
JFP 22 (4–5): 382–438, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000172

382

Lazy tree splitting

LARS BERGSTROM

Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

(e-mail:)larsberg@cs.uchicago.edu)

MATTHEW FLUET

Department of Computer Science, Rochester Institute of Technology, Rochester NY 14623-5603, USA

(e-mail:)mtf@cs.rit.edu)

MIKE RAINEY�
Max Planck Institute for Software Systems, D-67663 Kaiserslautern, Rheinland-Phalz Germany

(e-mail:)mrainey@mpi-sws.org)

JOHN REPPY

Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

(e-mail:)jhr@cs.uchicago.edu)

ADAM SHAW

Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

(e-mail:)ams@cs.uchicago.edu)

Abstract

Nested data-parallelism (NDP) is a language mechanism that supports programming irregular

parallel applications in a declarative style. In this paper, we describe the implementation of

NDP in Parallel ML (PML), which is a part of the Manticore system. One of the main

challenges of implementing NDP is managing the parallel decomposition of work. If we have

too many small chunks of work, the overhead will be too high, but if we do not have enough

chunks of work, processors will be idle. Recently, the technique of Lazy Binary Splitting was

proposed to address this problem for nested parallel loops over flat arrays. We have adapted

this technique to our implementation of NDP, which uses binary trees to represent parallel

arrays. This new technique, which we call Lazy Tree Splitting (LTS), has the key advantage

of performance robustness, i.e., it does not require tuning to get the best performance for

each program. We describe the implementation of the standard NDP operations using LTS

and present experimental data that demonstrate the scalability of LTS across a range of

benchmarks.

1 Introduction

Nested data-parallelism (NDP) (Blelloch et al., 1994) is a declarative style for

programming irregular parallel applications. NDP languages provide language

features favoring the NDP style, efficient compilation of NDP programs, and various

� Portions of this work were completed while the author was affiliated with the University of Chicago.
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common NDP operations like parallel maps, filters, and sum-like reductions. Irreg-

ular parallelism is achieved by the fact that nested arrays need not have regular, or

rectangular, structure; i.e., sub-arrays may have different lengths. NDP programming

is supported by a number of different parallel programming languages (Chakravarty

et al., 2007; Ghuloum et al., 2007), including our own Parallel ML (PML) (Fluet

et al., 2008a).

On its face, implementing NDP operations seems straightforward because individ-

ual array elements are natural units for creating tasks, which are small, independent

threads of control.1 Correspondingly, a simple strategy is to spawn off one task for

each array element. This strategy is unacceptable in practice, as there is a scheduling

cost associated with each task (e.g., the cost of placing the task on a scheduling

queue) and individual tasks often perform only small amounts of work. As such,

the scheduling cost of a given task might exceed the amount of computation it

performs. If scheduling costs are too large, parallelism is not worthwhile.

One common way to avoid this pitfall is to group array elements into fixed-size

chunks of elements and spawn a task for each chunk. Eager Binary Splitting (EBS),

a variant of this strategy, is used by Intel’s Thread Building Blocks (TBB) (Intel,

2008; Robison et al., 2008) and Cilk++ (Leiserson, 2009). Choosing the right chunk

size is inherently difficult, as one must find the middle ground between undesirable

positions on either side. If the chunks are too small, performance is degraded by

the high costs of the associated scheduling and communicating. By contrast, if the

chunks are too big, some processors go unutilized because there are too few tasks

to keep them all busy.

One approach to picking the right chunk size is to use static analysis to predict

task execution times and pick chunk sizes accordingly (Tick & Zhong, 1993). But this

approach is limited by the fact that tasks can run for arbitrarily different amounts of

time, and these times are difficult to predict in specific cases and impossible to predict

in general. Dynamic techniques for picking the chunk size have the advantage that

they can base chunk sizes on runtime estimates of system load. Lazy Binary Splitting

(LBS) is one such chunking strategy for handling parallel do-all loops (Tzannes

et al., 2010). Unlike the two aforementioned strategies, LBS determines chunks

automatically and without programmer (or compiler) assistance and imposes only

minor scheduling costs.

This paper presents an implementation of NDP that is based on our extension

of LBS to binary trees, which we call Lazy Tree Splitting (LTS). LTS supports

operations that produce and consume trees where tree nodes are represented as

records allocated in the heap. We are interested in operations on trees because

Manticore, the system that supports PML, uses ropes (Boehm et al., 1995), a

balanced binary-tree representation of sequences, as the underlying representation

of parallel arrays. Our implementation is purely functional as it works with

immutable structures, although some imperative techniques are used under the

hood for scheduling.

1 We do not address flattening (or vectorizing) (Keller, 1999; Leshchinskiy, 2005) transformations here,
since the techniques of this paper apply equally well to flattened or non-flattened programs.
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Lazy Tree Splitting exhibits performance robustness, i.e., it provides scalable

parallel performance across a range of different applications and platforms without

requiring any per-application tuning. Performance robustness is a highly desirable

characteristic for a parallel programming language, for obvious reasons. Prior to

our adoption of LTS, we used Eager Tree Splitting (ETS), a variation of EBS.

Our experiments demonstrate that ETS lacks performance robustness: the tuning

parameters that control the decomposition of work are very sensitive to the given

application and platform. Furthermore, we demonstrate that the performance of

LTS compares favorably to that of (ideally tuned) ETS across our benchmark suite.

This paper incorporates three substantial improvements to the material presented

in the ICFP’10 paper of the same name. First, we identify a potential issue in our old

approach where certain patterns of tree splitting can produce trees with arbitrary

imbalance. We address this issue in Section 4 by presenting a new cursor-splitting

technique and proving that the corresponding rope-processing codes are balance-

preserving. Second, we present new benchmarking results from a larger, 48-core

machine and demonstrate good scalability. Third, we present new experiments and

examine the performance results in more depth.

2 Nested data-parallelism

In this section we give a high-level description of PML and discuss the runtime

mechanisms we use to support NDP. More detail can be found in our previous

papers (Fluet et al., 2007a, 2007b, 2008a).

2.1 Programming model

Parallel ML is a programming language supported by the Manticore system.2 Our

programming model is based on a strict and mutation-free functional language

(a subset of Standard ML (Milner et al., 1997)), which is extended with support

for multiple forms of parallelism. We provide fine-grain parallelism through several

lightweight syntactic constructs that serve as hints to the compiler and runtime that

the program may benefit from executing the computation in parallel. For this paper,

we are primarily concerned with the NDP constructs, which are based on those

found in nesl (Blelloch, 1990b, 1996).

Parallel ML provides a parallel array-type constructor (parray) and operations

to map, filter, reduce, and scan these arrays in parallel. Like most languages that

support NDP, PML includes comprehension syntax for maps and filters, but for this

paper we omit the syntactic sugar and restrict ourselves the following interface:

2 Manticore may support other parallel languages in the future.
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type ’a parray

val range : int * int -> int parray

val mapP : (’a -> ’b) -> ’a parray -> ’b parray

val filterP : (’a -> bool) -> ’a parray -> ’a parray

val reduceP : (’a * ’a -> ’a) -> ’a -> ’a parray -> ’a

val scanP : (’a * ’a -> ’a) -> ’a -> ’a parray -> ’a parray

val map2P : (’a * ’b -> ’c)

-> (’a parray * ’b parray)

-> ’c parray

The function range generates an array of the integers between its two arguments.

The function mapP applies a function to all the elements of a parray in parallel.

filterP applies a predicate in parallel over the input parray to produce a new

parray containing only those elements corresponding to a true result from the

predicate. The function reduceP takes a binary operator along with an identity

value and applies the operator in parallel to the values in the parray until reaching

a final result value. The function scanP produces a parallel prefix scan of the

array. Both reduceP and scanP assume that the binary operation is associative.

Finally, the function map2P applies a function to pairs of elements of two parrays in

parallel; the output array has the length of the shorter input array. These parallel-

array operations have been used to specify both SIMD parallelism that is mapped

onto vector hardware (e.g., Intel’s SSE instructions) and SPMD parallelism, where

parallelism is mapped onto multiple cores; this paper focuses on exploiting the

latter.

As a simple example, the main loop of a ray tracer generating an image of width

w and height h can be written

fun raytrace (w, h) =

mapP (fn y => mapP (fn x => trace (x, y))

(range (0,w-1)))

(range (0,h-1))

This parallel map within a parallel map is an example of nested data-parallelism.

Note that the time to compute one pixel depends on the layout of the scene, because

the ray cast from position (x,y) might pass through a subspace that is crowded

with reflective objects or it might pass through relatively empty space. Thus, the

amount of computation performed by the trace(x,y) expression (and, therefore,

performed by the inner mapP expression) might differ significantly depending on the

layout of the scene. The main contribution of this paper is a technique for balancing

the parallel execution of such irregular parallel programs in functional programming

languages with ropes.

2.2 Runtime model

The Manticore runtime system consists of a small core written in C, which

implements a processor abstraction layer, garbage collection, and a few basic

scheduling primitives. The rest of our runtime system is written in BOM, a PML-like

language. BOM supports several mechanisms, such as first-class continuations and

mutable data structures, that are useful for programming schedulers but are not in
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PML. Further details on our system may be found elsewhere (Rainey, 2007; Fluet

et al., 2008b; Rainey, 2009).

A task scheduling policy determines the order in which tasks execute and the

mappings from tasks to processors. Our LTS is built on top of a particular task

scheduling policy called work stealing (Burton & Sleep, 1981; Halstead Jr., 1984).

In work stealing, we employ a group of workers, one per processor, that collaborate

on a given computation. The idea is that idle workers which have no useful work to

do bear most of the scheduling costs and busy workers which have useful work to

do focus on finishing that work.

We use the following well-known implementation of work stealing (Frigo et al.,

1998; Blumofe & Leiserson, 1999). Each worker maintains a double-ended queue

(deque) of tasks, represented as thunks. When a worker reaches a point of potential

parallelism in the computation, it pushes a task for one independent branch onto the

bottom of the deque and continues executing the other independent branch. Upon

completion of the executed branch, it pops a task off the bottom of the deque and

executes it. If the deque is not empty, then the task is necessarily the most recently

pushed task; otherwise all of the local tasks have been stolen by other workers and

the worker must steal a task from the top of some other worker’s deque. Potential

victims are chosen at random from a uniform distribution.

This work-stealing scheduler can be encapsulated in the following function, which

is part of the runtime system core:

val par : (unit -> ’a) * (unit -> ’b) -> ’a * ’b

When a worker P executes par (f,g), it pushes the task g onto the bottom of its

deque3 and then executes f(). When the computation of f() completes with result

rf , P attempts to pop g from its deque. If successful, then P will evaluate g() to

a result rg and return the pair (rf,rg). Otherwise, some other worker Q has stolen

g, so P writes rf into a shared variable and looks for other work to do. When Q

finishes the evaluation of g(), then it will pass the pair of results to the return

continuation of the par call. The scheduler also provides a generalization of par to

a list of thunks.

val parN : (unit -> ’a) list -> ’a list

This function can be defined in terms of par, but we use a more efficient implemen-

tation that pushes all of the tasks in its tail onto the deque at once.

2.3 Ropes

In the Manticore system, we use ropes as the underlying representation of parallel

arrays. Ropes, originally proposed as an alternative to strings, are persistent balanced

binary trees with seqs, contiguous arrays of data, at their leaves (Boehm et al., 1995).

For the purposes of this paper, we define the rope type as follows:

3 Strictly speaking, it pushes a continuation that will evaluate g().
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datatype ’a crope

= CLeaf of ’a * ’a seq

| CCat of ’a * ’a crope * ’a crope

However, in our actual implementation there is extra information in the Cat nodes

to support balancing. Read from left to right, the data elements at the leaves of a

rope constitute the data of the parallel array it represents.

Since ropes can be physically dispersed in memory, they are well suited to being

built in parallel, with different processors simultaneously working on different parts

of the whole. Furthermore, the rope data structure is persistent, which provides, in

addition to the usual advantages of persistence, two special advantages related to

memory management. First, we can avoid the cost of store-list operations (Appel,

1989), which are sometimes necessary for maintaining an ephemeral data structure.

Second, a parallel memory manager, such as the one used by Manticore (Fluet et al.,

2008b), can avoid making memory management a sequential bottleneck by letting

processors allocate and reclaim sub-ropes independently.

As a parallel-array representation, ropes have several weaknesses when compared

to contiguous arrays of, say, unboxed doubles. First, rope random access requires

logarithmic time. Second, keeping ropes balanced requires extra computation. Third,

mapping over multiple ropes is more complicated than mapping over multiple arrays,

since the ropes can have different shapes. In our performance study in Section 5, we

find that these weaknesses are not a limitation in practice and we know of no study

in which NDP implementations based on ropes are compared side by side with

implementations based on alternative representations, such as contiguous arrays.

