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Classification of finite-dimensional irreducible
modules over W -algebras

Ivan Losev and Victor Ostrik

Abstract

Finite W -algebras are certain associative algebras arising in Lie theory. Each W -algebra
is constructed from a pair of a semisimple Lie algebra g (our base field is algebraically
closed and of characteristic 0) and its nilpotent element e. In this paper we classify
finite-dimensional irreducible modules with integral central character over W -algebras.
In more detail, in a previous paper the first author proved that the component group
A(e) of the centralizer of the nilpotent element under consideration acts on the set
of finite-dimensional irreducible modules over the W -algebra and the quotient set is
naturally identified with the set of primitive ideals in U(g) whose associated variety
is the closure of the adjoint orbit of e. In this paper, for a given primitive ideal with
integral central character, we compute the corresponding A(e)-orbit. The answer is that
the stabilizer of that orbit is basically a subgroup of A(e) introduced by G. Lusztig.
In the proof we use a variety of different ingredients: the structure theory of primitive
ideals and Harish-Chandra bimodules for semisimple Lie algebras, the representation
theory of W -algebras, the structure theory of cells and Springer representations, and
multi-fusion monoidal categories.
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1. Introduction

1.1 Finite W -algebras

Finite W -algebras are certain associative algebras arising in Lie representation theory. Each

W -algebra W is constructed from a pair (g,O), where g is a semisimple Lie algebra over an

algebraically closed field K of characteristic 0, and O is a nilpotent orbit in g. Some information,

including a definition, is recalled in § 4. For more details about (finite) W -algebras the reader is

referred to the reviews [Los10b, Wan11].

One of the most basic questions in Representation theory is, given an associative algebra

A, classify its irreducible finite-dimensional representations. In this paper we solve this problem
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for finite W -algebras under the restriction that we only consider representations with integral

central character. It is known that the center of W is canonically identified with the center of

the universal enveloping algebra U := U(g) of g and so one uses this identification to define the

notion of an integral central character for W-modules.

Before stating our main result in § 1.3 we would like to explain some prior classification

results.

1.2 Known classification results

The main theorem of the present paper is a refinement of a classification result from [Los11a],

so we are going to explain that result first.

Fix a semisimple Lie algebra g, its nilpotent orbit O and construct the W -algebra W from

these data. Let Irrfin(W) denote the set of finite-dimensional irreducible W-modules.

This set comes equipped with a finite group action. Namely, letG denote the simply connected

semisimple algebraic group with Lie algebra g. Pick an element e ∈ O and consider its centralizer

ZG(e) in G. In general, this subgroup is not connected. Consider the component group A(e) :=

ZG(e)/ZG(e)◦, where the superscript ‘◦’ denotes the unit connected component. It turns out that

there is a natural action of A(e) on Irrfin(W), see § 4 for the definition. This action is by outer

automorphisms and so the modules in the same orbit are basically indistinguishable.

In [Los11a] the first author described the orbit space Irrfin(W)/A(e) for the A(e)-action on

Irrfin(W). Namely, consider the set PrO(U) of all primitive ideals of U whose associated variety

is the closure O of O, see § 2 for a reminder on primitive ideals. Premet conjectured (see [Los11a,

Conjecture 1.2.1]) that there is a natural identification between Irrfin(W)/A(e) and PrO(U) and

this conjecture was proved in [Los11a, § 4.2].

The set PrO(U) is basically computable in all cases; we gather some results in § 6.9. So,

since the A(e)-conjugate modules are practically indistinguishable, the result from [Los11a] can

be regarded as an almost complete classification. To complete the classification one needs to

determine the A(e)-orbit corresponding to each primitive ideal J ∈ PrO(U). This is a problem

that we solve in this paper under the restriction that J has an integral central character. The

general case is an ‘endoscopy-like’ problem and so seems to be difficult, we only have some

conjectures there.

Let us also recall other known classification results although they will not be used in the

present paper. In [BK08] Brundan and Kleshchev produced an explicit combinatorial description

of Irrfin(W) for g = sln. Here the group A(e) acts trivially on Irrfin(W) and so Irrfin(W) ∼=
PrO(U). Modulo that identification, the Brundan–Kleshchev classification is equivalent to the

combinatorial description of PrO(U) due to Joseph. Some combinatorial descriptions were also

obtained for certain orbits in the classical Lie algebras; see [BG13a, BG13b].

For the minimal nilpotent orbit in any g the classification of Irrfin(W) was obtained by

Premet in [Pre07].

Finally, let us mention a result obtained in [Los11b]. There the first author obtained a

criterion for a module in the category O for W to be finite-dimensional. In the case when O is

a so called principal Levi orbit this gives a complete classification of Irrfin(W). The description

depends heavily on the properties of PrO(U) and so is rather implicit. Also it is a hard and

interesting question to explain how the classification from [Los11b] agrees with the result of the

present paper.
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1.3 Main theorem
So our goal is to describe, for any ideal J ∈ PrO(U) with integral central character, the A(e)-orbit
in Irrfin(W) lying over J . We remark that such J exists only when the orbit O is special in the
sense of Lusztig, see [Lus84, 13.1.1] for the definition of a special orbit.

To a special orbit O one can assign a subset c in the Weyl group W of g called a two-sided
cell. The two-sided cell splits into the union of subsets called left cells. For an integral central
character λ of U let PrO(Uλ) be the set of primitive ideals in PrO(U) with central character λ.
The set PrO(Uλ) naturally embeds into the set of all left cells in c, and this embedding is a
bijection when λ is regular.

Lusztig defined a certain quotient Ā of A(e), see [Lus84, p. 343]. Further to each left cell σ
inside c he associated a subgroup Hσ ⊂ Ā defined up to conjugacy, see [Lus87, Proposition 3.8].
For the reader’s convenience let us provide some description here, more details will be given in § 6.
To c, σ one assigns the cell W -modules [σ] ⊂ [c]. To O one assigns the Springer W ×A(e)-module
Spr(O). Then Hσ has the (defining, in fact) property that Q(Ā/Hσ) = HomW ([σ], Spr(O)) as
A(e)-modules, while Ā is the minimal quotient of A(e) that acts on HomW ([c],Spr(O)).

Now we are ready to state our main result.

Theorem 1.1. Let J ∈ PrO(U) have integral central character. Let σ be the corresponding left
cell. The A(e)-orbit over J is Ā/Hσ.

1.4 Discussion
We would like to outline some ideas leading to the statement of the theorem as well as some
techniques used in the proof. The reader should keep in mind that some constructions are
explained informally and often not as they are used in the actual proofs below.

Theorem 1.1 was conjectured by R. Bezrukavnikov and the second author (unpublished).
The main motivation for that conjecture came from [BFO09]. So, first, we are going to explain
what was done in [BFO09].

Fix a special orbit O. In [Lus97] Lusztig assigned a certain multi-fusion (rigid monoidal,
semisimple with finitely many simples) category JO to O (or, more precisely, to the corresponding
two-sided cell c). The category JO categorifies the block JO in Lusztig’s asymptotic Hecke
algebra J. Lusztig conjectured, among other things, that his category should admit a fairly
easy description: it should be isomorphic to the category CohĀ(Y ′×Y ′), where Y ′ :=

⊔
σ Ā/Hσ,

of Ā-equivariant sheaves of finite-dimensional vector spaces on Y ′ × Y ′. This conjecture was
verified in [BFO09].

Lusztig’s category JO can be defined using the representation theory of U . Namely, consider
the monoidal category HC(Uρ) of all Harish-Chandra U-bimodules whose left and right central
characters are trivial. Consider its tensor ideals HCO(Uρ) ⊃ HC∂O(Uρ) of all bimodules supported
on the closure O and on the boundary ∂O, respectively. Form the quotient HCO(Uρ). We do not
know whether this category is semisimple, in general, in any case, we can consider its subcategory
HCO(Uρ)ss of all semisimple objects. The last subcategory happens to be closed under tensor
products. Moreover, it is naturally isomorphic to Lusztig’s category JO, see [BFO12] for details.

On the other hand, in [Los11a] the first author related the category HCO(U) (defined similarly
to HCO(Uρ) but without restrictions on the central characters) to a certain category of finite-
dimensional W-bimodules to be defined next.

