22). 
Use (2.4) and (2.5) to change the constants from variances and covariances to 
jS's and al^al^ k. Finally, use the mapping (S009 Sol9 S02)->(S009 Rl9 R2) to 
show that the conditional density of S0Q9 Rl9 and R2 is (3.8). 

If H0 is true, inspection of (3.10) shows that S00 is independent of jRx and R2, 
the joint density of latter depends on xx and x2 only through r, their sample 
correlation coefficient, and the density is given by 

r(^ i ) ( l~r 2 - r 2
2 ~r 2 +2r 1 r 2 r ) ( w - 5 ) / 2 

(3.11) f(rl9 r21 xl5 x2) = -
r ( l ) 2 r / Z ^ \ ( 1 _ r 2 ) ( n - 4 ) / 2 
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on the appropriate range. Thus, under H0, Rx and R2 (hence Fx and F2) are depend
ent and the proof is complete. 

The reason for this basic difference between the random and fixed cases can be 
seen by looking at equations (3.1) and (3.4). From these, it follows that the random 
variables Rl9 R2, and R are pairwise independent but not jointly independent as 
was first shown by Geisser and Mantel [6] in 1962. When the independent variables 
are random, R± and R2 (hence Fx and F2) are independent, under H0. When the 
independent variables are fixed, r is known and the conditional distribution of Rt 

and JR2, obtainable by dividing (3.4) by the density of R, is not factorable, even 
under H0. 

Most elementary texts in probability and statistics stress the fact that pairwise 
independence does not, in general, imply total independence. But natural examples 
are hard to find, particularly examples involving continuous random variables. 
(See Feller [5] p. 116-117.) Thus, Geisser and Mantel's example is of valuable 
pedagogical use and, in the present setup, explains why different results should 
be expected in the fixed and random cases. 

For k=2, we have found PH (H0 is rejected) both in the random and in the 
fixed cases. In the former case, the error probability can be set at a by setting the 
critical level a t / i ^^ . i -v i - a ' ^n ̂ e latter case> f ° r a n y critical level c, we have 

PHo (H0 is rejected) = PHfFx >C o r F* > c) 

= PH0(RÎ^C or Rt>c') 
(3.12) f c , f c , 

= 1 - f(rl9 rz | xl5 x2) dr± dr2 
J—c'J—c' 

where cf=c\(n—2+c) and this probability depends on c9 n9 and r (the correlation 
coefficient of xx and x2). Note that r 2 < l by our assumption that xx and x2 are 
linearly independent. 

In 1971, Draper et al. [3] found the probability given in (3.12) for a special 
case. They assume that the estimators of the /Ts are orthogonal. Inspection of the 
covariance matrix shows that this implies that r, the sample correlation coefficient 
of the Xi's and x2's, is zero. Orthogonality actually implies more but (3.12) de
pends on the x's only through r. Thus, for various n's and oc's, they find that the 
error probabilities behave approximately as they would if the F's were independent 
when r = 0 . 

If the independent variables are fixed by the experimenter, the probabilities 
and/or critical levels must be found by numerical means but it would seem wiser 
to compute these quantities as needed rather than preparing tables since these 
would be simply too large. However, computations to see how the probability 
in (3.12) depends on the value of r would be of interest. 

4. Multilinear regression. For k>2 and n>k, similar results hold but the equa
tions become unwieldy. If (Y, Xl9... , Xk) is a multivariate N([L, 2 ) random 

https://doi.org/10.4153/CMB-1975-073-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-073-5


1975] REGRESSION ANALYSIS 403 

vector with ? = / ) , a diagonal matrix that is positive definite, then Rl9 R29. . . , Rk 

are jointly independent. (See, for example, Anderson [1], p. 177, Problem 9). 
Thus, the problem of finding PH {Fx>c or F2>c or • • • or Fk>c) for fixed c and 
the problem of finding c so as to fix the above probability are easily solved. There 
are, however k{k+\)\2 correlation coefficients and they are jointly dependent. 
Since Y holds no special place in this vector, it follows that amongst the k(k+l)j2 
jointly dependent random variables, there are k+l sets of k random variables 
that are jointly independent, each correlation coefficient appearing exactly twice 
in the k+1 sets. This implies that the k(k+1)/2 correlation coefficients are pairwise 
independent, as pointed out by Geisser and Mantel [6]. More importantly, it 
shows that /^-independence of certain subsets of k{k+\)jl random variables is 
still not enough to ensure the joint independence of the full set. 

Thus, in the general case where the dependent variables are random, if H0 is 

PlL=i œi> i-e-> Ho'-Pi^' ' •=/?& = ^5 t n e n (2.8) can be written as 

PHo(H0 is rejected) = PHQ(F* > /1>n_2,a) 

(4.1) = I - P H ^ I </l,n-2,a Fk < / l i n _ 2 . J 

= l - ( l - a ) f c 

^ fca, 
for a small. 

If the independent variables are fixed by the experimenter, the easiest way to 
obtain the conditional distribution of Rl9 R2,... , Rm, under H0f is to divide the 
joint density of all k(k+1)/2 correlation coefficients by the joint density of the 
(k—l)kj2 correlation coefficients that do not involve Y. If jR=(r0) is a A:+1 by 
k+l matrix (/,y=0, 1 , . . . , k) with determinant i£=|i?| and R00 is the cofactor of 
r00, the conditional density of Rl9 R2,.. . , Rk is given by 

tAV\ a I , _ C ( f e + l , n ) / ^ \ ( n ^ - 3 ) / 2 

(4.2) j(r01, . . . , r0k | r12,. . . , rk_ltk) - ^ n)gu%[RJ 

on the set where R is positive, the density being defined whenever JR00 is positive, 
and C(k+1, n)jC(k, n) being a constant so that the integral of (8) over r 0 1 , . . . , r0Jt 

is one. 
For a fixed significance level c, it is now theoretically possible to compute the 

probability of rejecting H0, given H0 is true. Likewise, it is theoretically possible to 
determine c so that the stated probability is a. But both problems can only be solved 
by numerical methods, preferably on a computer. In [3], it is shown that the JR'S 
behave as if they are approximately independent when the estimators are orthog
onal. 

5. Problems. The results of this paper leave many problems. Amongst them 
are the following: 

(1) Is the error probability relatively uninfluenced by the choice of r when the 
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independent variables are fixed (k=2), i.e., are the F9s approximately independent 
no matter what the choice of the x's. 

(2) For fixed n and <X(Â:=2), can r be chosen, in the fixed case, so as to minimize 
the error probability? Are there values of r for which the error probability is less 
than the probability when the independent variables are random? 

(3) More generally, this paper only investigates the probability of one error for 
one test. The other errors are functions of the non-zero /Ts. Does this test perform 
well, at least as |p | becomes large? The procedures mentioned in the introduction 
use at least k tests in stage one. Can a procedure be devised that uses only k tests in 
total and, for fixed probability of rejecting H0 when H0 is true, improves the proba
bility of finding other hypotheses when they are true? 

(4) In some applied areas, e.g. economics, the independent variables are usually 
considered random and k is often large. In such a situation, use of any common a, 
e.g. 0-05 or 0-01, will lead often to the choosing of some ft at stage one and the 
assertion that it is significantly different from zero when, in fact, all the /?'s are 
zero. How can this be avoided? At one extreme, one can raise the critical level in 
4.1. This will lower the error probability we have been discussing but may make the 
discovery of true non-zero /?'s very difficult. Is there an optimal way to choose the 
critical level, as a function of/:, to keep all probabilities low, at least for large nl 
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