The maximum length of the linear sequence at each leaf of a rope is controlled

by a compile-time constant M. At runtime, a leaf contains a number of elements n

such that 0 � n � M. In general, rope operations try to keep the size of each leaf as

close to M as possible, although some leaves will necessarily be smaller. We do not

demand that a rope maximize the size of its leaves.

Requiring perfect balance of all ropes can lead to excessive rebalancing, because

even a small change to a given rope can make the rope unbalanced. Thus, we use

a different balancing policy that still maintains the asymptotic behavior of rope

operations but where ropes are allowed to become slightly unbalanced. For a given

rope r of depth d and length n, our relaxed balancing goal is d � �log2 n� + 2. This

property is guaranteed by the function

val balance : ’a rope -> ’a rope

which takes a rope r and returns a balanced rope equivalent to r (returning r itself

if it is already balanced). This function uses a simple parallel balancing algorithm

that executes in time O(n) on a single processor and O(d2) time on an unbounded

number of processors. The idea is to repeatedly split the given rope into two halves

of equal size, recursively balance each half in parallel, and to concatenate the two

balanced sub-ropes. The base case occurs when the length of the given rope falls

below M, in which case the algorithm serially flattens the rope to create a single leaf

node.
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As noted above, rope operations try to keep the size of each leaf as close to M as

possible. To build ropes, rather than using the Cat constructor directly, we define a

specialized constructor:

val cat : ’a rope * ’a rope -> ’a rope

If cat is applied to two small leaves, it can coalesce them into a single larger leaf.

Note that cat does not guarantee balance, although it will maintain balance if

applied to two balanced ropes of equal size. We also define a similar function

val catN : ’a rope list -> ’a rope

which returns the smart concatenation of its argument ropes.

We sometimes need a fast, cheap operation for splitting a rope into multiple

sub-ropes. For this reason, we provide

val split : ’a rope -> ’a rope * ’a rope

which splits its rope argument into two sub-ropes such that the sizes of these ropes

differ by at most one. We also define

val splitN : ’a rope * int -> ’a rope list

which splits its parameter into n sub-ropes, where each sub-rope has the same size,

except for one sub-rope that might be smaller than the others.

We sometimes use

val length : ’a rope -> int

which returns the number of elements stored in the leaves of a rope and

val size : ’a rope -> int

which returns the number of leaves of a rope.4

The various parallel-array operations described in Section 2.1 are implemented

by analogous operations on ropes. Sections 3 and 4 describes the implementation of

these rope-processing operations in detail.

3 The Goldilocks problem

In NDP programs, computations are divided into chunks, and chunks of work are

spawned in parallel. These chunks might be defined by subsequences (of arrays,

for example, or, in our case, ropes) or iteration spaces (say, k to some k + n). The

choice of chunk size influences performance crucially. If the chunks are too small,

there will be too much overhead in managing them; in extreme cases, the benefits

of parallelism will be obliterated. On the other hand, if they are too large, there

will not be enough parallelism, and some processors may run out of work. An ideal

chunking policy apportions chunks that are neither too large nor too small, but

are, like Goldilocks’s third bowl of porridge, “just right.” Some different chunking

policies are considered in the sequel.

4 In our actual implementation, these operations are constant time, as we cache lengths and sizes in Cat
nodes.
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fun mapTary J f rp = let
fun g chunk = fn () => mapSequential f chunk
val n = length rp
val chunks = splitN (rp, min (n, J * numProcs ()))
in

catN (parN (List.map g chunks))
end

fun mapStructural f rp = (case rp
of Leaf s => Leaf (mapSeq f s)
| Cat (l, r) =>

Cat (par (fn () => mapStructural f l,
fn () => mapStructural f r)))

(a) T -ary decomposition

(b) structural decomposition

Fig. 1. Two fragile implementations of the map operation.

3.1 Fragile chunking policies

A fragile chunking policy is prone either to creating an excessive number of tasks

or to missing significant opportunities for parallelism. Let us consider two simple

policies, T -ary decomposition and structural decomposition, and the reasons that

they are fragile. In T -ary decomposition, we split the input rope into T = min(n, J×
P ) chunks, where n is the size of the input rope, J is a fixed compile-time constant,

and P is the number of processors, and spawn a task for each chunk. For example,

in Figure 1(a), we show the T -ary decomposition version of the map operation.5 In

computations where all rope elements take the same time to process, such as those

performed by regular affine (dense-matrix) scientific codes, the T -ary decomposition

will balance the work load evenly across all processors because all chunks will take

about the same amount of time. On the other hand, when rope elements correspond

to varying amounts of work, performance will be fragile because some processors

will get overloaded and others underutilized. Excessive splitting is also a problem.

Observe that if a program creates i levels of mapTary applications and if each rope

has length n � J × P , then the T -ary decomposition creates (J × P )i tasks at the

leaves alone, which can be excessive when either i or P get large.

To remedy the imbalance problem, we might try structural decomposition, in

which both children of a Cat node are processed in parallel and the elements of a

Leaf node are processed sequentially. We show the structural version of the map

operation in Figure 1(b). Recall that the maximum size of a leaf is determined by a

fixed, compile-time constant called M and that rope-producing operations tend to

keep the size of each leaf close to M. But by choosing an M > 1, some opportunities

for parallelism will always be lost and by choosing M = 1, an excessive number of

threads may be created, particularly in the case of nested loops.

5 In this and subsequent examples, we use
val mapSequential : (′a− >′ b) − > ′a rope − >′ b rope
which is the obvious sequential implementation of the map operation.
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fun mapETS SST f rp =
if length rp <= SST then mapSequential f rp
else let

val (l, r) = split rp
in
cat (par (fn () => mapETS SST f l,

fn () => mapETS SST f r))
end

Fig. 2. The ETS implementation of the map operation.

3.2 Eager binary splitting

Eager Binary Splitting is a well-known approach that is used by many parallel

libraries and languages, including Threading Building Blocks (Intel, 2008; Robison

et al., 2008)6 and Cilk++ (Leiserson, 2009). In EBS (and, by extension, ETS), we

group elements into fixed-size chunks and spawn a task for each chunk. This grouping

is determined by the following recursive process. Initially, we group all elements into

a single chunk. If the chunk size is less than the stop-splitting threshold (SST ),

evaluate the elements sequentially.7 Otherwise, we create two chunks by dividing

the elements in half and recursively apply the same process to two new chunks. In

Figure 2, we show the ETS version of the map operation.

EBS has greater flexibility than the T -ary or structural decompositions because

EBS enables chunk sizes to be picked manually. But this flexibility is not much of an

improvement, because, as is well known (Intel, 2008; Robison et al., 2008; Tzannes

et al., 2010), finding a satisfactory SST can be difficult. This difficulty is due, in part,

to the fact that parallel speedup is very sensitive to SST . We ran an experiment

that demonstrates some of the extent of this sensitivity. Figure 3 shows, for seven

PML benchmarks (see Section 5 for benchmark descriptions), parallel speedup as a

function of SST . The results demonstrate that there is no SST that is optimal for

every program and furthermore that a poor SST is far from optimal.

The Raytracer benchmark demonstrates, in particular, how fragile ETS can be

with respect to nesting and to relatively small ropes. Raytracer loses all of its

speedup as SST is changed from 26 to 29. To understand why, first note that the

two-dimensional output of the program is a 29 × 29 rope of ropes, representing

the pixels of a square image. When, for instance, SST = 27, Raytracer has just 16

chunks that it can process in parallel: four for each row and four for each column,

and when SST � 29, Raytracer has just one chunk it can process at a time (no

parallelism). We could address this problem by transforming the two-dimensional

representation into a single flat rope, but then the clarity of the code would be

compromised, as we would have to use index arithmetic to extract any pixel. As a

rule, our compiler should not encourage programmers to break with NDP style to

achieve best performance.

6 In the TBB manual, the option “simple partitioner” refers to EBS.
7 In TBB, if SST is unspecified, the default is SST = 1, whereas Cilk++ only uses SST = 1.
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Fig. 3. Parallel speedup as a function of the Stop-Splitting Threshold (SST ) (48 processors).

Recall that task execution times can vary unpredictably. Chunking policies that

are based solely on fixed thresholds, such as EBS and ETS, are bound to be fragile

because they rely on accurately predicting execution times. A superior chunking

policy would be able to adapt dynamically to the current load across processors.

3.3 Lazy binary splitting

The LBS policy of Tzannes et al. (2010) is a promising alternative to the other

policies because it dynamically balances load. Tzannes et al. show that LBS is

capable of performing as well or better than each configuration of eager binary

splitting, and does so without tuning.

Lazy Binary Splitting is similar to eager binary splitting but with one key

difference. In LBS, we base each splitting decision entirely on a dynamic estimation
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of load balance. Let us consider the main insight behind LBS. We call a processor

hungry if it is idle and ready to take on new work, and busy otherwise. It is better

for a given processor to delay splitting a chunk and to continue processing local

iterations while remote processors remain busy. Splitting can only be profitable

when a remote processor is hungry.

Although this insight is sound, it is still unclear whether it is useful. A näıve

hungry-processor check would require inter-processor communication, and the cost

of such a check would hardly be an improvement over the cost of spawning a thread.

For now, let us assume that we have a good approximate hungry-processor check

val hungryProcs : unit -> bool

which returns true if there is probably a remote hungry processor and false

otherwise. Later we explain how to implement such a check.

Lazy Binary Splitting works as follows. The scheduler maintains a current chunk

c and a pointer i that points at the next iteration in the chunk to process. Initially,

the chunk contains all iterations and i = 0. To process an iteration i, the scheduler

first checks for a remote hungry processor. If the check returns false, then all of the

other processors are likely to be busy, and the scheduler greedily executes the body

of iteration i. If the check returns true, then some of the other processors are likely

to be hungry, and the scheduler splits the chunk in half and spawns a recursive

instance to process the second half.

Tzannes et al. (2010) show how to implement an efficient and accurate hungry-

processor check. Their idea is to derive such a check from the work stealing policy.

Recall that, in work stealing, each processor has a deque, which records the set of

tasks created by that processor. The hungry-processor check bases its approximation

on the size of the local deque. If the deque of a given processor contains some existing

tasks, then these tasks have not yet been stolen, and therefore it is unlikely to be

profitable to add to these tasks by splitting the current chunk. On the other hand,

if the deque is empty, then it is a strong indication that there is a remote hungry

processor, and it is probably worth splitting the current chunk. This heuristic works

surprisingly well considering its simplicity. It is cheap because the check itself requires

two local memory accesses and a compare instruction, and it provides an estimate

that our experiments have shown to be accurate in practice.

Let us consider how LBS behaves with respect to loop nesting. Suppose our

computation has the form of a doubly nested loop, one processor is executing an

iteration of the inner loop, and all other processors are hungry. Consequently, the

remainder of the inner loop will be split (possibly multiple times, as work is stolen

from the busy processor and further split), generating relatively small chunks of

work for other processors. Since the parallelism is fork-join, the only way for the

computation to proceed to the next iteration of the outer loop is for all of the work

from the inner loop to be completed. At this point, all processors are hungry, except

for the one processor that completed the last bit of inner-loop work. This processor

has an empty deque; hence, when it starts to execute the next iteration of the outer

loop, it will split the remainder of the outer loop.

Since there is one hungry-processor check per loop iteration, and because loops are

nested, most hungry-processor checks occur during the processing of the innermost
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loops. Thus, the general pattern is clear: splits tend to start during inner loops and

then move outward quickly.

4 Lazy tree splitting

Lazy tree splitting operations are not as easy to implement as ETS operations,

because during the execution of any given LTS operation a split can occur

while processing any rope element. This section presents implementations of five

important LTS operations. The implementations we use are based on Huet’s zipper

technique (Huet, 1997) and a new technique we call cursor splitting. We first look in

detail at the LTS version of map ( mapLTS), because its implementation provides a

simple survey of our techniques. We then summarize implementations of additional

operations.

4.1 Implementing mapLTS

Structural recursion on its own gives no straightforward way to implement mapLTS.

Consider the case in which mapLTS detects that another processor is hungry. How

can mapLTS be ready to halve the as-yet-unprocessed part of the rope, keeping in

mind that, at the halving moment, the focus might be on a mid-leaf element deeply

nested within a number of Cat nodes? In a typical structurally recursive traversal

(e.g., Figure 1(b)), the code has no explicit handle on either the processed portion

of the rope or the unprocessed remainder of the rope; it can only see the current

substructure. An implementation needs to be able to step through a traversal in

such a way that it can, at any moment, pause the traversal, reconstruct both the

processed results and the unprocessed remainder, divide the unprocessed remainder

in half, and resume processing at the pause point.