Consider a maximal reductive subgroup Q of ZG(e). This group acts onW by automorphisms
and the action produces the A(e)-action on Irrfin(W). Moreover, there is a Q-equivariant
embedding of the Lie algebra q of Q into W. So we can define the category HCQ

fin(W) of
Q-equivariant finite-dimensional W-bimodules. The Q-equivariance includes the condition that
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the action of Q◦ should integrate the adjoint q-action, where q is viewed as a Lie subalgebra ofW.

In other words, the only additional structure on a Q-equivariant bimodule compared to a usual

bimodule is the action of representatives of the elements of Q/Q◦. In particular, the subcategory

HCQ
fin(Wρ)

ss of semisimple Q-equivariant finite-dimensional bimodules with left and right central

characters ρ roughly looks like the category CohA(e)(Y × Y ) with Y = Irrfin(Wρ). One way how

HCQ
fin(Wρ)

ss may be different from CohA(e)(Y × Y ) is via twists with 2- and 3-cocycles. We are

not going to make this precise here, we only present an example of what we mean by a 2-cocycle

twist.

Consider the algebra A := Mat2(K)⊕Mat2(K) and its group Γ of automorphisms constructed

as follows. Take the dihedral subgroup Dyh8 of order 8 in GL2(K). Then for Γ take its image

under the homomorphism GL2(K)→ PGL2(K) × PGL2(K) ⊂ Aut(A) projecting GL2(K) onto

the first factor. So Γ ∼= Z/2Z × Z/2Z. Consider the category BimodΓ(A) of Γ-equivariant (in

the usual sense) A-bimodules. It is easy to see that BimodΓ(A) is equivalent to the category

of all sheaves on {1, 2} × {1, 2}, whose fibers over the diagonal points are genuine Γ-modules,

while fibers over the non-diagonal points are projective modules corresponding to a non-trivial

2-cocycle. This is what we mean by a 2-cocycle twist. The 3-cocycle twists we mentioned have

to do with triple product isomorphisms that are a part of the definition of a monoidal category.

Now let us explain a relationship between the categories HCO(U) and BimodQfin(W). It was

shown in [Los11a, Theorem 1.3.1] that there is a fully faithful tensor embedding HCO(U) →

BimodQfin(W) of abelian categories, whose image is closed under taking subquotients. The

embedding is compatible with central characters so that HCO(Uρ) embeds into BimodQfin(Wρ).

Since the image is closed under subquotients we see that JO = HCO(Uρ) embeds into the category

BimodQfin(Wρ)
ss, which, as we mentioned, is, basically, CohA(e)(Y × Y ) with various twists.

To relate the approach from [Los11a] with that from [BFO09] we would like to assert that

not only Y = Y ′ (which is the regular central character case of Theorem 1.1) but also that the

embedding JO ↪→ CohA(e)(Y × Y ) realizes JO as CohĀ(Y × Y ). There is a bunch of various

problems with this claim, otherwise we would not write this paper. The first problem to address

is as follows: not every multi-fusion subcategory of CohA(e)(Y × Y ) has the form CohĀ(Y × Y )

(with various additional twists) for some quotient Ā of A(e) acting on Y . It turns out that a

criterion for a subcategory to have that form is that for each A(e)-orbit in Y ×Y the subcategory

has an object supported on that orbit. It so happens that JO ⊂ CohA(e)(Y × Y ) does have that

property but this is a pretty non-trivial fact about W -algebras to be proved in § 5.

But even if we know that JO = CohĀ(Y × Y ) (again with various twists) there are other

problems: why Ā viewed as a quotient of A(e) should be the same as Ā, why no twists occur

and, most importantly, why Y = Y ′? An important point to note here is that even if a finite

group Γ is fixed, knowing the category CohΓ(X×X) up to an equivalence of monoidal categories

is not sufficient to recover X as a set with a Γ-action. The simplest example is as follows: take

Γ = Z/2Z, X1 = {pt}, X2 = Γ. Then the multi-fusion categories CohΓ(X1×X1),CohΓ(X2×X2)

are equivalent. The presence of twists makes things even worse: for Γ = Z/2Z×Z/2Z the category

BimodΓ(A) considered above is equivalent to CohΓ(X ×X) with X = Γ t {pt}.
Fortunately, that ambiguity can be fixed with, basically, just one powerful tool. That tool is a

relationship between the finite-dimensional representations ofWρ and the Springer representation

Spr(O) obtained by Dodd in [Dod13]. Namely consider the rational K-group of the category of

finite-dimensional Wρ-modules. This K-group gets identified with the Q-span Q(Y ) of Y . One

can define a natural structure of a W × A(e)-module on Q(Y ). Dodd proved that there is a

W ×A(e)-equivariant embedding Q(Y ) ↪→ Spr(O).
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The existence of an embedding is a very restrictive condition on Y . It turns out that the
claim we need to prove is more or less equivalent to showing that Q(Y ) is as big as possible,
meaning that it coincides with the maximal submodule Spr(O)c of Spr(O) whose irreducible
W -submodules appear in the cell module [c].

So, very roughly, the proof of Theorem 1.1 uses the following algorithm.

(0) Start with a left cell σ with Hσ = Ā and assume no knowledge of the W × A(e)-module
Q(Y ) (well, we know that the trivial Ā-module always occurs there but this is not of much
help).

(1) Use the information on the structure of JO and known irreducible constituents of Q(Y ) to
prove that the stabilizers in Y for more left cells (primitive ideals) τ coincide with Hτ .

(2) Get some new irreducible constituents of Q(Y ).

(3) If Q(Y ) = Spr(O)c is known, then we are, more or less, done. Otherwise, return to step (1).

In the course of the proof we will also see that basically no twists occur in JO = CohĀ(Y × Y ).
Of course, the scheme above assumes that there is a left cell σ with Hσ = Ā, so the question

is whether this is always the case. The answer is: always, with three exceptions: one cell for
E7 and 2 cells for E8. These are so called exceptional cells that have to be treated separately,
see [Ost13].

1.5 Applications
In fact, together with Theorem 1.1 we obtain an alternative proof of the Lusztig conjecture on
the structure of JO mentioned in the previous subsection. This application is pretty well expected
and is straightforward from our proof.

There is also a much less expected application: using Theorem 1.1 and some of the techniques
used in the proof the first author was able to compute the dimensions of finite-dimensional
irreducible modules with integral central characters. Further, he proved that the dimension of
such a module equals the Goldie rank of the corresponding primitive ideal in U . This and related
developments will be a subject of a forthcoming paper [Los12a].

1.6 Structure of the paper
Let us describe the organization of the paper. The paper is broken into sections; the beginning
of each section describes its content in more detail.

Sections 2–4 and 6 are preliminary and, basically, contain nothing new. In § 2 we introduce
certain categories related to Harish-Chandra bimodules and describe some related constructions.
In our proofs we need to use the language of multi-fusion and module categories, those are recalled
in § 3. In § 4 we recall various facts about W -algebras. Finally, in § 6 we recall various things
related to cells and Lusztig’s subgroups, including the explicit computations of the latter.

Section 5 is technical, there we prove several results regarding the functor HCO(U) →
HCQ

fin(W). The most important one is Theorem 5.1.
Finally, in § 7 we complete the proof of Theorem 1.1.

1.7 Conventions and notation
In this subsection we describe conventions and the notation used in this paper. The notation
will be recalled from time to time in the main body of the paper.

1.7.1 Lie algebras and algebraic groups. Throughout the paper g is a reductive Lie algebra
defined over an algebraically closed field K of characteristic 0. We fix a Borel subalgebra b ⊂ g
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and a Cartan subalgebra h ⊂ b. Let ∆,W be the root system and the Weyl group corresponding
to the choice of h, and ∆+ the system of positive roots corresponding to the choice of b. Let
U(g) denote the universal enveloping algebra of g. We will often write U for U(g). Further, G
denotes a connected reductive algebraic group with Lie algebra g.

By (·, ·) we denote a symmetric invariant form on g whose restriction to h(Q) is positive
definite. We identify g with g∗ using that form.

1.7.2 Nilpotent orbits. By O we denote a nilpotent orbit in g. Starting from § 5 we assume
that the orbit O is special in the sense of Lusztig, unless otherwise specified. We pick an element
e ∈ O and include it into an sl2-triple (e, h, f). Then S denotes the Slodowy slice, S := e +
zg(f), where zg(•) stands for the centralizer in g. We set Q := ZG(e, h, f), this is a maximal
reductive subgroup of the centralizer ZG(e). Then A := A(e) = Q/Q◦ = ZG(e)/ZG(e)◦ denotes
the component group.

