HESSE'S THEOREM FOR A QUADRILATERAL WHOSE SIDES TOUCH A CONIC

William G. Brown

(received May 31, 1960)

1. Introduction. Hesse's theorem states that "if two pairs of opposite vertices of a quadrilateral are respectively conjugate with respect to a given polarity, then the remaining pair of vertices are also conjugate ".

In the real projective plane there cannot exist such a quadrilateral, all four sides of which are self-conjugate [1, §5.54]. We shall show that such a quadrilateral exists in $P G(2,3)$, and that any geometry in which such a quadrilateral exists contains the configuration 13_{4} of $\operatorname{PG}(2,3)$. We shall thus provide a synthetic proof of Hesse's theorem for a quadrilateral of this type, which, together with [1, §5.55], constitutes a complete proof of the theorem valid in general Desarguesian projective geometry. We shall also show analytically that a finite Desarguesian geometry which admits a Hessian quadrilateral all of whose sides touch a conic must be of type $\operatorname{PG}\left(2,3^{n}\right)$.
2. Example in $\mathrm{PG}(2,3)$. Represent points and lines respectively by $P_{i}, P_{i}(i=0,1, \ldots, 12)$ with the rule that P_{i}, p_{j} are incident if and only if

$$
i+j \equiv 0,1,3, \text { or } 9(\bmod 13)
$$

The table of incidences is

0	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	0
3	4	5	6	7	8	9	10	11	12	0	1	2
9	10	11	12	0	1	2	3	4	5	6	7	8
0	12	11	10	9	8	7	6	5	4	3	2	1

Canad. Math. Bull. vol. 3, no. 3, September 1960

Then the polarity $\left(\mathrm{P}_{4} \mathrm{P}_{10} \mathrm{P}_{12}\right)\left(\mathrm{P}_{0} \mathrm{P}_{0}\right)$ determines a conic such that the quadrilateral $p_{0} P_{7} P_{8} P_{11}$ has all four sides self-conjugate. Hesse's theorem evidently holds for this quadrilateral and this polarity.
3. THEOREM. Let $\mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{5} \mathrm{P}_{2} \mathrm{P}_{6} \mathrm{P}_{9}$ be a given quadrilateral whose sides $\mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{9}, \mathrm{P}_{2} \mathrm{P}_{6} \mathrm{P}_{9}, \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{5}, \mathrm{P}_{1} \mathrm{P}_{5} \mathrm{P}_{6}$ contain their respective poles P_{0}, P_{7}, P_{11}, and P_{8}. Suppose P_{1}, P_{2} conjugate; P_{3}, P_{6} conjugate. Then P_{5} and P_{9} are conjugate.

Proof. The given quadrilateral has the same diagonal triangle as the quadrangle $\mathrm{P}_{0} \mathrm{P}_{7} \mathrm{P}_{11} \mathrm{P}_{8}$. We thus obtain the table

0	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4		6	7	8		10	11	12	0
3	4	5	6	7	8	9	10	11	12	0		
9	10	11	12	0	1	2		4	5		7	8
0	12	11	10	9	8	7	6	5	4	3	2	1
$*$	$* *$	$*$	$* *$		$*$	$*$			$* *$			

where the columns marked with a single asterisk define the quadrilateral, those marked with a double asterisk define the diagonal triangle $\mathrm{P}_{4} \mathrm{P}_{10} \mathrm{P}_{12}$, and the remaining columns are due to our last result.

Our initial hypothesis gives the further relations

7		II	
8	II		0
	0	1	2
3	6	7	8

When these last relations are combined with the previous table, the result, except for two missing entries, is the incidence table of $\operatorname{PG}(2,3)$ exhibited earlier. The gaps are filled by applying Desargues' Theorem. Since triangles $P_{10} P_{11} P_{3}$, $P_{2} P_{12} P_{9}$ are perspective from P_{1}, therefore P_{5}, P_{7} and P_{0}
are collinear; since triangles $P_{5} P_{6} P_{2}, P_{12} P_{0} P_{1}$ are perspective from P_{10}, therefore P_{9}, P_{11}, and P_{8} are collinear. Thus the geometry contains the 13_{4} of $\operatorname{PG}(2,3)$, wherein the quadrilateral $\mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{5} \mathrm{P}_{2} \mathrm{P}_{6} \mathrm{P}_{9}$ has already been shown to satisfy Hesse's theorem.

We note that O'Hara and Ward's proof of Hesse's theorem [2, §6.25] is also valid in general Desarguesian projective geometry.
4. We prove analytically that such a quadrilateral can exist only in a geometry of type $\operatorname{PG}\left(2,3^{n}\right)$, provided the geometry is finite.

Consider the quadrilateral

$$
x_{1} \pm x_{2} \pm x_{3}=0
$$

Any conic inscribed therein must be of the form

$$
\sum c_{i} x_{i}^{2}=0
$$

where

$$
\left.\sum C_{i}=0 \quad \text { (dual of }[1, \S 12.78]\right)
$$

In point coordinates this is

$$
\sum \frac{x_{i}^{2}}{C_{i}}=0
$$

Since opposite vertices are conjugate, $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}$. Hence $3 C_{1}=0$. Hence $3=0$. Thus the geometry is of type $\operatorname{PG}\left(2,3^{n}\right)$.

REFERENCES

i. H.S.M. Coxeter, The Real Projective Plane, second edition, (Cambridge, 1955).
2. C.W. O'Hara \& D.R. Ward, An Introduction to Projective Geometry, (Oxford, 1937).

University of Toronto