An implementation of mapLTS should also be balance-preserving, meaning that

a balanced input rope is mapped to a balanced output rope. Without balance

preservation, chains of mapLTS applications can, under the right circumstances, yield

ropes that are arbitrarily unbalanced. While it may at first appear that balanced

ropes are unnecessary, since the structure of the rope is not used to guide the creation

of parallel computations, balance is nonetheless important to guarantee an efficient

algorithm for dividing the unprocessed remainder of a paused traversal. In fact, we

will demonstrate a stronger property: that our implementation of mapLTS is shape-

preserving, meaning that an input rope is mapped to an output rope with exactly

the same shape. Hence, throughout the following and in Appendix A, equalities in

properties, lemmas, theorems, and proofs denote structural equality of objects. Note

that shape preservation implies balance preservation.

4.1.1 Cursor interface

A key component of our approach is a data structure called a cursor, which represents

an intermediate step of a map computation,8

8 We name the type constructor map_cur because other rope operations require a different type of
cursor; see Section 4.2.
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type (’b, ’a) map_cur

The cursor records the sub-ropes that have been processed so far, the sub-ropes that

remain to be processed, and enough information so that the exact tree structure

of the corresponding rope can always be recovered. In the cursor, ’b is the type

of the elements of the processed sub-ropes and ’a is the type of the elements of

the unprocessed sub-ropes. Conceptually, a cursor describes a point in the rope

with processed elements to the left and unprocessed elements to the right. In

Section 4.1.3, we will see that cursors are implemented using techniques similar to

Huet’s zippers (Huet, 1997) and McBride’s contexts (McBride, 2008).

Let us introduce a few simple operations over cursors so that we can describe the

sequential part of mapLTS. The root operation returns the rope corresponding to

the given cursor for the special case that the types of the unprocessed and processed

elements are the same.

val root : (’b, ’b) map_cur -> ’b rope

Since ropes are homogenous with respect to their element type, it is not possible

to obtain a rope from a cursor when the types of the unprocessed and processed

elements are different.

The lengthRight operation returns the number of unprocessed data elements of

the given cursor, which we consider to be to the right of the cursor’s focus.

val lengthRight : (’b, ’a) map_cur -> int

Since a cursor represents an intermediate step of map computation with both

processed and unprocessed elements, it must be possible to split a cursor into

processed elements and two ropes of unprocessed elements and to later join two

ropes together with the processed elements. The split and join operations provide

this behavior,

val split : (’b, ’a) map_cur

-> (’a rope * ’a rope * ’b map_cur_reb)

val join : (’a rope * ’a rope * ’b map_cur_reb)

-> (’b, ’a) map_cur

The call split cur returns (rp1, rp2, reb), where rp1 and rp2 are ropes such

that the rope rp1 contains the first half of the unprocessed data elements of cur

and rope rp2 contains the remaining unprocessed data elements of cur, and reb is a

special rebuilder value. For the time being, we use map_cur_reb as an abstract-type

constructor without a specific implementation,

type ’b map_cur_reb

This rebuilder value records sufficient information so that the original cursor cur can

be reconstructed by the join operation. The call join (rp1, rp2, reb) rebuilds

the cursor cur that is uniquely determined by its three arguments.

To prove that our mapLTS implementation is shape-preserving, we will rely on

the implementations of split and join to be well behaved, as expressed by the

following property:
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Property 1 (split and join are well-behaved). For any cursor cur, if split cur

returns (rp1, rp2, reb), then

join (rp1, rp2, reb) = cur

and

length rp1 = (lengthRight cur) div 2

and

length rp2

= (lengthRight cur) - ((lengthRight cur) div 2)

4.1.2 mapLTS implementation

We factor the implementation of mapLTS into a coordination portion, which is

responsible for introducing parallelism by splitting and joining cursors, and a

computation portion, which is responsible for performing the mapping computation

and stepping through intermediate cursors. This computational portion of mapLTS

is provided by an auxiliary operation named mapLTSUntil, which is, in addition,

capable of pausing its traversal based on the results of a runtime predicate,

val mapLTSUntil : (unit -> bool)

-> (’a -> ’b)

-> ’a rope

-> ((’b, ’a) map_cur, ’b rope) progress

The first argument to mapLTSUntil is a polling function (e.g., hungryProcs); the

second argument is a function to be applied to the individual data elements;

and the third argument is a rope. The result of mapLTSUntil is a value of type

((’a, ’b) map_cur, ’b rope) progress, where the progress type constructor9

is defined as

datatype (’m, ’d) progress

= More of ’m

| Done of ’d

When mapLTSUntil returns a value More cur’, it represents the intermediate cursor

when mapLTSUntil was paused, and when it returns a Done rp’, it represents

the fully processed rope. The evaluation of mapLTSUntil cond f rp proceeds by

applying f to the elements of rp from left to right until either cond () returns true

or the whole rope is processed.

To prove that our mapLTS implementation is shape-preserving, we will rely on

the implementation of mapLTSUntil to be well behaved. Primarily, we require

that mapLTSUntil preserves the shape of the input rope. We also require that

mapLTSUntil only pauses and returns a new cursor when the number of unprocessed

elements of the result cursor is less than or equal to that of the input rope and is

greater than or equal to two. We require this behavior for two reasons. First, for

termination, we require the number of unprocessed elements of the result cursor

9 The progress-type constructor is used elsewhere in the implementation at different types, which
motivates its polymorphic definition.
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fun mapLTS f rp =
(case mapLTSUntil hungryProcs f rp

of Done rp’ => rp’
| More cur’ => let

val (rp1, rp2, reb) = split cur’
val (rp1’, rp2’) =

par (fn () => mapLTS f rp1,
fn () => mapLTS f rp2)

in
root (join (rp1’, rp2’, reb))

end)

Fig. 4. The LTS implementation of the map operation.

to be less than or equal to that of the input rope and to be greater than or equal

to two so that splitting this cursor yields non-empty ropes that are strictly smaller

than the input rope; this avoids the need for extraneous base cases. Second, for

performance, we note that it is not worthwhile to pause execution if there are fewer

than two unprocessed elements. In that case there is no opportunity for parallelism,

and, as such, it is better to simply finish the map computation with a sequential

execution. Although this second requirement seems unrelated to shape preservation,

it is necessary to require this behavior to prove that the implementation that we give

for mapLTS is shape-preserving. These requirements are expressed by the following

property.

Property 2 (mapLTSUntil is well-behaved). For any rope rp and any predicate cond,

if mapLTSUntil cond (fn x => x) rp returns Done rp’, then

rp’ = rp

and if it returns More cur’, then

root cur’ = rp

and

length rp � lengthRight cur’

and

lengthRight cur’ � 2

Figure 4 gives our implementation of mapLTS. The mapLTS function attempts to

complete its given map computation sequentially by calling mapLTSUntil on the

rope rp. If the call to mapLTSUntil returns Done rp’, then the rmap computation is

complete and mapLTS returns the result rope rp’. Otherwise, if mapLTSUntil returns

More cur’, then mapLTS splits the remaining map computation in half (using split),

recursively processes the two halves in parallel (using par), and joins the recursive

results together (using join). The result of mapLTS is the rope obtained by applying

root to the result cursor from the join operation.

Using our previously stated properties, we can prove that this implementation of

mapLTS is shape-preserving.
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Theorem 1 (mapLTS is shape preserving). For any rope rp,

mapLTS (fn x => x) rp = rp

Proof
The proof is by strong induction on length rp, using Properties 1 and 2.

See Appendix A.4 for a detailed proof. �

It remains to implement the cursor type, the mapLTSUntil operation, and the

split and join operations.

4.1.3 Cursor implementation

The crucial property of mapLTSUntil is that during the traversal of the input rope,

it must maintain sufficient information to pause the traversal at any moment and

reconstruct both the processed portion of the rope and the unprocessed remainder

of the rope. Huet’s zipper technique (Huet, 1997) provides the insight necessary to

derive a persistent cursor data structure and functional operations over it, which

enable this “pausable” traversal. A zipper is a representation of an aggregate data

structure that factors the data structure into a distinguished substructure under

focus and a one-hole context; plugging the substructure into the context yields the

original structure. Zippers enable efficient navigation through and modification of a

data structure. With a customized zipper representation and some basic navigation

operations we arrive at an elegant implementation of mapLTSUntil.

To represent the cursor, we use a context representation similar to Huet’s single-

hole contexts (Huet, 1997), but with different types of elements on either side of

the hole, as in McBride’s contexts (McBride, 2008). Essentially, a context describes

a path through a rope from the root to a particular sub-rope, while also recording

the sub-ropes that branch off of this path; sub-ropes branching off to the left are

processed, while sub-ropes branching off to the right are unprocessed. Thus, our

context representation is defined as

datatype (’b, ’a) map_ctx

= MCTop

| MCLeft of (’b, ’a) map_ctx * ’a rope

| MCRight of ’b rope * (’b, ’a) map_ctx

where MCTop represents an empty context, MCLeft(ctx, rrp) represents the context

surrounding the left branch of a Cat node where rrp is the right branch and ctx

is the context surrounding the Cat node, and MCRight(lrp, ctx) represents the

context surrounding the right branch of a Cat node where lrp is the left branch and

ctx is the context surrounding the Cat node. For a map computation, all sub-ropes

to the left of the context’s hole are processed ( ’b rope) and all sub-ropes to the

right of the context’s hole are unprocessed ( ’a rope). Given this context type, we

define the cursor type as

type (’b, ’a) map_cur = (’b seq * ’a seq) * (’b, ’a) map_ctx

where the first element of the pair is the leaf located at the cursor, itself split into

a sequence of processed and unprocessed elements, and the second element is the

context surrounding the leaf.

https://doi.org/10.1017/S0956796812000172 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000172


398 L. Bergstrom et al.

The implementations of mapLTS and mapLTSUntil require a number of operations

to manipulate cursors and contexts. The plug (rp, ctx) operation plugs the rope

rp into the context ctx for the special case that the types of the unprocessed and

processed elements of the context are the same:

val plug : ’b rope * (’b, ’b) map_ctx -> ’b rope

fun plug (rp, ctx) = (case ctx

of MCTop => rp

| MCLeft (ctx’, rrp) => plug (Cat (rp, rrp), ctx’)

| MCRight (lrp, ctx’) => plug (Cat (lrp, rp), ctx’))

The root ((pseq,useq), ctx) operation, which returns the rope corresponding

to a given cursor, simply reconstructs a leaf rope from the sequences pseq and useq

and plugs the rope into the context ctx:

val root : (’b, ’b) map_cur -> ’b rope

fun root ((pseq, useq), ctx) =

plug (Leaf (joinSeq (pseq, useq)), ctx)

The leftmost (rp, ctx) operation navigates to the leftmost leaf of rp and

returns (seq’, ctx’), the sequence seq’ at that leaf and the context ctx’

surrounding that leaf, as composed with the context ctx:

val leftmost : ’a rope * (’b, ’a) map_ctx

-> ’a seq * (’b, ’a) map_ctx

fun leftmost (rp, ctx) = (case rp

of Leaf seq => (seq, ctx)

| Cat (lrp, rrp) => leftmost (lrp, MCLeft (ctx, rrp)))

We measure the lengths of context and cursor as the pair of the number of

processed elements and the number of unprocessed elements:

infix 6 ++

fun (a1, b1) ++ (a2, b2) = (a1 + a2, b1 + b2)

val ctxLength : (’b, ’a) map_ctx -> int * int

fun ctxLength ctx = (case ctx

of MCTop => (0, 0)

| MCLeft (ctx’, rrp) => (ctxLength ctx’) ++ (0, length rrp)

| MCRight (lrp, ctx’) => (ctxLength ctx’) ++ (length lrp, 0))

val curLength : (’b, ’a) map_cur -> int * int

fun curLength ((pseq,useq), ctx) =

(ctxLength ctx) ++ (lengthSeq pseq, lengthSeq useq)

The lengthRight operation simply extracts the number of unprocessed elements

from the length of a given cursor:

fun lengthRight cur = snd (curLength cur)

Similarly, we measure the size of context and cursor as the pair of the number of

processed leaves and the number of unprocessed leaves:
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val ctxSize : (’b, ’a) map_ctx -> int * int

fun ctxSize ctx = (case ctx

of MCTop => (0, 0)

| MCLeft (ctx’, rrp) => (ctxSize ctx’) ++ (0, size rrp)

| MCRight (lrp, ctx’) => (ctxSize ctx’) ++ (size lrp, 0))

val curSize : (’b, ’a) map_cur -> int * int

fun curSize ((pseq,useq), ctx) =

(ctxSize ctx) ++ (1, 1)

The next (rp, ctx) operation plugs the (processed) rope rp into the context

ctx, then attempts to navigate to the next unprocessed leaf.

val next : ’b rope * (’b, ’a) map_ctx

-> (’a seq * (’b, ’a) map_ctx, ’b rope) progress

fun next (rp, ctx) =

(case ctx

of MCTop => Done rp

| MCLeft (ctx’, rrp) => let

val (seq’’, ctx’’) = leftmost (rrp, MCRight (rp, ctx’))

in

More (seq’’, ctx’’)

end

| MCRight (lrp, ctx’) =>

next (Cat (lrp, rp), ctx’))

This navigation can either succeed, in which case next returns More (seq’, ctx’)

(see Figure 5(a)), where seq’ is the sequence at the next leaf and ctx’ is the context

surrounding that leaf, or fail, in which case next returns Done rp’ (see Figure 5(b)),

where rp’ is the whole processed rope.