Starting from g and O (or, more precisely, from g and the sl2-triple (e, h, f)) one constructs
the W -algebra to be denoted by U(g, e) or, more frequently, by W.

1.7.3 Central characters. Recall that the center Z(U) of U is identified with K[h∗]W via the
Harish-Chandra isomorphism: to z ∈ Z(U) one assigns the polynomial of ν by which z acts on
the irreducible module L(ν) with highest weight ν − ρ. Here, as usual, ρ stands for half the sum
of all positive roots.

One says that a character of Z(U) is integral (with respect to G) if its representative λ ∈ h∗

lies in the character lattice of G, and regular if λ is nonzero character lattice of G, and regular
if λ is nonzero on all coroots. A non-regular character is also called singular.

The integral central characters are therefore in one-to-one correspondence with the dominant
weights, where λ ∈ h∗ is called dominant if it is integral and non-negative on all positive coroots.
We will usually denote dominant weights (integral central characters) by Greek letters λ, µ. The
set of dominant characters of G will be denoted by P+. The set of strictly dominant characters
(those that are positive on all positive coroots) is denoted by P++. Further we say that µ ∈ P+

is compatible with w ∈ W (or vice versa) if wα ∈ −∆+ for any α ∈ ∆+ with 〈µ, α∨〉 = 0.
Equivalently, w is the longest element in wWα. Clearly any integral element of h∗ is represented
in the form wµ with compatible w, µ in a unique way.

For λ ∈ h∗, let Uλ := U/UZ(U)λ be the central reduction of U by the ideal in U generated
by the maximal ideal Z(U)λ of λ in Z(U). Of course, with our conventions, Uλ = Uwλ for all
w ∈W .

1.7.4 Cells and Lusztig’s groups. In what follows we usually deal with one special orbit O
(or the corresponding two-sided cell c) at a time so we do not indicate the dependence on O or
c when this does not lead to confusion. By Ā we denote the Lusztig quotient of the component
group A.

Left cells inside c are usually denoted by Greek letters σ, τ . For a left cell σ by Hσ we denote
the corresponding Lusztig subgroup in Ā.

1.7.5 Primitive ideals and Harish-Chandra bimodules. Recall that by a primitive ideal we
mean the annihilator of an irreducible module. For λ ∈ h∗ set J (λ) := AnnU L(λ). According to
the Duflo theorem, every primitive ideal is of the form J (λ) for some (non-unique, in general)
λ ∈ h∗.

The set of all primitive ideals will be denoted by Pr(U). By PrO(U) we denote the set of
all primitive ideals J such that the associated variety V(U/J ) coincides with O. By Pr(Uλ)
we denote the subset of Pr(U) consisting of all ideals with central character λ, i.e., all J with
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J ∩ Z(U) = Z(U)λ. We use the notation Pr(UΛ) to denote the set of all primitive ideals whose

central characters belong to a subset Λ ⊂ h∗.

The notation for Harish-Chandra bimodules will be explained in more detail in § 2.1. Let us

mention now that we consider various categories related to Harish-Chandra bimodules and our

notation for them usually looks like Λ1HCΛ2
Y (U). This stands for the category of all HC bimodules

with generalized left central character lying in Λ1 ⊂ h∗, generalized right central character in Λ2,

and the associated variety contained in Y ⊂ g ∼= g∗, when Y is closed. When Y is locally closed,

HCY (U) stands for the subquotient HCY (U)/HC∂Y (U). The notion of (generalized) central

characters still makes sense for the objects of such subquotients.

By Λ1JΛ2 we denote the category Λ1HCΛ2
O (U)ss, where the superscript ‘ss’ means the

semisimple part of the category. Any missing superscript stands for the genuine central character

ρ so that, for instance, JΛ2 means ρJΛ2 . Also we will use notation like Jσ, τJ, σJτ for certain

subcategories in J(= ρJρ) associated with left cells σ, τ ; see § 6.2 for the definitions.

1.7.6 Irreducible W-modules. The set of all irreducible W-modules with central characters

from a subset Λ ∈ h∗ will be denoted by Y Λ. As above, we write Y for Y ρ. Below we will introduce

an extension A of A(e) and a quotient Ā of A. The latter acts on Y Λ and eventually will be

shown to coincide with Ā. The stabilizer (defined up to conjugacy) of the Ā-orbit lying over

J will be denoted by Hλ
σ, where λ is the central character, and σ is the left cell corresponding

to J . So our main theorem just asserts that Hλ
σ = Hσ.

1.7.7 Miscellaneous notation. This notation is summarized below.

Aopp the opposite algebra of A.
⊗̂ the completed tensor product of complete topological vector spaces/

modules.
(a1, . . . , ak) the two-sided ideal in an associative algebra generated by elements a1, . . . ,

ak.
A∧χ the completion of a commutative algebra A with respect to the maximal

ideal of a point χ ∈ Spec(A).
AnnA(M) the annihilator of an A-module M in an algebra A.
#C the number of isomorphism classes of simple objects in an abelian category

C.
[C] the rational K-group of an abelian category C.
Coh(X) the category of sheaves of finite-dimensional vector spaces on a set X.
CohΓ(X) the category of Γ-equivariant sheaves of finite-dimensional vector spaces on

a Γ-set X.
Der(A) the Lie algebra of derivations of an algebra A.
Irr(Γ) the set of irreducible modules of a finite group Γ.
Gx the stabilizer of x in G.
grA the associated graded vector space of a filtered vector space A.
Q(X) the Q-linear span of a finite set X.
R~(A) :=

⊕
i∈Z ~i FiA: the Rees K[~]-module of a filtered vector space A.

Repψ(Γ) the category of projective representations of a finite group Γ corresponding
to a 2-cocycle ψ.

V(M) the associated variety of M.
Z(g) the center of U(g).
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2. Preliminaries on Harish-Chandra bimodules

2.1 Subcategories and subquotients
Let us recall that a U-bimodule M is said to be Harish-Chandra (HC) for G if:

• M is finitely generated;

• M coincides with the sum of its finite-dimensional submodules for the adjoint action of g
(ad(ξ)m = ξm−mξ);

• the adjoint g-action on M integrates to a G-action.

Of course, for a simply connected semisimple group G the last condition is satisfied automatically.
For M ∈ HC(U) one can define its associated variety V(M) ⊂ g∗ as follows. Equip U with

the standard PBW filtration. A compatible filtration onM is said to be good if it is ad(g)-stable
and the associated graded grM is a finitely generated grU = S(g)-module (since the filtration
is ad(g)-stable, the left and the right S(g)-actions on M coincide). By the associated variety
V(M) of M we mean the support of grM in g ∼= g∗ = Spec(S(g)).

For a closed G-stable subvariety Y ⊂ g∗ let HCY (U) denote the full subcategory in HC(U)
consisting of all bimodules M with V(M) ⊂ Y . Clearly, HCY (U) is a Serre subcategory of
HC(U) (i.e., it is closed under taking subquotients and extensions). We also note that V(M) =
V(U/LAnn(M)) = V(U/RAnn(M)). Here and below LAnn,RAnn denote the left and right
annihilators, respectively.

The tensor product over U defines the structure of a monoidal category on HC(U) (the unit
object is U itself). For two modules M1,M2 ∈ HC(U) we have

LAnn(M1 ⊗UM2) ⊃ LAnn(M1),RAnn(M1 ⊗UM2) ⊃ RAnn(M2). (2.1)

It follows that V(M1 ⊗UM2) ⊂ V(M1) ∩V(M2).
There is an internal Hom functor in the category HC(U). Namely, forM1,M2 ∈ HC(U) the

space Hom(M1,M2) := HomUopp(M1,M2) of homomorphisms of right U-modules has a natural
structure of a U-bimodule. It is known that Hom(M1,M2) is HC, see, for example, [Jan83, 6.36].
Moreover,

LAnn(Hom(M1,M2)) ⊂ LAnn(M2),RAnn(Hom(M1,M2)) ⊃ LAnn(M1), (2.2)

in particular, V(Hom(M1,M2)) ⊃ V(M1) ∩V(M2).
Now consider the category HCO(U) and its subcategory HC∂O(U), where ∂O := O\O. We can

form the quotient category HCO(U) := HCO(U)/HC∂O(U), which comes equipped with natural
tensor product and internal Hom functors induced from HCO(U).