4.1.4 mapLTSUntil implementation

With these context operations, we give the implementation of mapLTSUntil in

Figure 6. The traversal of mapLTSUntil is performed by the auxiliary function m.

The argument seq represents the sequence of the leftmost unprocessed leaf of the

rope and the argument ctx represents the context surrounding that leaf.

The processing of the sequence is performed by mapUntilSeq, a function with

similar behavior to mapLTSUntil, but implemented over linear sequences

val mapUntilSeq : (unit -> bool)

-> (’a -> ’b)

-> ’a seq

-> (’a seq * ’b seq, ’b seq) progress

It is mapUntilSeq that actually calls the predicate cond and applies the function f.

Note that mapUntilSeq must also maintain a context with processed elements to

the left and unprocessed elements to the right, but doing so is trivial for a linear

sequence. (Recall the standard accumulate-with-reverse implementation of map for

lists.) Not surprisingly, we require that mapUntilSeq preserves the shape of the

sequence as expressed by the following property.

Property 3 (mapUntilSeq is shape preserving). For any sequence seq and any

predicate cond, if
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(a) next (rp, ctx) ⇒ More(seq’, ctx’)

(b) next (rp, ctx) ⇒ Done rp’

Fig. 5. Operations on contexts.

mapUntilSeq cond (fn x => x) seq

returns Done seq’, then

seq’ = seq

and if it returns More (useq’,pseq’), then

joinSeq (pseq’, useq’) = seq

Unlike mapLTSUntil, we do not require that mapUntilSeq only pauses and returns

a pair of unprocessed and processed sequences when the number of unprocessed

elements is greater than or equal to two. This difference exists because mapUntilSeq

is called on behalf of mapLTSUntil; although a call to mapUntilSeq may return

with one unprocessed element, the context maintained by mapLTSUntil may have

additional unprocessed elements. Theorem 2 in Appendix A.1 proves that an

implementation of mapUntilSeq satisfies Property 3, and therefore may be used

in our shape-preserving implementation of mapLTS.

If mapUntilSeq returns a complete result ( Done pseq’), then the traversal plugs

the context with this completed leaf sequence and attempts to navigate to the next
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fun mapLTSUntil cond f rp = let
fun mSeq (seq, ctx) = case next (Leaf seq, ctx)

of Done rp’ => rp’
| More (seq’, ctx’) => mSeq (mapSeq f seq’, ctx’)

fun m (seq, ctx) = (case mapUntilSeq cond f seq
of Done pseq’ => (case next (Leaf pseq’, ctx)

of Done rp’ => Done rp’
| More (seq’, ctx’) => m (seq’, ctx’))

| More (useq’, pseq’) =>
if snd (curLength ((pseq’, useq’), ctx)) >= 2 then

More ((pseq’, useq’), ctx)
else

Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx)))
val (seq, ctx) = leftmost (rp, MCTop)
in

m (seq, ctx)
end

Fig. 6. The mapLTSUntil operation.

unprocessed leaf by calling next (Leaf pseq’, ctx). If next returns Done rp’,

then the rope traversal is complete and the whole processed rope is returned.

Otherwise, next returns More (seq’, ctx’) and the traversal loops to process the

next leaf sequence ( seq’) with the new context ( ctx’).

If mapUntilSeq returns a partial result ( More (useq’,pseq’)), then the traversal

determines the number of unprocessed elements contained in both the unprocessed

sequence useq’ and the context ctx. If there are at least two unprocessed elements,

then the traversal pauses and returns an intermediate cursor. (This pause and return

gives mapLTS the opportunity to split the unprocessed elements and push the parallel

mapping of these halves of the unprocessed elements onto the work-stealing deque.)

If there are less than two elements, then the traversal sequentially processes the

remaining unprocessed element to complete the rope traversal and return the whole

processed rope. Theorem 3 in Appendix A.2 proves that this implementation of

mapLTSUntil satisfies Property 2, and therefore may be used in our shape-preserving

implementation of mapLTS.

4.1.5 split and join implementation

Finally, let us consider the implementation of split and join. The key idea behind

the implementations of these operations is to introduce data structures that we

call the unzipped context and the unzipped cursor, which enables us to temporarily

break apart a (zipped) context or cursor and to later put the context or cursor back

together

datatype dir = Left | Right

type (’b, ’a) unzip_map_ctx =

’b rope list * ’a rope list * dir list

type (’b, ’a) unzip_map_cur = (’b, ’a) unzip_map_ctx

This representation divides a context into three lists: (1) a list of processed sub-ropes

located above and left of the hole, (2) a list of unprocessed sub-ropes located above
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and to the right of the hole, and (3) a list of branch directions. An unzipped cursor

has the same type as that of an unzipped context, but has an additional invariant:

the first elements of the ’b rope list and the ’a rope list components are

Leaf ropes, corresponding to the ’b seq and ’a seq components of a (zipped)

cursor. The zipped and unzipped contexts and cursors are just two different ways

of representing the same context or cursor. For example, both the zipped context

MCRight (rp1, MCRight (rp2, MCLeft (MCRight (rp4, MCTop), rp3)))

and the unzipped context

([rp1, rp2, rp4],

[rp3],

[Right, Right, Left, Right])

represent a context of two right branches rp1 and rp2, a left branch rp3, and a

right branch rp4. It is easy to define operations to unzip a cursor

val ctxUnzip : (’b, ’a) map_ctx -> (’b, ’a) unzip_map_ctx

fun ctxUnzip c = (case c

of MCTop =>

(nil, nil, nil)

| MCLeft (c, r) => let

val (ls, rs, ds) = ctxUnzip c

in

(ls, r :: rs, Left :: ds)

end

| MCRight (l, c) => let

val (ls, rs, ds) = ctxUnzip c

in

(l :: ls, rs, Right :: ds)

end)

val curUnzip : (’b, ’a) map_cur -> (’b, ’a) unzip_map_cur

fun curUnzip ((pseq,useq), ctx) = let

val (ls, rs, ds) = ctxUnzip ctx

in

((Leaf pseq)::ls, (Leaf useq)::rs, ds)

end

and vice versa

val ctxZip : (’b, ’a) unzip_map_ctx -> (’b, ’a) map_ctx

fun ctxZip (ls, rs, ds) = (case (ls, rs, ds)

of (nil, nil, nil) =>

MCTop

| (ls, r :: rs, Left :: ds) =>

MCLeft (ctxZip (ls, rs, ds), r)

| (l :: ls, rs, Right :: ds) =>

MCRight (l, ctxZip (ls, rs, ds)))

val curZip : (’b, ’a) unzip_map_cur -> (’b, ’a) map_cur

fun curZip ((Leaf pseq)::ls, (Leaf useq)::rs, ds) =

((pseq, useq), ctxZip (ls, rs, ds))

Although the zipped and unzipped contexts and cursors are different ways of

representing the same context or cursor, they are each suited for different tasks.
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The zipped contexts and cursors are better suited (being both easier to code and

faster to execute) for the step-by-step traversal of a rope used in the implementation

of mapLTSUntil. On the other hand, the unzipped contexts and cursors are better

suited for the splitting of a rope used in the implementation of mapLTS.

From the description of an unzipped context, it should be clear that our initial

handle on the unprocessed elements of a context is through a list of ropes (of

unprocessed elements). To split this list of ropes at the nth unprocessed element,

we first divide this list of ropes into three parts based on n, using the divideRopes

helper function

fun divideRopes (rp :: rps, n) =

if n <= length rp then

(nil, rp, n, rps)

else let

val (rps1, rp’, n’, rps2) = divideRopes (rps, n - length rp)

in

(rp :: rps1, rp’, n’, rps2)

end

The application divideRopes (rps, n) returns (rps1, rp, k, rps2) such that

rps1 @ [rp] @ rps2 is equal to rps and rps1 and rp contain at least the first n

elements of the ropes of rps. The integer k is the index in rp at which the nth

element of rps is found. As noted above, the inverse operation of divideRopes is

simply the concatenation of rps1, [rp], and rps2.

While divideRopes has roughly divided the unprocessed elements into those

ropes that occur strictly before the split, the rope in which the split occurs, and

those ropes that occur strictly after the split, our next task is to split the rope in

which the split occurs. The application splitAtAsCur (rp, n) returns a cursor in

which the “hole” occurs between the nth and n+1st elements of the rope rp

val splitAtAsCur : ’a rope * int -> (’a, ’a) map_cur

fun splitAtAsCur (rp, n) = let

fun s (rp, ctx, n) = (case rp

of Leaf seq => let

val (lseq, rseq) = splitAtSeq (seq, n)

in

((lseq, rseq), ctx)

end

| Cat (lrp, rrp) =>

if n < length lrp then

s (lrp, MCLeft (ctx, rrp), n)

else

s (rrp, MCRight (lrp, ctx), n - length lrp))

in

s (rp, MCTop, n)

end

To recover the original rope, it suffices to use the root operation. We may also

unzip the context returned by splitAtAsCur to obtain additional lists of ropes that

occur before and after the split.

Our final pair of helper functions encode a list of ropes as a single rope and

decode a single rope as a list of ropes. Encoding a list of ropes as a single rope
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will be the last step of split, whereby the lists of unprocessed ropes returned

by divideRopes and splitAtAsCur are turned into two single ropes for parallel

processing in mapLTS. The application encodeRopes rps returns a rope rp and an

integer l, where l is the length of the list rps. The length is used by decodeRope to

reconstruct rps

val encodeRopes : ’a rope list -> ’a rope * int

fun encodeRopes rps = let

fun e rs = (case rs

of [rp] =>

rp

| rp :: rps =>

Cat (rp, e rps))

in

(e rps, List.length rps)

end

The application decodeRope (rp, l) returns a list of ropes rps

val decodeRope : ’a rope * int -> ’a rope list

fun decodeRope (rp, n) =

if n = 1 then

[rp]

else (case rp

of Cat (l, r) =>

l :: decodeRope (r, n - 1))

We can now present the implementation of split, which, as specified above, takes

a cursor cur and returns two ropes rp1 and rp2 and a rebuilder data structure,

reb. The rope rp1 contains the first half of the unprocessed elements of cur and

rp2 contains the remaining unprocessed elements. The rebuilder data structure reb

provides sufficient information to reconstruct cur from rp1 and rp2. The complete

code is shown in Figure 7. Let (ls, rs, ds) be the result of curUnzip cur. We

divide the list of unprocessed sub-ropes rs into three parts: the sub-ropes rps1 that

occur before position n, the sub-rope mrp containing the data element at position n,

and the sub-ropes rps2 that occur after position n. Next, we let (mls, mrs, mds)

be the unzipped cursor that splits the sub-rope mrp. We let n1 and n2 be the lengths

of rps1 and mrs, respectively. These values enable us to later separate the rps1 sub-

ropes from the mls sub-ropes, and the mrs sub-ropes from the rps2 sub-ropes. We

let (rp1, l1) and (rp2, l2) be the rope encodings of rs1 @ mls and mrs @ rs2,

respectively. The result of split is then

(rp1, rp2, (ls, ds, mds, n1, n2, l1, l2))

where the third component is the rebuilder, which therefore has the type

type ’b map_cur_reb =

(’b rope list * dir list * dir list * int * int * int * int)

Recall that join takes encoded ropes rp1 and rp2 and rebuilder

(ls, ds, mds, n1, n2, l1, l2)

and returns the cursor that was originally split. The implementation of join

follows straightforwardly by successively inverting each of the operations performed
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fun split cur = let
val n = snd (curLength cur) div 2
val (ls, rs, ds) = curUnzip cur
val (rps1, mrp, k, rps2) = divideRopes (rs, n)
val (mls, mrs, mds) = curUnzip (splitAtAsCur (mrp, k))
val (n1, n2) = (List.length rps1, List.length mrs)
val (rp1, l1) = encodeRopes (rps1 @ mls)
val (rp2, l2) = encodeRopes (mrs @ rps2)
in

(rp1, rp2, (ls, ds, mds, n1, n2, l1, l2))
end

fun join (rp1, rp2, (ls, ds, mds, n1, n2, l1, l2)) = let
val xs1 = decodeRope (rp1, l1)
val (rps1, mls) = (List.take (xs1, n1), List.drop (xs1, n1))
val xs2 = decodeRope (rp2, l2)
val (mrs, rps2) = (List.take (xs2, n2), List.drop (xs2, n2))
val mrp = root (curZip (mls, mrs, mds))
val rs = rps1 @ [mrp] @ rps2
in

curZip (ls, rs, ds)
end

Fig. 7. The implementation of split and join.

by split. Let rps1 and rps2 be the decodings of (rp1, l1) and (rp2, l2),

respectively, that are obtained by two calls to decodeRope. From rps1 and n1 we

reconstruct the lists of sub-ropes rs1 and mls, and from rps2 and n2 we reconstruct

the lists of sub-ropes mrs and rs2. We then let mrp be

root (curZip (mls, mrs, mds))

Next, we let rs be rs1 @ [m] @ rs2. The original cursor is thus

curZip (ls, rs, ds)

which is the result returned by join. Theorem 4 in Appendix A.3 proves that these

implementations of split and join satisfy Property 1, and therefore may be used

in our shape-preserving implementation of mapLTS.