Let us proceed to central characters. One says that λ ∈ h∗ is the left central character of
M∈ HC(U) if the left U-action onM factors through Uλ. We say that λ ∈ h∗ is the generalized
central character of M if the left Zλ action on M is locally nilpotent. Here Zλ denotes the
maximal ideal of λ in the center Z of U . Right (usual and generalized) central characters are
defined similarly. Let λHC(U) (respectively, HCλ(U)) stand for the (full) subcategories in HC(U)
consisting of all HC bimodules with generalized left (respectively, right) central character λ.
Next, put λHCµ(U) = λHC(U) ∩HCµ(U). Then for subsets Λ1,Λ2 ⊂ h∗ we set

Λ1HC(U) :=
⊕
λ∈Λ1

λHC(U), HCΛ2(U) :=
⊕
µ∈Λ2

HCµ(U),

Λ1HCΛ2(U) = Λ1HC(U) ∩HCΛ2(U) =
⊕

λ∈Λ1,µ∈Λ2

λHC(U)µ.
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Further, for a closed subvariety Y ⊂ g∗ we set ?HC•Y (U) := ?HC•(U) ∩ HCY (U). Then define
?HC•O(U) := ?HC•O(U)/?HC•∂O(U). Of course,

Λ1HCΛ2
O (U) =

⊕
λ∈Λ1,µ∈Λ2

λHCµ
O(U).

Also by HC(λ)(U) we denote the full subcategory of modules with actual right central character λ.
Recall the notation Λ1JΛ2

O := Λ1HCΛ2
O (U)ss. When Λ1 = Λ2 the last category is closed

in ΛHCΛ
O(U) under the tensor product. For instance, this can be deduced from [Los11a,

Corollary 1.3.2] and (2.1), see [BFO12] for details. Now [Los11a, Corollary 1.3.2] and (2.2) imply
that ΛJΛ

O is closed under the internal Hom functor. Next, there is a unit object 1 in ΛJΛ
O that is

the class of
⊕
J U/J , where J is running over PrO(UΛ). So we can define the duality functor

•∗ := Hom(•,1) on ΛJΛ
O.

Any missed superscript in Λ1JΛ2
O means ‘ρ’. We would like to remark that a Harish-Chandra

bimodule (for G) with left and right central character that differ by an element of the root lattice
is automatically an HC bimodule for the adjoint group Ad(g).

Also in the sequel O will be fixed so we drop the subscript in Λ1JΛ2
O .

2.2 Bernstein–Gelfand equivalence
In this and the subsequent subsection G is supposed to be semisimple and simply connected.
We will need the Bernstein–Gelfand equivalence, [BG80], between µO and µHC(ρ)(U). Let us
recall a few basics about the category O. By definition, it consists of all finitely generated
U-modules with locally finite action of b and diagonalizable action of h. Let ∆(λ) denote the
Verma module with highest weight λ − ρ. Next, let µO be the full subcategory in O consisting
of all modules with generalized central character µ, and P+O be the subcategory of all modules
with integral generalized central character.

Consider a functor BG : P
+O→ P+

HC(ρ)(U) that sends M ∈ P+O to the space L(∆(ρ),M)
of all g-finite linear maps ∆(ρ) → M . This functor is known to be an equivalence of
abelian categories. Under this equivalence the left annihilator of L(∆(ρ),M) coincides with
the annihilator of M . The right annihilator of L(∆(ρ), L(wµ)) is J(w−1ρ) provided w, µ are
compatible in the sense explained in § 1.7.3.

The equivalence BG is compatible with tensor products and internal Homs as follows: we
have M ⊗U BG(N) = BG(M ⊗U N) for all M ∈ P+

HCP+
(U), N ∈ P+O. Further we have

Hom(BG(N1),BG(N2)) = L(N1, N2), see, for example, [Jan83, 6.37].

2.3 Translation functors
Fix λ, µ ∈ P+. Consider the categories U-Modλ,U-Modµ of all U-modules with generalized central
characters λ, µ. Then we have an exact functor Tµλ : U-Modλ → U-Modλ called the translation
functor, see, for instance, [Jan83, Kapitel 4]. Namely, let ν be the dominant weight lying in
W (µ − λ). Then, given N ∈ U-Modλ, for Tµλ (N) we take the component of character µ in
L(ν + ρ)⊗N .

The functors Tµλ enjoy the following properties.

(1) Whenever Wλ = Wµ, Tµλ is an equivalence.

(2) Suppose λ is regular. Then Tµλ maps L(wλ) to L(wµ) if w and µ are compatible and to 0
otherwise. In particular, if T λµ (L(w1λ)) ∼= T λµ (L(w2λ)) 6= 0, then w1 = w2.

(3) Suppose again that λ is regular. Then Tµλ ◦ T λµ is the sum of |Wµ| copies of the identity
functor.
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Properties (1) and (3) can be found in [BG80, 4.1 and 4.2], respectively, while for (2) the
reader is referred to [Jan83, 4.12].

On the category U-Modλ,k consisting of all U-modules annihilated by Zkλ , the functor Tµλ
is given by the tensor product by the Harish-Chandra bimodule T µλ (k) that is the generalized
eigenspace for µ in L(ν+ρ)⊗U/UZkλ . Therefore Tµλ = lim

←−k T
µ
λ (k)⊗U •. Property (3) means that

T µλ (k′)⊗U T λµ (k) = (U/UZkµ)⊕|Wµ| for k′ � 0 whenever λ is regular.
In fact, Tµλ defines an inclusion preserving map between the sets of ideals in Uλ,Uµ, see

[Jan83, 5.4–5.8]. Namely, we can define the map Tµλ by setting Tµλ (AnnUλM) := AnnUµ(Tµλ (M)).
For regular λ the map Tµλ restricts to a map Tµλ : PrO(Uλ)→ PrO(Uµ) ∪ {Uµ}. Next, there is an
embedding T λµ : PrO(Uµ)→ PrO(Uλ). For an irreducible M ∈ Oµ this embedding sends AnnUM
to the only minimal prime ideal of AnnU (T λµ (M)) that does not map to Uµ under Tµλ . Explicitly,
Tµλ (J(wλ)) = J(wµ) if w and µ are compatible and Tµλ (J(wλ)) = Uµ otherwise. For compatible
µ and w we have T λµ(J(wµ)) = J(wλ).

Using the Bernstein–Gelfand equivalence, we get the functor T λρ : ρHCρ
O(U) → λHCρ

O(U)
with the following properties.

(i) The functor sends an irreducible to an irreducible or 0.

(ii) Two irreducible bimodules with the same left annihilator are sent or not sent to zero
simultaneously.

(iii) The functor induces a bijection between the set of irreducibles in ρHCρ
O(U) that it does

not annihilate and the set of all irreducibles in λHCρ
O(U). This bijection preserves the right

annihilators.

3. Reminder on multi-fusion categories and their modules

3.1 Multi-fusion categories: definition and examples
In this subsection we are going to recall various definitions, constructions and results related to
multi-fusion monoidal categories and their module categories. The reader who is not familiar with
the subject should view it as a categorification of the representation theory of finite-dimensional
semisimple associative algebras over an algebraically closed field. Of course, the categorical
framework is somewhat more involved.

A rigid monoidal K-linear abelian category C is said to be multi-fusion if:

• it has finite-dimensional Hom-spaces;

• it is semisimple;

• all objects have finite length;

• there are finitely many isomorphism classes of simple objects.

In particular, we will see that the category JO (and, more generally, the category ΛJΛ
O) is multi-

fusion and this is the category we are mostly interested in.
A large class of multi-fusion categories can be produced from so called centrally extended

Γ-sets, where Γ is a finite group. Namely, let X be a finite set acted on by a finite group Γ. By the
centrally extended structure on X we mean a Γ-invariant collection ψ = (ψx)x∈X of classes ψx ∈
H2(Γx,K×). Given X and ψ we can form the category CohΓ,ψ(X×X) of ψ-twisted Γ-equivariant
sheaves of finite-dimensional vector spaces on X ×X. Here ‘ψ-twisted’ means that the fiber of
any object in (x, y) is a projective Γ(x,y)-module, whose Schur multiplier is ψx|Γ(x,y)

− ψy|Γ(x,y)
.

The tensor product on this category is defined by convolution. It is straightforward to check that
the category CohΓ,ψ(X ×X) is multi-fusion.
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Yet another example is the category VecωΓ, where ω ∈ H3(Γ,K×). The simple objects 1γ of

this category are parameterized by γ ∈ Γ. By definition, we have 1γ ⊗ 1γ′ = 1γγ′ and the triple

product isomorphism is defined using some 3-cocycle representing ω. The category VecωΓ is even

a fusion category, which, by definition, means that the unit object is simple. The categories VecωΓ
admit an axiomatic description; those are only fusion categories such that all simple objects are

invertible, see for example [Ost03a, p. 183, Example (vi)].

We will say that a multi-fusion category D is a quotient of a multi-fusion category C if there

is a tensor functor F : C→ D such that any object of D is a direct summand of an object of the

form F (X), X ∈ C. For example, the quotients of VecΓ are precisely the categories Vecω
Γ̄
, where

Γ̄ is a quotient of Γ and ω ∈ H3(Γ̄,K×) is such that its pull-back to Γ is trivial.

If C1,C2 are multi-fusion categories, then their direct sum C1⊕C2 acquires a natural structure

of a multi-fusion category. So we get the notion of an indecomposable multi-fusion category. For

example, it is easy to see that the categories CohΓ,ψ(Y × Y ),VecωΓ are indecomposable. The

category ΛJΛ
O is also indecomposable, see Proposition 5.5.

To conclude the subsection, let us mention that if C is a multi-fusion category, then [C] is a

based ring in a sense of [Lus87], in particular, [C] is semisimple by [Lus87, 1.2(a)]. For example,

[VecωΓ] = Q(Γ).

3.2 Module categories: definition and examples

Now let C be a multi-fusion category. A C-module is a semisimple K-linear abelian category M

equipped with a tensor product functor⊗ : C�M→M together with a collection of associativity

isomorphisms (C1 ⊗ C2) ⊗M ∼−→ C1 ⊗ (C2 ⊗M) for all objects C1, C2 of C and M of M. The

rational K-group [M] of a C-module M is naturally a [C]-module.

The module categories we are mostly interested in are the JO-module Y := Coh(Y ), and,

more generally, the ΛJΛ
O-module YΛ := Coh(Y Λ).

An example of a CohΓ,ψ(X ×X)-module is provided by the category Coh(X). The module

structure is again given by convolution.

For C-modules M1,M2 the direct sum M1 ⊕M2 has a natural C-module structure. So we

get the natural notion of an indecomposable C-module. For example, a CohΓ,ψ(X ×X)-module

Coh(X) is always indecomposable. The main result of § 5 is equivalent to saying that the ΛJΛ
O-

module YΛ is indecomposable for any Λ.

Let us describe indecomposable VecωΓ-modules, see for example [Ost03b, Example 2.1]. Up

to equivalence, they are classified by pairs (Γ0, ψ), where Γ0 is a subgroup of Γ defined up to

conjugacy and ψ is a K×-valued 2-cochain on Γ0 with dψ cohomological to ω. The simples in

the corresponding category are parameterized by the points of Γ/Γ0, and, moreover, the rational

K-group is Q(Γ/Γ0) as a [VecωΓ] = Q(Γ)-module.

Finally let us remark that the definition introduced above is of left module categories.

Similarly, one can speak about right module categories. Also for two multi-fusion categories

one can speak about their bimodules.

3.3 Functors between C-modules

Let C be a multi-fusion category and M1,M2 be its module categories. We can consider the

category FunC(M1,M2) of C-linear functors M1 → M2. Its objects are functors M1 → M2

together with ‘C-linearity isomorphisms’ (that piece of data is needed because the C-linearity

cannot be a condition; in the categorical world this is always an additional structure, see, for

example, [Ost03a], for details).
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The category FunC(M,M) has a natural tensor product and is a multi-fusion category

(indecomposable if C is indecomposable, genuinely fusion if M is indecomposable), see [EON05,

Theorem 2.18]. This category is said to be dual to C with respect to M and is denoted by C∗M.

We remark that M is naturally a right C∗M-module and we have the double centralizer property:

C = (C∗M)∗M, [Ost03a, Theorem 4.2]. We remark that for the double centralizer property it is

important that C is indecomposable.

In general, FunC(M1,M2) is a C∗M1
− C∗M2

-bimodule.

Below we will need various more or less standard facts about the functor categories.

Lemma 3.1. Let X be a finite set acted on by a finite group Γ. Consider the category

CohΓ,ψ(X×X) and its rigid monoidal (hence multi-fusion) subcategory C such that M := Coh(X)

is indecomposable over C. Then:

(i) the dual category of CohΓ,ψ(X ×X) with respect to the module category M is VecΓ;

(ii) C∗M = Vecω
Γ̄
, where Γ̄ is some quotient of Γ and ω ∈ H3(Γ̄,K×) is such that the functor

VecΓ → FunC(M,M) factors through VecΓ → Vecω
Γ̄

(so M is a module category over Vecω
Γ̄
);

(iii) C ∼= (Vecω
Γ̄
)∗M.

Proof. (i) This is basically a corollary of the double centralizer property; CohΓ,ψ(X ×X) is just

the dual to VecΓ with respect to Coh(X).

(ii) Since the functor C ↪→ CohΓ(X×X) is injective in the sense of [EON05, § 5.7], we have by

[EON05, Proposition 5.3] that the dual functor VecΓ → C∗M is surjective in the sense of [EON05,

§ 5.7]. It follows that any simple object of C∗M is invertible, whence C∗M = Vecω
Γ̄
.

(iii) This is the double centralizer property. 2

We say that an object e ∈ C is a direct summand of the unit object if there is another object

f ∈ C and an isomorphism e ⊕ f ' 1. It is clear that such an object is an idempotent, that is,

there is a canonical isomorphism e ⊗ e ' e, and is self-dual: e ∼= e∗. For a simple object X ∈ C

we have either X ⊗ e ' X or X ⊗ e = 0. Thus C⊗ e is a full subcategory of C; clearly C⊗ e is a

left C-module subcategory of C. Similarly, for a C-module category M we have a full subcategory

e⊗M ⊂M. This subcategory is a right C∗M-submodule in M.

Let us consider some examples. Let Γ, X, ψ be such as above. Let X =
⊔n
i=1Xi be the

Γ-orbit decomposition. Then one has the decomposition 1 =
⊕n

i=1 ei, where the summands are in

one-to-one correspondence with the Γ-orbits in X. We have CohΓ,ψ(X×X)⊗ei = CohΓ,ψ(X×Xi)

and ei ⊗ Coh(X) = Coh(Xi).

We are going to investigate some properties of the categories FunC(C⊗ e,M).

First, we need to know various aspects of how the duality agrees with passing to the

subcategories of the form e⊗ C⊗ e.

Lemma 3.2. Let C be a multi-fusion category and M be its left module. Consider the

decomposition 1=
⊕

i ei and set Mi := ei⊗M. Then we have the following natural identifications:

(i) FunC(C⊗ ei,M) = Mi of right C∗M-modules;

(ii) (ei ⊗ C⊗ ei)∗Mi

∼= C∗M of multi-fusion categories, provided C is indecomposable;

(iii) ej ⊗ C⊗ ei = FunC∗M
(Mi,Mj) of abelian categories.

Proof. The identification in (i) is given by F 7→ F (ei).
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Using C = (C∗M)∗M we get

C =
⊕
i,j

FunC∗M
(ei ⊗M, ej ⊗M).

Clearly, FunC∗M
(ei ⊗M, ej ⊗M) ⊂ ej ⊗ C ⊗ ei, whence FunC∗M

(ei ⊗M, ej ⊗M) = ej ⊗ C ⊗ ei,
which is (iii).

Setting i = j and applying the duality again, we get (ii). 2

Remark 3.3. Part (i) implies that ej ⊗ C⊗ ei = FunC(C⊗ ei,C⊗ ej). Also, (ii) implies that Mi

is nonzero.

Second, we need to describe the K-groups of certain Fun-categories.

Lemma 3.4. Let C be a multi-fusion category, M its left module, and e a direct summand of
the unit object in C. We have a natural (in particular, [C∗M]-linear) isomorphism Hom[C]([C⊗ e],
[M]) = [FunC(C⊗ e,M)].