4.2 Implementing other operations

The implementation of filterLTS is very similar to that of mapLTS. Indeed,

filterLTS uses the same context representation and operations as mapLTS, simply

instantiated with unprocessed and processed elements having the same type:

val filterLTS : (’a -> bool) -> ’a rope -> ’a rope

type ’a filter_ctx = (’a, ’a) map_ctx

As with mapLTS, where the mapping operation was applied by the mapUntilSeq

operation, the actual filtering of elements is performed by the filterUntilSeq

operation. One complication of all rope-filter operations, including filterLTS, is
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that filter operations are not balance-preserving because data elements are removed

from the filter result rope based on the filter predicate. We make filterLTS balance-

preserving by applying our parallel balancing function balance to the result rope.

The reduceLTS operation takes an associative operator, its zero, and a rope and

returns the rope’s reduction under the operator

val reduceLTS : (’a * ’a -> ’a) -> ’a -> ’a rope -> ’a

Thus, the reduceLTS operation may be seen as a generalized sum operation. The

implementation of reduceLTS is again similar to that of mapLTS, but uses a simpler

context:

datatype ’a reduce_ctx

= RCTop

| RCLeft of ’a rope * ’a reduce_ctx

| RCRight of ’a * ’a reduce_ctx

where RCRight (z, c) represents the context surrounding the right branch of a Cat

node in which z is the reduction of the left branch and c is the context surrounding

the reduction of the Cat node.

The scanLTS operation, also known as prefix sums, is used by many data-parallel

algorithms. Like reduceLTS, the scanLTS operation takes an associative operator,

its zero, and a rope, and returns a rope of the reductions of the prefixes of the input

rope

val scanLTS : (’a * ’a -> ’a) -> ’a -> ’a rope -> ’a rope

For example,

scanLTS (op +) 0 (Cat (Leaf [1, 2], Leaf [3, 4]))

⇒ Cat (Leaf [1, 3], Leaf [6, 10])

In a survey on prefix sums, Blelloch (1990a) describes classes of important parallel

algorithms that use this operation and gives an efficient parallel implementation of

prefix sums, on which our implementation of scanLTS is based. The algorithm takes

two passes over the rope. The first performs a parallel reduction over the input rope,

constructing an intermediate rope in which partial reduction results are recorded at

each internal node. The second pass builds the result rope in parallel by processing

the intermediate rope. The efficiency of this second pass is derived from having

constant-time access to the cached sums while it builds the result.

The result of this first pass is called a monoid-cached tree (Hinze & Paterson,

2006), specialized in the current case to monoid-cached rope. In a monoid-cached

rope,

datatype ’a crope

= CLeaf of ’a * ’a seq

| CCat of ’a * ’a crope * ’a crope

each internal node caches the reduction of its children nodes. For example, supposing

the scanning operator is integer addition, one such monoid-cached rope is

CCat (10, CLeaf (3, [1, 2]), CLeaf (7, [3, 4]))
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Our implementation of Blelloch’s algorithm is again similar to that of mapLTS,

except that we use a context in which there are ropes to the right of the hole and

cached_ropes to the left of the hole. Aside from some minor complexity involving

the propagation of partial sums, the operations on this context are similar to those

on the context used by mapLTS.

The map2LTS operation maps a binary function over a pair of ropes (of the same

length)

val map2LTS : (’a * ’b -> ’c) -> ’a rope * ’b rope -> ’c rope

For example, the pointwise addition of the ropes rp1 and rp2 can be implemented

as

map2LTS (op +) (rp1, rp2)

Note that rp1 and rp2 may have completely different branching structures, which

would complicate any structural–recursive implementation. The zipper technique

provides a clean alternative: we maintain a pair of contexts and advance them

together in lock step during execution. The result rope is accumulated in one of

these contexts.

Contexts and partial results nicely handle the processing of leaves of unequal

length. When the map2SeqUntil function is applied to two leaves of unequal length,

it simply returns a partial result that includes the remaining elements from the longer

sequence. The map2Until function need only step the context of the shorter linear

sequence to find the next leaf with which to resume the map2SeqUntil processing.

We do need to distinguish map2SeqUntil returning with a partial result because

of the polling function, in which case map2Until should also return a partial

result (signaling that a task should be pushed to the work-stealing deque) from

map2SeqUntil returning with a partial result do to exhausting one of the leaves,

in which case map2Until should not return a partial result. The implementation

straightforwardly extends to maps of arbitrary arity.

5 Evaluation

We have already demonstrated in Section 3 that with ETS manual tuning of the

chunk size is essential to obtain acceptable parallel performance across all of our

benchmarks. In this section, we present the results of additional experiments that

demonstrate that LTS performance is always close to the best, hand-tuned ETS.

Furthermore, these additional experiments demonstrate that no hand tuning was

necessary to achieve good performance with LTS.

5.1 Experimental method

Our benchmark machine is a Dell PowerEdge R815 server, outfitted with 48 cores

and 128 GB physical memory. This machine runs x86 64 Ubuntu Linux 10.04.2

LTS, kernel version 2.6.32-27. The 48 cores are provided by four 12 core AMD

Opteron 6172 “Magny Cours” processors (Carver, 2010; Conway et al., 2010). Each

core operates at 2.1 GHz and has 64 KB each of instruction and data L1 cache and
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512 KB of L2 cache. There are two 6 MB L3 caches per processor, each of which

is shared by six cores, for a total of 48 MB of L3 cache.

We ran each experiment 10 times, and we report the average performance results

in our graphs and tables. For most of these experiments the standard deviation was

below 2%, thus we omit the error bars from our plots.

5.2 Benchmarks

For our empirical evaluation, we ran one synthetic benchmark and seven benchmark

programs picked from our benchmark suite. Our maximum leaf size is 1,024, which

is one setting that provided good performance on our test machine across all seven

benchmarks.

The Barnes–Hut benchmark is an n-body simulation that calculates the gravita-

tional forces between n particles as they move through two-dimensional space (Barnes

& Hut, 1986). The Barnes–Hut computation consists of two phases. In the first, the

simulation volume is divided into square cells via a quadtree so that only particles

from nearby cells need to be handled individually, and particles from distant cells

can be grouped together and treated as large particles. The second phase calculates

gravitational forces using the quadtree to accelerate the computation. We represent

the sequence of particles by a rope of mass-point and velocity pairs and the quadtree

by an algebraic data type where every node is annotated with a mass point. Our

benchmark runs for 20 iterations over 3,000,000 particles generated from the random

Plummer distribution (Plummer, 1911). The program is adapted from a Data-Parallel

Haskell program (Peyton Jones et al., 2008).

The Raytracer benchmark renders a 2,000 × 2,000 image in parallel as a two-

dimensional sequence, which is then written to a file. The original program was

written in ID (Nikhil, 1991) and implements a simple ray tracer that does not use

any acceleration data structures. The sequential version outputs each pixel to the

image file as it is computed, whereas the parallel version first builds an intermediate

rope of pixels and later flushes the rope to a file.

The Quicksort benchmark sorts a rope of 10 million integers in parallel. Our

program is adapted from one that was originally written for nesl (Scandal Project,

n.d.).

The SMVM benchmark is a sparse-matrix by dense-vector multiplication. The

matrix contains 1,091,362 elements and the vector 16,614.

The DMM benchmark is a dense-matrix by dense-matrix multiplication in which

each matrix is 600 × 600. We represent a matrix column as a rope of scalars and a

matrix as a rope of columns.

The Black–Scholes benchmark computes the price of European options analyti-

cally using a partial differential equation. We store the options in a rope.

The Nested Sums benchmark is a synthetic benchmark that exhibits irregular

parallelism. Its basic form is as follows:

let fun upTo i = range (0, i)

in mapP sumP (mapP upTo (range (0, 5999)))

end
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Fig. 8. Performance of LTS and ETS.

The program generates an 6,000-element array of 6,000-integer arrays and returns

an array containing the sum of each sub-array.

5.3 Lazy vs. eager tree splitting

Figures 8–11 show the performance of LTS and ETS side by side. Each graph

contains four speedup curves for a single benchmark, with one curve for LTS and

three curves for ETS with small, medium, and large settings of SST . We chose
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Fig. 9. Performance of LTS and ETS.

these particular SST values because they cover various extremes of performance,

as shown in Figure 3. Observe that in each graph the LTS speedup is close to the

greatest ETS configuration and that the performance curves of most of the ETS

configurations are flat.

In Table 1, we present performance measurements for each of our benchmarks

run in several different sequential configurations, as well as on 48 processors. The
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Fig. 10. Performance of LTS and ETS.

first column of data presents timing results for MLton. MLton is a sequential whole-

program optimizing compiler for Standard ML (Weeks, 2006; MLton, n.d.), which is

the “gold standard” for ML performance. The second data column gives the baseline

performance of natural sequential PML versions of the benchmarks (i.e., parallel

operations are replaced with their natural sequential equivalents). We are about a

factor of 1.5–3.0x slower than MLton for all of the benchmarks except Nested Sums.
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Table 1. Summary of performance. Execution time in seconds

PML

Benchmark MLton Seq. LTS Best ETS 48 LTS 48 LTS 48 speedup

DMM 6.79 21.86 20.59 1.01 0.91 24.05

Raytracer 166.36 253.57 247.20 6.28 5.75 44.10

SMVM 5.21 15.31 13.52 0.64 0.81 18.86

Quicksort 28.41 59.39 65.26 1.33 1.64 36.21

Barnes Hut 165.84 502.17 521.63 24.27 29.57 16.98

Black Scholes 3.96 8.20 8.18 0.24 0.24 34.17

Nested Sums 7.19 25.93 25.86 2.30 1.02 25.42
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Fig. 11. Performance of LTS and ETS.

Considering MLton’s suite of aggressive optimizations and maturity, the sequential

performance of PML is encouraging. Our slower performance can be attributed to

at least two factors. First, the MLton compiler monomorphizes the program and

then aggressively flattens the resulting monomorphic data representations, whereas

Manticore does no such monomorphization and the resulting code often involves

boxed data representations. Second, our profiling shows higher GC overheads in

our system. These issues can be addressed by improving the sequential performance

of Manticore. The last two columns report the parallel execution time and speedup

on 48 cores. Overall, the speedups are quite good. The Barnes–Hut benchmark,

however, achieves a modest speedup, which we believe stems from a limit on the

amount of parallelism in the program. This hypothesis is supported by the fact that

increasing the input size improves the speedup results.

Observe that in many cases the 48-core LTS performance falls behind the best

48-core ETS performance. This gap may indicate that LTS involves some overhead
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costs that are heavier than those of ETS. To break down the sources of these

overheads, first recall that LTS requires the program to make one or more zipper

traversals and that each zipper traversal requires heap allocations. To estimate the

zipper overhead, we can compare the execution times in the columns labeled Seq.

and LTS in Table 1. The LTS column contains the execution time of the benchmarks

using the LTS runtime mechanisms (e.g., zippers), but without parallelism. We see

that in the sequential case, the LTS version is about 24% slower, which is indeed a

significant cost. By comparison, the ETS traversal uses a natural structural recursion

in which the state is maintained via the runtime call stack. In many compilers,

including Manticore, the natural recursion is often more efficient than a zipper

because compiler optimizations are more effective at optimizing natural-recursive

code and it can benefit from stack as opposed to heap allocation.

We also ran an experiment to measure LTS overheads in MLton, because

MLton offers better sequential performance and uses a more-conventional C-style

call stack, whereas Manticore uses heap-allocated continuations to represent the

call stack (Appel, 1992; Fluet et al., 2007b). In this experiment we ran SMVM

sequentially using LTS and ETS versions and found that the LTS and ETS versions

were completed in 8.49 and 4.99 seconds, respectively, indicating a 70% advantage

for the ETS version. A likely contributor to this gap is the difference in heap

allocation: LTS and ETS versions allocated 6.4 GB and 2.8 GB, respectively. In

spite of these costs, the extra heap allocations in LTS do not necessarily harm its

scalability because, in Manticore, the allocated zipper objects are almost always

reclaimed by the same processor that performed the allocation.

Another possibility we considered is that LTS suffers because of communication

costs from extra task migrations. Profiling data that we gathered suggest otherwise,

however, because the data show no significant difference in the number of steals

between LTS and the best ETS configuration. Furthermore, our profiling data show

that the per-processor utilization for the best ETS configuration is never more than

3% than that of LTS, which is almost within our 2% error bar.

There is still a question of whether our technique trades one tuning parameter,

SST , for another, the maximum leaf size. We address this concern in two ways.

First, observe that even if performance is sensitive to the leaf size, this problem

is specific to ropes, but neither ETS nor LTS. Second, we have measured the

effect of the maximum leaf size on performance. Figure 12 shows the speedups

for our benchmarks as a function of maximum leaf size on 48 processors. The

results show that all of benchmarks perform well for maximum leaf sizes in the set

{512, 1024, 2048}, so our choice of 1, 024 is justified. One concern is DMM, which

is sensitive to M because it does many subscript operations on its two input ropes.

One could reduce this sensitivity by using a flatter rope representation that provides

a faster subscript operation.

6 Related work

Adaptive parallel loop scheduling. The original work on lazy binary splitting presents

a dynamic scheduling approach for parallel do-all loops (Tzannes et al., 2010).
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Fig. 12. The effect of varying the maximum leaf size on 48 processors.

Their work addresses splitting ranges of indices, whereas ours addresses splitting

trees where tree nodes are represented as records allocated on the heap.

In the original LBS work, they use a profitable parallelism threshold (PPT )

to reduce the number of hungry-processor checks. The PPT is an integer that

determines how many iterations a given loop can process before doing a hungry-

processor check. Our performance study has PPT = 1 ( i.e., one hungry-processor

check per iteration) because we have not implemented the necessary compiler

mechanisms to do otherwise.

Robison et al. (2008) propose a variant of EBS called auto partitioning, which

provides good performance for many programs and does not require tuning.10 Auto

partitioning derives some limited adaptivity by employing the heuristic that when

10 Auto partitioning is currently the default chunking strategy of TBB (Intel, 2008).
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a task detects it has been migrated it splits its chunk into at least some fixed

number of sub-chunks. The assumption is that if a steal occurs, there are probably

other processors that need work, and it is worthwhile to split a chunk further. As

discussed by Tzannes, et al. (2010), auto partitioning has two limitations. First, for

i levels of loop nesting, P processors, and a small, constant parameter K , it creates

at least (K × P )i chunks, which is excessive if the number of processors is large.

Second, although it has some limited adaptivity, auto partitioning lacks performance

portability with respect to the context of the loop, which limits its effectiveness for

scheduling programs written in the liberal loop-nesting style of an NDP language.

Cutting off excess parallelism. One approach to the granularity problem is to try to

limit the total number of tasks that get created so as to guarantee that the total

cost of scheduling can be well amortized. Variations of the cutoff-based approach

have been studied by Loidl and Hammond (1995) in the context of Haskell, and

Lopez et al. (1996) and Tick and Zhong (1993) in the context of logic programming.

Their key idea is that if a given task is small, the scheduler executes the task as a

sequential computation, that is, completely free of scheduling costs. A limitation of

the cutoff-based approaches is that they rely on there being a reasonably accurate

way of predicting the task-execution time. Predicting task-execution time is difficult

for many classes of programs, such as ray tracers, where execution time depends

heavily on properties of the input data set, and is not feasible in general. In cases

where prediction is not feasible, LTS can still be an effective approach, because LTS

does not depend on prediction. LTS is concerned only with reducing the scheduling

cost per task.

Flattening and fusion. nesl is a nested data-parallel dialect of ML (Blelloch et al.,

1994). The nesl compiler uses a program transformation called flattening, which

transforms nested parallelism into a form of data parallelism that maps well onto

SIMD architectures. Note that SIMD operations typically require array elements

to have a contiguous layout in memory. Flattened code maps well onto SIMD

architectures because the elements of flattened arrays are readily stored in adjacent

memory locations. In contrast, LTS is a dynamic technique that has the goal

of scheduling nested parallelism effectively on MIMD architectures. A flattened

program may still use LBS (or LTS) to schedule the execution of array operations

on MIMD architectures, so in that sense flattening and LTS are orthogonal.

There is, of yet, no direct comparison between an NDP implementation based

on LTS and an implementation based on flattening. One major difference is that

LTS uses a tree representation whereas flattening uses contiguous arrays. As such,

the LTS representation has two disadvantages. First, tree random access is more

expensive. For a rope it is O(log n) time, where n is the length of a given rope. Second,

there is a large constant factor overhead imposed by maintaining tree nodes. One

way to reduce these costs is to use a “bushy” representation that is similar to ropes

but where the branching factor is greater than two and child pointers are stored in

contiguous arrays.
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Data-parallel fusion is a program transformation that eliminates data-parallel

operations under certain circumstances. It is implemented in the nesl (Chatterjee,

1993) and Data-Parallel Haskell (Chakravarty et al., 2008) compilers, but not in

Manticore currently. Fusion typically improves task granularity, thanks to increasing

the work per task. To see why, consider the expression

mapP f (mapP g xs)

and its fused counterpart

mapP (f o g) xs

Combining the two mapPs yields a computation, which both generates fewer

logical tasks – only one per array element instead of two – and sacrifices no

parallelism. Although it improves granularity, fusion is limited as a granularity-

control mechanism, because the transformation applies only when there are pairs

of operations that can be fused. As such, additional mechanisms, such as LTS, are

crucial for addressing granularity control in general.

Parallel depth-first scheduling. Work by Greiner and Blelloch (1996) proposes an

implementation of NDP based on a scheduling policy, called Parallel Depth First

(PDF), which is designed to minimize space usage. The practicality of PDF on

modern machines is severely limited because the policy relies on a centralized task

queue. Narlikar and Blelloch (1999) address this issue by proposing a scheduling

policy called DFDeques, which is a hybrid of PDF and work stealing. Although

DFDeques addresses the inefficiency of having a centralized queue, the scheduling

costs involved in DFDeques are similar to those of plain work stealing, because the

granularity-control mechanism of DFDeques involves switching from PDF to work

stealing every time a fixed amount of memory has been allocated. LBS and LTS

further improve on plain work stealing by optimizing for the special cases of loops

and NDP operations.

Ct. Ct is an NDP extension to C++ (Ghuloum et al., 2007). So et al. (2006) describe

a fusion technique for Ct that is similar to the fusion technique of DPH. The fusion

technique used by Ct is orthogonal to LTS for the same reasons as for the fusion

technique of DPH. The work on Ct does not directly address the issue of building

an automatic chunking strategy, which is the main contribution of LTS.

GpH. GpH introduced the notion of an evaluation strategy (Trinder et al., 1998),

which is a part of a program that is dedicated to controlling some aspects of parallel

execution. Strategies have been used to implement eager-splitting-like chunking for

parallel computations. We believe that a mechanism like an evaluation strategy could

be used to build a clean implementation of lazy tree splitting in a lazy functional

language.

Cilk. Cilk is a parallel dialect of C language extended with linguistic constructs

for expressing fork-join parallelism (Frigo et al., 1998). Cilk is designed for parallel

function calls but not loops, whereas our approach addresses both.
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type ’a seq = ’a list
fun joinSeq (seq1, seq2) = List.append (seq1, seq2)
fun revSeq seq = List.rev seq
fun mapSeq f seq = List.map f seq
fun mapUntilSeq cond f seq = let
fun lp (seq, acc) =

(case seq
of [] => Done (revSeq acc)
| x::seq’ =>

if cond () then
More (seq, revSeq acc)

else
lp (seq’, (f x)::acc))

in
lp (seq, [])

end

Fig. A 1. The mapUntilSeq operation for lists.

7 Conclusion

We have described the implementation of NDP features in the Manticore system. We

have also presented a new technique for parallel decomposition, lazy tree splitting,

inspired by the lazy binary splitting technique for parallel loops. We presented

an efficient implementation of LTS over ropes, making novel use of the zipper

technique to enable necessary traversals. Our techniques can be readily adapted to

tree data structures other than ropes and are not limited to functional languages. A

work-stealing thread scheduler is the only special requirement for our technique.

Lazy Tree Splitting compares favorably to ETS, requiring no application-specific

or machine-specific tuning. For any of our benchmarks, LTS outperforms most or

all configurations of ETS, and is, at worst, only 27% slower than the optimally

tuned ETS configuration. As argued here by us and elsewhere by others (Tzannes

et al., 2010), the ETS approach is not feasible in general because, in order to achieve

acceptable performance, the programmer has to tune each instance of a given parallel

tree operation to the given context in which the operation appears and for each

machine on which it is to be run. LTS achieves good performance without the need

for tuning.

A Proofs

A.1 mapSeqUntil is shape preserving

Figure A 1 gives an implementation of mapUntilSeq for sequences implemented

as lists. Although our actual implementation uses contiguous arrays for sequences,

the implementation here demonstrates the essential behavior, in which the function

maintains an implicit context with processed elements to the left and unprocessed

elements to the right.

With the following lemma and theorem, we can conclude that our implementation

of mapSeqUntil can be used safely by mapLTS.
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Lemma 1. For any sequence seq, any sequence acc, any predicate cond, with f =

fn x => x, if lp (seq, acc) returns Done pseq’, then

pseq’ = joinSeq (seq, revSeq acc)

and if it returns More (useq’, pseq’), then

joinSeq (useq’, pseq’) = joinSeq (seq, revSeq acc)

Proof

By structural induction on seq. �

Theorem 2 (mapUntilSeq is shape preserving). Property 3 holds for the implemen-

tation of mapSeqUntil.

For any sequence seq and any predicate cond, if mapUntilSeq cond (fn x => x)

seq returns Done seq’, then

seq’ = seq

and if it returns More (useq’,pseq’), then

joinSeq (pseq’, useq’) = seq

Proof

By Lemma 1. �

A.2 mapLTSUntil is well-behaved

The well-behavedness of our mapLTSUntil operation, namely, that it satisfies

Property 2, will depend upon a number of properties about the context and cursor

operations. For instance, the leftmost operation preserves the represented rope as

well as its length and size.