Proof. Thanks to Lemma 3.2, FunC(C⊗ e,M) ' e⊗M. It is clear that [e⊗M] = [e][M], where
[e] ∈ [C] is the class of e ∈ C. An isomorphism of the lemma follows since we have the following
equalities of [C∗M]-modules

Hom[C]([C⊗ e], [M]) = Hom[C]([C][e], [M]) = [e][M] = [e⊗M]. 2

Remark 3.5. Let us notice that for arbitrary module categories M1,M2 even the equality
# FunC(M1,M2) = dimQ Hom[C]([M1], [M2]) does not hold. For example, set C = Rep(Γ) for
some finite group Γ. Then the category M := Vec of vector spaces is a left C-module: the action
of C on M factors through the forgetful functor Rep(Γ)→ Vec. We have FunC(M,M) = VecΓ,
while Hom[C]([M], [M]) is 1-dimensional.

4. Preliminaries on W -algebras

4.1 Definition
First we recall the definition of the W -algebras given in [Los10a] (with slight refinements obtained
in [Los11a]). All results mentioned here can be found in [Los11a, §§ 2.1, 2.2].

Recall that G is an arbitrary connected reductive group.
The Slodowy slice S ⊂ g is, by definition, the affine subspace e + zg(f) ⊂ g, where zg(·)

denotes the centralizer. It will be convenient for us to consider S as a subvariety in g∗.
Consider the equivariant Slodowy slice X := G × S ⊂ G × g∗ = T ∗G. The group G acts on

T ∗G and on X by left translations. Moreover, we have actions of the one-dimensional torus K×
and of the group Q := ZG(e, h, f) on T ∗G defined by

t · (g, α) = (gγ(t)−1, t−2γ(t)α),

q · (g, α) = (gq−1, qα),

t ∈ K×, q ∈ Q, g ∈ G,α ∈ g∗.

Here γ : K×→ G is the one-parameter group with d1γ = h. The subvariety X ⊂ T ∗G is Q×K×-
stable.

According to [Los10a, § 3.1] there is a G×Q-invariant symplectic form ω on X satisfying the
additional condition t · ω = t2ω, t ∈ K×. This form is obtained by restricting to X the natural
form on T ∗G.
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Using the Fedosov deformation quantization, in [Los10a] the first author constructed a star-

product ∗ : K[X]⊗KK[X]→ K[X][~], f ∗g:=∑∞i=0Di(f, g)~2i, satisfying the following conditions:

(i) a natural K[~]-bilinear extension of ∗ to K[X][~]⊗K[~] K[X][~] is associative, and moreover,

1 ∈ K[X][~] is a unit for ∗;
(ii) D0(f, g) = fg,D1(f, g) − D1(g, f) = {f, g}, where {·, ·} stands for the Poisson bracket

associated with ω;

(iii) ∗ is G×Q equivariant, i.e., all Di are G×Q-equivariant maps. Also ∗ is homogeneous, that

is, Di has degree −2i for any i.

By a homogeneous equivariant W -algebra we mean the space W̃~ := K[X][~] equipped with

the star-product constructed above. A homogeneous W -algebra, by definition, is W~ := W̃G
~ .

Finally, by definition, the equivariant W -algebra W̃ is W̃~/(~ − 1), and the W -algebra W is

W̃G =W~/(~− 1). Let KiW denote the image of the K×-eigenspace in W~ with eigencharacter

t 7→ ti. Then the spaces KiW form an increasing exhaustive filtration on W.

By [Los11a], there is a G × Q-equivariant map g × q → W̃~, ξ 7→ ĤWξ , that is a quantum

comoment map for the action of G×Q on W̃, i.e., [ĤWξ , f ] = ~2ξW̃f for any f ∈ W̃~, ξ ∈ g⊕ q.

In the right-hand side ξW̃ means the derivation of W̃~ coming from the group action. Taking the

quotient by ~− 1 we get the quantum comoment map g× q→ W̃ also denoted by ĤWξ .

The quantum comoment maps q→ W̃~, W̃ are G-invariant and so their images lie inW~,W,

respectively. Also the algebra homomorphism U → W̃ induced by the quantum comoment map

for the G-action is G-equivariant. So restricting it to the G-invariants we get a homomorphism

Z →W.

Below we will need the following lemma that essentially appeared in [Los10a].

Lemma 4.1. There is a G × Q-equivariant isomorphism K[G] ⊗W → W̃ of right W-modules.

Here Q acts by right translations on K[G] and diagonally on the tensor product.

Proof. We have an obvious G ×Q-equivariant isomorphism K[G] ⊗ K[S]→ K[X]. Lift K[G] to

a G × Q-stable subspace in W̃. We claim that the multiplication map K[G] ⊗ W → W̃ is an

isomorphism with required properties. This map is injective, because its associated graded map

is. The surjectivity follows from the observation that the filtration on any G-isotypic component

in W̃ is bounded from below. The latter is a consequence of the fact that K[S] is positively

graded, see the proof of [Los10a, Proposition 2.1.5]. 2

We finish this subsection by recalling Premet’s definition, [Pre02, § 4] of the W -algebras that

was historically first.

Introduce a grading on g by eigenvalues of adh: g :=
⊕

g(i), g(i) := {ξ ∈ g | [h, ξ] = iξ} so

that γ(t)ξ = tiξ for ξ ∈ g(i). Define the element χ ∈ g∗ by χ = (e, ·) and the skew-symmetric

form ωχ on g(−1) by ωχ(ξ, η) = 〈χ, [ξ, η]〉. It turns out that this form is symplectic. Fix a Cartan

subalgebra t ⊂ q. Pick a t-stable Lagrangian subspace l ⊂ g(−1) and define the subalgebra

m := l ⊕⊕i6−2 g(i). Then χ is a character of m. Define the shift mχ = {ξ − 〈χ, ξ〉, ξ ∈ m} ⊂
g⊕K. Essentially, in [Pre02] the W -algebra was defined as the quantum Hamiltonian reduction

(U/Umχ)adm.

It was checked in [Los10a], see also [Los11a, Theorem 2.2.1], and the discussion after it, that

both definitions agree and also that the homomorphism Z →W coincides with one considered
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in [Pre02, 6.2] and so is an isomorphism of Z with the center ofW, see [Pre07, footnote 2]. Below
we always identify Z with the center of W using this isomorphism.

A useful feature of Premet’s construction is that it allows us to construct functors between the
categories of U- andW-modules. We say that a left U-module M is a Whittaker module if mχ acts
on M by locally nilpotent endomorphisms. In this case Mmχ = {m ∈M | ξm = 〈χ, ξ〉m,∀ξ ∈ m}
is a nonzero W-module. As Skryabin proved in the appendix to [Pre02], the functor M 7→Mmχ

is an equivalence between the category of Whittaker U-modules and the category W-Mod of
W-modules. A quasiinverse equivalence is given by N 7→ S(N) := (U/Umχ)⊗WN , where U/Umχ

is equipped with a natural structure of a U-W-bimodule. In the sequel we will call S the Skryabin
functor.

4.2 Decomposition theorem
All results of this subsection are taken from [Los11a, § 2.3].

Set V := [g, f ]. Equip V with a symplectic form ω(ξ, η) = 〈χ, [ξ, η]〉, an action of K× :
t · v = γ(t)−1v, and an action of Q restricted from g. Consider the homogeneous Weyl algebra
A~ := T (V )[~]/(u ⊗ v − v ⊗ u − ~2ω(u, v)). We have Q- and K×-actions of A~ induced from V
(with q · ~ = ~, t · ~ = t~). As a vector space, A~ coincides with K[V ∗][~], while the product on
A~ is the Moyal–Weyl star-product. The quotient A := A~/(~− 1) is the usual Weyl algebra.

Consider the cotangent bundle T ∗G of G. There is a G×Q-equivariant homogeneous (with
respect to the Kazhdan action) star-product ∗ : K[T ∗G]⊗K[T ∗G]→ K[T ∗G][~]. Set χ := (e, ·) ∈
g∗, x := (1, χ) ∈ X ⊂ T ∗G. The star-products on K[T ∗G][~],K[X][~] extend by continuity to the
completions K[T ∗G]∧Gx[[~]],K[X]∧Gx[[~]]. Also the star-product on A~ extends by continuity to
A∧~ := K[V ∗]∧0 [[~]]. See [Los10a, § 3.3] for details.

We note that the algebra K[T ∗G]∧Gx[[~]] is the completion of K[T ∗G][~] with respect to the
preimage of the ideal of the orbit Gx in K[T ∗G]. A similar claim holds for K[X]∧Gx[[~]].