Lemma 2. For any rope rp and any context ctx, if leftmost (rp, ctx) returns

(seq’, ctx’), then

plug (Leaf seq’, ctx’) = plug (rp, ctx)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength ctx) ++ (0, length rp)

and

(ctxSize ctx’) ++ (0, 1) = (ctxSize ctx) ++ (0, size rp)

Proof

By assumption,

leftmost (rp, ctx) = (seq’, ctx’) (1)

The proof is by structural induction on rp.
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• Suppose that

rp = Leaf seq (2)

Therefore,

(seq’, ctx’)

= leftmost (rp, ctx) by (1)

= leftmost (Leaf seq, ctx) by (2)

= (seq, ctx) by defn of leftmost

and

seq’ = seq (3)

and

ctx’ = ctx (4)

Hence,

plug (Leaf seq’, ctx’)

= plug (Leaf seq, ctx) by (3) and (4)

= plug (rp, ctx) by (2)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength ctx) ++ (0, lengthSeq seq) by (3) and (4)

= (ctxLength ctx) ++ (0, length (Leaf seq)) by defn of length

= (ctxLength ctx) ++ (0, length rp) by (2)

and

(ctxSize ctx’) ++ (0, 1)

= (ctxSize ctx) ++ (0, 1) by (4)

= (ctxSize ctx) ++ (0, size (Leaf seq)) by defn of size

= (ctxSize ctx) ++ (0, size rp) by (2)

• Suppose that

rp = Cat (lrp, rrp) (5)

Therefore,

(seq’, ctx’)

= leftmost (rp, ctx) by (1)

= leftmost (Cat (lrp, rrp), ctx) by (5)

= leftmost (lrp, MCLeft (ctx, rrp)) by defn of leftmost

and

(seq’, ctx’) = leftmost (lrp, MCLeft (ctx, rrp)) (6)

By the induction hypothesis with lrp, MCLeft (ctx, rrp), and (6),

plug (Leaf seq’, ctx’)

= plug (lrp, MCLeft (ctx, rrp))
(7)
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and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength (MCLeft ctx, rpp)) ++ (0, length lrp)
(8)

and

(ctxSize ctx’) ++ (0, 1)

= (ctxSize (MCLeft ctx, rpp)) ++ (0, size lrp)
(9)

Hence,

plug (Leaf seq’, ctx’)

= plug (lrp, MCLeft (ctx, rpp)) by (7)

= plug (Cat (lrp, rrp), ctx) by defn of plug

= plug (rp, ctx) by (5)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength (MCLeft ctx, rpp)) ++ (0, length lrp)

by (8)

= (ctxLength ctx) ++ (0, length rrp) ++ (0, length lrp)

by defn of ctxLength

= (ctxLength ctx) ++ (0, (length rrp) + (length lrp))

by defn of ++

= (ctxLength ctx) ++ (0, (length lrp) + (length rrp))

by defn of +

= (ctxLength ctx) ++ (0, length (Cat (lrp, rrp)))

by defn of length

= (ctxLength ctx) ++ (0, length rp) by (5)

and

(ctxSize ctx’) ++ (0, 1)

= (ctxSize (MCLeft ctx, rpp)) ++ (0, size lrp)

by (9)

= (ctxSize ctx) ++ (0, size rrp) ++ (0, size lrp)

by defn of ctxSize

= (ctxSize ctx) ++ (0, (size rrp) + (size lrp))

by defn of ++

= (ctxSize ctx) ++ (0, (size lrp) + (size rrp))

by defn of +

= (ctxSize ctx) ++ (0, size (Cat (lrp, rrp)))

by defn of size

= (ctxSize ctx) ++ (0, size rp) by (5)

�

Similarly, the next operation preserves the represented rope as well as its length

and size.
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Lemma 3. For any rope rp and any context ctx, if next (rp, ctx) returns Done rp’,

then

rp’ = plug (rp, ctx)

and if it returns More (seq’, ctx’), then

plug (Leaf seq’, ctx’) = plug (rp, ctx)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength ctx) ++ (length rp, 0)

and

(ctxSize ctx’) ++ (0, 1) = (ctxSize ctx) ++ (size rp, 0)

Proof

The proof is by structural induction on ctx.

• Suppose that

ctx = MCTop (1)

Hence,

next (rp, ctx)

= next (rp, MCTop) by (1)

= Done rp by defn of next

and, furthermore,

rp

= plug (rp, MCTop) by defn of plug

= plug (rp, ctx) by (1)

as required when next (rp, ctx) returns Done rp.

• Suppose that

ctx = MCLeft (ctx’, rrp) (2)

Hence,

next (rp, ctx)

= next (rp, MCLeft (ctx’, rrp)) by (2)

= More (seq’’, ctx’’) by defn of next

where

(seq’’, ctx’’) = leftmost (rrp, MCRight (rp, ctx’)) (3)

By Lemma 2 with rrp, MCRight (rp, ctx’), and (3),

plug (Leaf seq’’, ctx’’)

= plug (rrp, MCRight (rp, ctx’))
(4)

and

(ctxLength ctx’’) ++ (0, lengthSeq seq’’)

= (ctxLength (MCRight (rp, ctx’))) ++ (0, length rrp)
(5)
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and

(ctxSize ctx’’) ++ (0, 1)

= (ctxSize (MCRight (rp, ctx’))) ++ (0, size rrp)
(6)

Furthermore,

plug (Leaf seq’’, ctx’’)

= plug (rrp, MCRight (rp, ctx’)) by (4)

= plug (Cat (rp, rrp), ctx’) by defn of plug

= plug (rp, MCLeft (ctx’, rrp)) by defn of plug

and

(ctxLength ctx’’) ++ (0, lengthSeq seq’’)

= (ctxLength (MCRight (rp, ctx’))) ++ (0, length rrp)

by (5)

= (ctxLength ctx’) ++ (length rp, 0) ++ (0, length rrp)

by defn of ctxLength

= (ctxLength ctx’) ++ (0, length rrp) ++ (length rp, 0)

by defn of ++

= (ctxLength (MCLeft (ctx’, rrp))) ++ (length rp, 0)

by defn of ctxLength

= (ctxLength ctx) ++ (length rp, 0) by (2)

and

(ctxSize ctx’’) ++ (0, 1)

= (ctxSize (MCRight (rp, ctx’))) ++ (0, size rrp)

by (6)

= (ctxSize ctx’) ++ (size rp, 0) ++ (0, size rrp)

by defn of ctxSize

= (ctxSize ctx’) ++ (0, size rrp) ++ (size rp, 0)

by defn of ++

= (ctxsize (MCLeft (ctx’, rrp))) ++ (size rp, 0)

by defn of ctxSize

= (ctxSize ctx) ++ (size rp, 0) by (2)

as required when next (rp, ctx) returns More (seq’’, ctx’’).

• Suppose that

ctx = MCRight (lrp, ctx’) (7)

Hence,

next (rp, ctx)

= next (rp, MCRight (lrp, ctx’)) by (7)

= next (Cat (lrp, rp), ctx’) by defn of next

and

next (rp, ctx) = next (Cat (lrp, rp), ctx’) (8)

Proceed by cases on the result of next (Cat (lrp, rp), ctx’).
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— Suppose that the result is Done rp’’.

Therefore,

next (Cat (lrp, rp), ctx’) = Done rp’’ (9)

By the induction hypothesis with Cat (lrp, rp), ctx’, and (9),

rp’’ = plug (Cat (lrp, rp), ctx’) (10)

Hence,

next (rp, ctx)

= next (Cat (lrp, rp), ctx’) by (8)

= Done rp’’ by (9)

and, furthermore,

rp’’

= plug (Cat (lrp, rp), ctx’) by (10)

= plug (rp, MCRight (lrp, ctx’)) by defn of plug

= plug (rp, ctx) by (7)

as required when next (rp, ctx) returns Done rp’’.

— Suppose that the result is More (seq’’, ctx’’).

Therefore,

next (Cat (lrp, rp), ctx’) = More (seq’’, ctx’’) (11)

By the induction hypothesis with Cat (lrp, rp), ctx’, and (11),

plug (Leaf seq’’, ctx’’) = plug (Cat (lrp, rp), ctx’)

(12)

and

(ctxLength ctx’’) ++ (0, lengthSeq seq’’)

= (ctxLength ctx’) ++ (length (Cat (lrp, rp)), 0)
(13)

and

(ctxSize ctx’’) ++ (0, 1)

= (ctxSize ctx’) ++ (size (Cat (lrp, rp)), 0)
(14)

Hence,

next (rp, ctx)

= next (Cat (lrp, rp), ctx’) by (8)

= More (seq’’, ctx’’) by (11)

and, furthermore,

plug (Leaf seq’’, ctx’’)

= plug (Cat (lrp, rp), ctx’) by (12)

= plug (rp, MCRight (lrp, ctx’)) by defn of plug

= plug (rp, ctx) by (7)
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and

(ctxLength ctx’’) ++ (0, lengthSeq seq’’)

= (ctxLength ctx’) ++ (length (Cat (lrp, rp)), 0)

by (13)

= (ctxLength ctx’) ++ (length lrp + length rp, 0)

by defn of length

= (ctxLength ctx’) ++ (length lrp, 0) ++ (length rp, 0)

by defn of ++

= (ctxLength (MCRight (lrp, ctx’))) ++ (length rp, 0)

by defn of ctxLength

= (ctxLength ctx) ++ (length rp, 0) by (7)

and

(ctxSize ctx’’) ++ (0, 1)

= (ctxSize ctx’) ++ (size (Cat (lrp, rp)), 0)

by (14)

= (ctxSize ctx’) ++ (size lrp + size rp, 0)

by defn of size

= (ctxSize ctx’) ++ (size lrp, 0) ++ (size rp, 0)

by defn of ++

= (ctxsize (MCRight (lrp, ctx’))) ++ (size rp, 0)

by defn of ctxSize

= (ctxSize ctx) ++ (size rp, 0) by (7)

as required when next (rp, ctx) returns More (seq’’, ctx’’).

�

The following lemmas and theorem enable us to use this implementation of

mapLTSUntil in our mapLTS.

Lemma 4. For any sequence seq and any context ctx, with f = fn x => x,

mSeq (seq, ctx) = plug (Leaf seq, ctx)

Proof
The proof is by strong induction on snd (ctxSize ctx).

The induction hypothesis is

for any seq’ and ctx’

such that snd (ctxSize ctx’) < snd (ctxSize ctx),

mSeq (seq’, ctx’) = plug (Leaf seq’, ctx’)

Proceed by cases on the result of next (Leaf seq, ctx).

• Suppose that the result is Done rp’.

Therefore,

next (Leaf seq, ctx) = Done rp’ (1)

By Lemma 3 with Leaf seq, ctx, and (1)

rp’ = plug (Leaf seq, ctx) (2)
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Hence,

mSeq (seq, ctx)

= rp’ by defn of mSeq and (1)

= plug (Leaf seq, ctx) by (2)

• Suppose that the result is More (seq’, ctx’).

Therefore,

next (Leaf seq, ctx) = More (seq’, ctx’) (3)

Note that

mapSeq (fn x => x) seq’ = seq’ (4)

is assumed to hold for an implementation of mapSeq.

By Lemma 3 with Leaf seq, ctx, and (3)

plug (Leaf seq’, ctx’) = plug (Leaf seq, ctx) (5)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength ctx) ++ (length (Leaf seq), 0)
(6)

and

(ctxSize ctx’) ++ (0, 1)

= (ctxSize ctx) ++ (size (Leaf seq), 0)
(7)

Note that

snd (ctxSize ctx)

= snd ((ctxSize ctx) ++ (size (Leaf seq), 0))

by defn of snd and ++

= snd ((ctxSize ctx’) ++ (0, 1)) by (7)

= snd (ctxSize ctx’) + 1 by defn of snd and ++

Hence,

snd (ctxSize ctx’) < snd (ctxSize ctx) (8)

By the induction hypothesis with seq’, ctx’, and (8),

mSeq (seq’, ctx’) = plug (Leaf seq’, ctx’) (9)

Hence,

mSeq (seq, ctx)

= mSeq (mapSeq (fn x => x) seq’, ctx’)

by defn of mSeq and (3)

= mSeq (seq’, ctx’) by (4)

= plug (Leaf seq’, ctx’) by (9)

= plug (Leaf seq, ctx) by (5)

�
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Lemma 5. For any sequence seq, any context ctx, any predicate cond, with f =

fn x => x, if m (seq, ctx) returns Done rp’, then

rp’ = plug (Leaf seq, ctx)

and if it returns More cur’, then

root cur’ = plug (Leaf seq, ctx)

and

snd (ctxLength ctx) + (lengthSeq seq)

� snd (curLength cur’)

and

snd (curLength cur’) � 2

Proof

The proof is by strong induction on snd (ctxSize ctx).

The induction hypothesis is:

for any seq’ and ctx’

such that snd (ctxSize ctx’) < snd (ctxSize ctx),

if m (seq’, ctx’) returns Done rp’’,

then

rp’’ = plug (Leaf seq’, ctx’)

and if it returns More cur’’,

then

root cur’’ = plug (Leaf seq’, ctx’)

and
snd (ctxLength ctx’) + (lengthSeq seq’)

� snd (curLength cur’’)

and

snd (curLength cur’’) � 2

Proceed by cases on the result of mapUntilSeq cond (fn x => x) seq.

• Suppose that the result is Done pseq’.

Therefore,

mapUntilSeq cond (fn x => x) seq = Done pseq’ (1)

By Property 3 with seq, cond and (1),

pseq’ = seq (2)

Proceed by cases on the result of next (Leaf pseq’, ctx).

— Suppose that the result is Done rp’.

Therefore,

next (Leaf pseq’, ctx) = Done rp’ (3)

By Lemma 3 with Leaf pseq’, ctx, and (3),

rp’ = plug (Leaf pseq’, ctx) (4)
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Hence,

m (seq, ctx)

= Done rp’ by defn of m, (1), and (3)

and, furthermore,

rp’

= plug (Leaf pseq’, ctx) by (4)

= plug (Leaf seq, ctx) by (2)

as required when m (seq, ctx) returns Done rp’.

— Suppose that the result is More (seq’, ctx’).

Therefore,

next (Leaf pseq’, ctx) = More (seq’, ctx’) (5)

By Lemma 3 with Leaf pseq’, ctx, and (5),

plug (Leaf seq’, ctx’) = plug (Leaf pseq’, ctx) (6)

and

(ctxLength ctx’) ++ (0, lengthSeq seq’)

= (ctxLength ctx) ++ (length (Leaf pseq’), 0)
(7)

and

(ctxSize ctx’) ++ (0, 1)

= (ctxSize ctx) ++ (size (Leaf pseq’), 0)
(8)

snd (ctxSize ctx)

= snd ((ctxSize ctx) ++ (size (Leaf pseq’), 0))

by defn of snd and ++

= snd ((ctxSize ctx’) ++ (0, 1)) by (8)

= snd (ctxSize ctx’) + 1 by defn of snd and ++

Hence,

snd (ctxSize ctx’) < snd (ctxSize ctx) (9)

Proceed by cases on the result of m (seq’, ctx’).

– Suppose that the result is Done rp’’.

Therefore,

m (seq’, ctx’) = Done rp’’ (10)

By the induction hypothesis with seq’, ctx’, and (9),

rp’’ = plug (Leaf seq’, ctx’) (11)

Hence,

m (seq, ctx)

= m (seq’, ctx’) by defn of m, (1), and (5)

= Done rp’’ by (10)
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and, furthermore,

rp’’

= plug (Leaf seq’, ctx’) by (11)

= plug (Leaf pseq’, ctx) by (6)

= plug (Leaf seq, ctx) by (2)

as required when m (seq, ctx) returns Done rp’’.

– Suppose that the result is More cur’’.

Therefore,

m (seq’, ctx’) = More cur’’ (12)

By the induction hypothesis with seq’, ctx’, and (9),

root cur’’ = plug (Leaf seq’, ctx’) (13)

and

snd (ctxLength ctx’) + (lengthSeq seq’)

� snd (curLength cur’’)
(14)

and

snd (curLength cur’’) � 2 (15)

Hence,

m (seq, ctx)

= m (seq’, ctx’) by defn of m, (1), and (5)

= More cur’’ by (12)

and, furthermore,

root cur’’

= plug (Leaf seq’, ctx’) by (13)

= plug (Leaf pseq’, ctx) by (6)

= plug (Leaf seq, ctx) by (2)

and

snd (ctxLength ctx) + (lengthSeq seq)

� snd (ctxLength ctx)

= snd ((ctxLength ctx) ++ (length (Leaf pseq’), 0))

by defn of snd and ++

= snd ((ctxLength ctx’) ++ (0, lengthSeq’))

by (7)

= snd (ctxLength ctx’) + (lengthSeq seq’)

by defn of snd and ++

� snd (curLength cur’’) by (14)

and

snd (curLength cur’’)

� 2 by (15)

as required when m (seq, ctx) returns More cur’’.
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• Suppose that the result is More (useq’, pseq’).

Therefore,

mapUntilSeq cond (fn x => x) seq = More (useq’, pseq’) (16)

By Property 3 with seq, cond and (16),

joinSeq (pseq’, useq’) = seq (17)

Proceed by cases on the result of

snd (curLength ((pseq’,useq’), ctx)) >= 2.

— Suppose that the result is true.

Therefore,

snd (curLength ((pseq’, useq’), ctx)) � 2 (18)

Hence,

m (seq, ctx)

= More ((pseq’, useq’), ctx)

by defn of m, (16), and (18)

and

root ((pseq’, useq’), ctx)

= plug (Leaf (joinSeq (pseq’, useq’)), ctx) by defn of root

= plug (Leaf seq, ctx) by (17)

and

snd (ctxLength ctx) + (lengthSeq seq)

= snd (ctxLength ctx) + (lengthSeq (joinSeq (pseq’, useq’)))

by (17)

= snd (ctxLength ctx) + (lengthSeq pseq’) + (lengthSeq useq’)

by defn of lengthSeq

and joinSeq

� snd (ctxLength ctx) + (lengthSeq useq’)

= snd ((ctxLength ctx) ++ (lengthSeq pseq’, lengthSeq useq’))

by defn of snd and ++

= snd (curLength ((pseq’, useq’), ctx)) by defn of curLength

and

snd (curLength ((pseq’, useq’), ctx))

� 2 by (18)

as required when m (seq, ctx) returns More ((pseq’, useq’), ctx).

— Suppose that the result is false.

Therefore,

snd (curLength ((pseq’, useq’), ctx)) < 2 (19)

Note that

mapSeq (fn x => x) useq’ = useq’ (20)
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is assumed to hold for an implementation of mapSeq.

By Lemma 4 with seq, ctx,

mSeq (seq, ctx) = plug (Leaf seq, ctx) (21)

Hence,

m (seq, ctx)

= Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx))

by defn of m, (16), and (19)

and

mSeq (joinSeq (pseq’, mapSeq f useq’), ctx)

= mSeq (joinSeq (pseq’, useq’), ctx) by (20)

= mSeq (seq, ctx) by (17)

= plug (Leaf seq, ctx) by (21)

as required when m (seq, ctx) returns

Done (mSeq (joinSeq (pseq’, mapSeq f useq’), ctx)).

�

Theorem 3 (mapLTSUntil is well-behaved). Property 2 holds for the implementation

of mapLTSUntil.

For any rope rp and any predicate cond, if mapLTSUntil cond (fn x => x) rp

returns Done rp’, then

rp’ = rp

and if it returns More cur’, then

root cur’ = rp

and

length rp � lengthRight cur’

and

lengthRight cur’ � 2

Proof

Note that

mapLTSUntil cond (fn x => x) rp

= m (seq, ctx) by defn of mapLTSUntil

where

(seq, ctx) = leftmost (rp, MCTop) (1)

By Lemma 2 with rp, MCTop, and (1),

plug (Leaf seq, ctx) = plug (rp, MCTop) (2)

and

(ctxLength ctx) ++ (0, lengthSeq seq)

= (ctxLength MCTop) ++ (0, length rp)
(3)
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and

(ctxSize ctx) ++ (0, 1) = (ctxSize MCTop) ++ (0, size rp) (4)

Proceed by cases on the result of m (seq, ctx).

• Suppose that the result is Done rp’.

Therefore,

m (seq, ctx) = Done rp’ (5)

By Lemma 5 with ctx, cond, and (5),

rp’ = plug (Leaf seq, ctx) (6)

Hence,

mapLTSUntil cond (fn x => x) rp

= m (seq, ctx) by defn of mapLTSUntil

= Done rp’ by (5)

and

rp’

= plug (Leaf seq, ctx) by (6)

= plug (rp, MCTop) by (2)

= rp by defn of plug

as required when mapLTSUntil cond (fn x => x) rp returns Done rp’.

• Suppose that the result is More cur’.

Therefore,

m (seq, ctx) = More cur’ (7)

By Lemma 5 with ctx, cond, and (7),

root cur’ = plug (Leaf seq, ctx) (8)

and

snd (ctxLength ctx) + (lengthSeq seq) � snd (curLength cur’)

(9)

and

snd (curLength cur’) � 2 (10)

Hence,

mapLTSUntil cond (fn x => x) rp

= m (seq, ctx) by defn of mapLTSUntil

= More cur’ by (7)

and

root cur’

= plug (Leaf seq, ctx) by (8)

= plug (rp, MCTop) by (2)

= rp by defn of plug
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and

length rp

= snd((0, 0) ++ (0, length rp))

by defn of snd and ++

= snd((ctxLength MCTop) ++ (0, length rp))

by defn of ctxLength

= snd((ctxLength ctx) ++ (0, lengthSeq seq))

by (3)

= snd(ctxLength ctx) + (lengthSeq seq)

by defn of snd and ++

� snd (curLength cur’) by (9)

and

snd (curLength cur’)

� 2 by (10)

as required when mapLTSUntil cond (fn x => x) rp returns More cur’.

�

A.3 split and join are well-behaved

The well-behavedness of our split and join operations will depend on the property

that the zipCursor operation is a left-inverse of the unzipCursor operation.

Lemma 6. For any (zipped) context ctx,

zipCtx (unzipCtx ctx) = ctx

Proof

By structural induction on ctx. �

Lemma 7. For any (zipped) cursor cur,

zipCursor (unzipCursor cur) = cur

Proof

By Lemma 6. �

We have that divideRopes (rps, n) returns (rps1, rp, k, rps2) such that

rps1 @ [rp] @ rps2 is equal to rps and k is the index in rp at which the nth

element of rps is found.

Lemma 8. For any nonempty list of ropes rps and any integer n, such that 0 � n and

n � sumLengths rps, if divideRopes (rps, n) returns (rps1, rp, k, rps2),

then

rps1 @ [rp] @ rps2 = rps

and

length rp � k
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and

k = n - (sumLengths rps1)

Proof

By structural induction on rps. �

We have that the root operation is a left-inverse of the splitAtAsCur operation

and also that splitAtAsCur returns a cursor in which the “hole” occurs between

the nth and n+1st elements of the rope rp.

Lemma 9. For any rope rp and any integer n, such that 0 � n and n � length rp,

if splitAtAsCur (rp, n) returns cur, then

root cur = rp

and

curLength cur = (n, (length rp) - n)

Proof

By structural induction on rp. �

Finally, we have that the decodeRope operation is a left-inverse of the encodeRopes

operation.

Lemma 10. For any nonempty list of ropes rps,

decodeRope (encodeRope rps) = rps

Proof

By structural induction on rps. �

With the following theorem, we can conclude that our implementation of split

and join can be used safely by mapLTS.

Theorem 4 (split and join are well-behaved). Property 1 holds for the implemen-

tations of split and join.

For any cursor cur, if split cur returns (rp1, rp2, reb), then

join (rp1, rp2, reb) = cur

and

length rp1 = (lengthRight cur) div 2

and

length rp2 = (lengthRight cur) - ((lengthRight cur) div 2)

Proof

By Lemmas 7, 8, 9, and 10. �
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A.4 mapLTS is shape preserving

Theorem 1 (mapLTS is shape preserving). For any rope rp,

mapLTS (fn x => x) rp = rp

Proof

The proof is by strong induction on length rp.

The induction hypothesis is:

for any rp’

such that length rp’ < length rp,

mapLTS (fn x => x) rp’ = rp’

Proceed by cases on the result of mapLTSUntil hungryProcs (fn x => x) rp.

• Suppose that the result is Done rp’.

Therefore,

mapLTSUntil hungryProcs (fn x => x) rp = Done rp’ (1)

By Property 2 with rp and hungryProcs and (1),

rp’ = rp (2)

Therefore,

mapLTS (fn x => x) rp

= rp’ by defn of mapLTS and (1)

= rp by (2)

• Suppose that the result is More cur’.

Therefore,

mapLTSUntil hungryProcs (fn x => x) rp = More cur’ (3)

By Property 2 with rp and hungryProcs and (3),

root cur’ = rp (4)

and

length rp � lengthRight cur’ (5)

and

lengthRight cur’ � 2 (6)

Note that lengthRight cur’ � 2 implies that

lengthRight cur’ > (lengthRight cur’) div 2 (7)

and

(lengthRight cur’) div 2 � 1 (8)

By Property 1,

join (rp1, rp2, reb) = cur’ (9)
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and

length rp1 = (lengthRight cur’) div 2 (10)

and

length rp2

= (lengthRight cur’) - ((lengthRight cur’) div 2)
(11)

Note that

length rp1

= (lengthRight cur’) div 2 by (10)

< lengthRight cur’ by (7)

� length rp by (5)

Hence,

length rp1 < length rp (12)

By the induction hypothesis with rp1 and (12),

mapLTS (fn x => x) rp1 = rp1 (13)

Note that

length rp2

= (lengthRight cur’) - ((lengthRight cur’) div 2)

by (11)

� (lengthRight cur’) - 1 by (8)

< lengthRight cur’

� length rp by (5)

Hence,

length rp2 < length rp (14)

By the induction hypothesis with rp2 and (14),

mapLTS (fn x => x) rp2 = rp2 (15)

Note that, by the definitions of mapLTS and par2,

rp1’ = mapLTS (fn x => x) rp1 (16)

and

rp2’ = mapLTS (fn x => x) r\p2 (17)

Therefore,

mapLTS (fn x => x) rp

= root (join (rp1’, rp2’, reb))

by defn of mapLTS and (3)

= root (join (rp1, rp2’, reb)) by (16) and (13)

= root (join (rp1, rp2, reb)) by (17) and (15)

= root cur’ by (9)

= rp by (4)

�
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