The decomposition theorem below asserts that K[T ∗G]∧Gx[[~]] can be decomposed into the
completed tensor product of A∧~ and K[X]∧Gx[[~]]. Moreover, this decomposition agrees with
quantum comoment maps.

More precisely, we have quantum comoment maps g × q → K[T ∗G][~],K[X][~] and also a
quantum comoment map q → A~ for the Q-action on A~, see [Los11a, §§ 2.1, 2.2] for details.
So we get Lie algebra homomorphisms g × q → K[T ∗G]∧Gx[[~]],A∧~ ⊗̂K[[~]]K[X]∧Gx[[~]] that are
quantum comoment maps for the G × Q-actions. Also we note that K× acts on K[T ∗G]∧Gx[[~]],
A∧~ ⊗̂K[[~]]K[X]∧Gx[[~]].

Proposition 4.2 [Los11a, Theorem 2.3.1]. There is a G × Q × K×-equivariant isomorphism
Φ~ : K[T ∗G]∧Gx[[~]] → A∧~ ⊗̂K[[~]] K[X]∧Gx[[~]] of topological K[[~]]-algebras intertwining the
quantum comoment maps from g× q.

Using the star-product we can equip U~ := K[g∗][~] = K[T ∗G][~]G with a new associative
product. The quotient U~/(~− 1) is identified with U . To recover U~ from U recall the notion of
the Rees algebra. Namely, let A be an associative algebra equipped with an increasing exhaustive
Z>0-filtration FiA. Then, by definition, the Rees algebra R~(A) is

⊕
i>0 FiA~i ⊂ A[~]. Now

equip U with the ‘doubled’ standard filtration: the space Fi U is spanned by all monomials
ξ1 . . . ξj , 2j 6 i. We get R~(U) = U~.

The action of Q on U~ has a quantum comoment map that is nothing else but the natural
embedding q ↪→ g ⊂ R~(U) = U~. We can form the completion U∧~ := K[g∗]∧χ[[~]] and extend the
star-product from U~ to U∧~ . Alternatively, the star-product on U∧~ = K[T ∗G]∧Gx[[~]]G is obtained
by restriction from K[T ∗G]∧Gx[[~]].
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Similarly, define the completion W∧~ := K[X]∧Gx[[~]]G and equip it with the product
induced from W~. The isomorphism Φ~ from Proposition 4.2 restricts to a Q × K×-equivariant
isomorphism U∧~ → A∧~ ⊗̂K[[~]]W∧~ intertwining the quantum comoment maps from q.

4.3 Primitive ideals and Harish-Chandra bimodules versus W -algebras
In this subsection we will explain results of [Los11a] on a relationship between:

• the set Idfin(W) of two-sided ideals of finite codimension in W and the set IdO(U) of
two-sided ideals of J ⊂ U with V(U/J ) = O;

• the category HCQ
fin(W) of finite-dimensional Q-equivariant bimodules and the subquotient

HCO(U) of HC(U). The latter stands for the category of Harish-Chandra bimodules for G,
i.e., those where the adjoint action of g integrates to a G-action.

We note that although in [Los11a] only the case when G is semisimple and simply connected
was considered, the general case is obtained from there in a straightforward way.

Theorem 4.3. We have two maps I 7→ I† : Idfin(W)→ IdO(U),J 7→ J† : IdO(U)→ Idfin(W)
having the following properties:

(i) I† ∩ Z(g) = I ∩ Z(g);

(ii) J† ∩ Z(g) ⊃ J ∩ Z(g);

(iii) codimW J† = multO U/J , where the right-hand side denotes the multiplicity of U/J on O;

(iv) J† is Q-stable for any J ∈ IdO(U);

(v) if I is a Q-stable element of Idfin(W), then I = (I†)†;
(vi) (J†)†/J ∈ HC∂O(U) for any J ∈ IdO(U).

Now we proceed to functors between the categories of HC U- and W-bimodules.
Let us explain what we mean by an HC W-bimodule. Let N be a W-bimodule. We say that

N is HC if it is finitely generated and there is an increasing filtration FiN such that:

(1) [KiW,Fj N ] ⊂ Fi+j−2N ;

(2) grN is a finitely generated grW = K[S]-module.

Since [KiW,KjW]⊂Ki+j−2W, we see thatW itself is HC. Also any finite-dimensional bimodule
is HC. In general, the filtration F• is bounded from below and any FiN is finite-dimensional.
An important series of infinite-dimensional HC W-bimodules including W will be constructed
in § 5.5. The category of HC W-bimodules will be denoted by HC(W).

By a Q-equivariant HC bimodule we mean a W-bimodule N equipped with:

• a Q-action compatible with the Q-action on W;

• a Q-stable filtration FiN as above such that the differential of the Q-action coincides with
the adjoint action of q ⊂ W.

(The differential is defined because the filtration is Q-stable and any subspace FiN is finite-
dimensional.) The category of Q-equivariant HC bimodules will be denoted by HCQ(W). Let
HCQ

fin(W) denote the category of finite-dimensional (and so automatically Harish-Chandra)
Q-equivariant bimodules.

The tensor product over W defines monoidal structures on HC(W) and HCQ(W) (the unit
object is W itself).

In [Los11a] the first author has constructed a functor •† : HC(U)→ HCQ(W). We will need
the construction in the present paper so let us recall it.
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Pick M∈ HC(U). Equip it with a good filtration FiM. Recall that a filtration FiM is said
to be good if:

• it is compatible with the filtration Fi U on U , i.e.; Fi U · FjM,FjM · Fi U ⊂ Fi+jM;

• FiM is ad(g)-stable for all i;

• grM is a finitely generated S(g) = grU-module.

Consider the Rees U~-bimodule M~ :=
⊕

FiM~i ⊂ M[~]. Then M∧~ := U∧~ ⊗U~ M~ has
a natural structure of a Q-equivariant Harish-Chandra U∧~ -bimodule in the sense of [Los11a,
§ 2.5]. According to [Los11a, Proposition 3.3.1],M∧~ ∼= A∧~ ⊗̂K[[~]]N ′~, where N ′~ is the space of all
m ∈ M∧~ such that vm = mv for all v ∈ V ⊂ A∧~ ⊂ A∧~ ⊗̂K[[~]]W∧~ . Then N ′~ carries a natural
structure of a Q-equivariant HCW∧~ -bimodule. Let N~ stand for the space of all K×-finite vectors
in N ′~ (a vector is said to be K×-finite if it lies in a finite-dimensional K×-stable submodule).
Then N~ is a Q-equivariant HCW~-bimodule. Finally, setM† := N~/(~−1)N~. It was shown in
[Los11a, § 3.4] that M† does not depend on the choice of a filtration on M and that M 7→M†
is a functor HC(U)→ HCQ(W).

The following result was obtained in [Los11a, Theorems 1.3.1 and 4.1.1].

Theorem 4.4. (1) The functor M 7→M† : HC(U) → HCQ(W) is exact. Moreover, U† = W
and for an ideal J ⊂ U its image under the functor •† coincides with the ideal J† mentioned
above.

(2) The functor •† maps HCO(U) to HCQ
fin(W). There is a functor N 7→ N † : HCQ

fin(W) →
HCO(U) right adjoint to M 7→M† : HCO(U)→ HCQ

fin(W).

(3) Let M ∈ HCO(U). Then dimM† = multO(M), and the kernel and the cokernel of the
natural homomorphism M→ (M†)† lie in HC∂O(U).

(4) The functor M→M† is a tensor functor.

(5) LAnn(M)† = LAnn(M†),RAnn(M)† = RAnn(M†) for any M∈ HCO(U).

(6) Let M ∈ HC(U) and N ⊂ M† be a Q-stable subbimodule of finite codimension. Then
N =M′† for some M′ ⊂M with V(M/M′) = O.

(7) The functor M 7→M† gives rise to an equivalence of HCO(U) and some full subcategory
in HCQ

fin(W) closed under taking subquotients.

4.4 Category O for a W -algebra and the equivalence K
All results of this subsection can be found in [Los12b].

Here we will discuss a certain category of W-modules. To define this category we fix a torus
T ⊂ Q and a cocharacter Θ : K× → T . The differential θ := dΘ is an element of t. We assume
that Θ is regular: i.e., for g0 := zg(θ) we have t := z(g0). We remark that e, h, f ∈ g0.

We have the eigenspace decomposition W =
⊕

α∈ZWα with respect to θ. Set W>0 :=∑
α>0Wα,W>0 :=

∑
α>0Wα,W+

>0 := W>0 ∩ WW>0,W0 := W>0/W+
>0. Clearly, W>0 is a

subalgebra in W, and W+
>0 is an ideal in W>0.

By definition, the category Õt for the pair (W, θ) consists of all W-modules N satisfying the
following conditions:

• N is finitely generated;

• t acts on N by diagonalizable endomorphisms;

• W>0 acts on N by locally nilpotent endomorphisms.

This category (in a somewhat different form) was first introduced by Brundan et al.
in [BGK08].

1041

https://doi.org/10.1112/S0010437X13007604 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007604


I. Losev and V. Ostrik

The category Õt(θ) has analogs of Verma modules. Namely, take a finitely generated W0-

module N with diagonalizable action of t. We can consider N0 as a W>0-module by letting W+
>0

act by zero. Then we have the Verma module ∆θ(N0) :=W ⊗W>0
N0. The module ∆θ(N0) has

a unique irreducible quotient provided N0 is irreducible. We denote this quotient by Lθ(N0).

The functor N0 7→ ∆θ(N0) from the category W0-Modt of finitely generated W0-modules

with diagonalizable action of t to Õt has a right adjoint: F : M 7→MW>0 .

It turns out that the category Õt is equivalent to a certain category of generalized Whittaker

modules to be defined now.

Let g>0 ⊂ g denote the sum of all eigenspaces for ad θ with positive eigenvalues. Then

g>0 := g0⊕ g>0 is a parabolic subalgebra of g and g>0 is its nilpotent radical. Let m ⊂ g0 be the

subalgebra defined analogously to m ⊂ g. Further, set m̃ := g>0 ⊕ m, m̃χ := {ξ − 〈χ, ξ〉, ξ ∈ m̃}.
By a generalized Whittaker module we mean a U-moduleM satisfying the following conditions:

• M is finitely generated;

• t acts on M by diagonalizable endomorphisms;

• m̃χ acts on M by locally nilpotent endomorphisms.

The category of generalized Whittaker modules will be denoted by W̃h
t
(e, θ).

The category W̃h
t
(e, θ) also contains analogs of Verma modules defined as follows. Let W

denote the W -algebra constructed for the pair (g0, e) and let S0 be the Skryabin equivalence

for g0, e. Pick a finitely generated W-module N with diagonalizable action of t. Set ∆e,θ(N) :=

U ⊗U(g>0) Sl(N). This module has a unique irreducible quotient Le,θ(N). As before, the functor

∆e,θ has the right adjoint G : M 7→M m̃χ .

The main result of [Los12b] is the following theorem.

Theorem 4.5. There is an equivalence K : W̃h
t
(e, θ) → Õt(θ) of abelian categories and an

isomorphism Ψ :W →W0 satisfying the following conditions.

(1) AnnW(K(M))† = AnnU (M) for any M ∈ W̃h(e, θ).

(2) The functors Ψ∗ ◦F ◦K and G from W̃h
t
(e, θ) toW-Modt (the category ofW-modules with

diagonalizable t-action) are isomorphic. Here Ψ∗ denotes the pull-back functor between the

categories of modules induced by Ψ.

(3) The functors K ◦∆e,θ,∆θ ◦ (Ψ−1)∗ from W- Modt to Õt(θ) are isomorphic.

We will need a construction of the equivalence K. This equivalence is a push-forward with

respect to an isomorphism of appropriate topological algebras that we are going to recall now.

We set U∧ := lim
←−n→∞ U/Um̃

n
χ. The category W̃h

t
(e, θ) is nothing else but the category of

finitely generated topological U∧-modules with discrete topology such that the action of t ⊂ U∧
is diagonalizable.

The subspace m̃ ∩ V is lagrangian in V . So we can form the completion

A∧ := lim
←−
n→∞

A/A(m̃ ∩ V )n,

where A = A~/(~− 1) stands for the Weyl algebra of V .

Also we need a completionW∧ := lim
←−n→∞W/WWn

>0 ofW. We remark that Õt(θ) coincides

with the category of finitely generated topological W∧-modules with discrete topology such

that the action of t is diagonalizable. Finally, set A(W)∧ := A∧⊗̂W∧ (in [Los12b] we used

a different construction of A(W)∧ (using an appropriate completion of A(W)) but it is easy
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to see that the two constructions are equivalent). There is an equivalence of the categories of

topological W∧- and A(W)∧-modules with discrete topologies. Namely, we send a W∧-module

N to K[m̃ ∩ V ] ⊗ N (recall that A can be thought of as the algebra D(m̃ ∩ V ) of differential

operators on the lagrangian subspace m̃ ∩ V , so K[m̃ ∩ V ] is the tautological module over this

algebra). A quasiinverse equivalence sends an A(W)∧-module M to M m̃∩V .

So to establish an equivalence of W̃h
t
(e, θ) and Õt(θ) it is enough to produce an isomorphism

Φ : U∧ → A(W)∧ intertwining the embeddings of t. Such an isomorphism was constructed

in [Los12b]. Its properties imply conditions (1)–(3) of Theorem 4.5. Let us recall this construction

given in [Los12b, § 5].

The torus K× × T acts on U∧~ ,W∧~ ,A∧~ , where the K×-action is Kazhdan, and T acts as a

subgroup of Q. Embed K× into K× × T so that the differential of the embedding maps 1 to

(1,−nθ), where n is sufficiently large. We note that m̃ contains the sum of eigenspaces for K×
corresponding to characters t 7→ ti with i 6 0.

Let K× act on the algebras in consideration via this embedding (this action will be called

a twisted Kazhdan action). Consider the subalgebras (U∧~ )K×-l.f.,A∧~ (W∧~ )K×-l.f. consisting of all

K×-finite vectors. Let U♥,A(W)♥ denote the quotients of these algebras by ~−1. Then Φ~ induces

an isomorphism U♥→ A(W)♥. There are natural embeddings U♥ ↪→ U∧,A(W)♥ ↪→ A(W)∧ and

Φ extends uniquely to an isomorphism U∧ → A(W)∧ of topological algebras. We note that Φ

also induces an isomorphism Ψ :W →W0.

5. Further study of functor •†
5.1 Main result

In this section we will study some further properties of the functor •† : HC(U)→ HCQ(W). We

fix some connected reductive algebraic group G and consider Harish-Chandra bimodules related

to that group. Our main result is the following theorem.

Theorem 5.1. Let N1, N2 be irreducible finite-dimensional W-modules with integral central

characters, whose difference lies in P+ (of course, for a semisimple simply connected group

the last condition is vacuous). Then there exists an irreducible object M ∈ HCO(U) such that

Hom(N1, N2) is a direct summand of M†.

We note that for any irreducible M ∈ HCO(U) its image under •† is a simple object in

HCQ
fin(W) and therefore a semisimple finite-dimensional W-bimodule. Since any simple object

in HCfin(W) has the form Hom(N1, N2) for some irreducibles N1, N2, the claim of Theorem 5.1

makes sense.

Let us explain the scheme of the proof of Theorem 5.1. First, § 5.5, we will give some very

implicit description of the image of HCO(U) under •†. Then we will examine a relationship

between the functors •† and K, § 5.6. Next, § 5.7, we will introduce a certain equivalence relation

on the set Irrfin(W) of finite-dimensional irreducible W-modules. We will see that Theorem 5.1

means that any two irreducibles with integral central characters are equivalent. Theorem 5.1 is

then proved in the next two subsections: in § 5.8 we prove it in the case when e is even, and in

§ 5.9 we reduce a general case to that one using the results of § 5.6.

Before proving Theorem 5.1 we will establish several easier claims. First, in § 5.2 we will show

that •† intertwines the internal Hom functors. Using this we will present an easy proof that ΛJΛ
O

is a multi-fusion category. Also we will show that this multi-fusion category is indecomposable.
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This will be done in § 5.3. In § 5.4 we will prove the inclusion (up to conjugacy) Hα ⊂ Hλ
α for a

dominant weight λ and a left cell α that are compatible with each other.

5.2 •† versus internal Hom

Recall the internal Hom in HC(U), § 2.1. On the other hand, let N1,N2 ∈ HCQ(W). Let

Hom(N1,N2) denote the space of right W-module homomorphisms. Then Hom(N1,N2) has

a natural structure of a W-bimodule and also a Q-action.

The goal of this subsection is to prove that •† intertwines the Hom-bifunctors. But first we

prove the following lemma.

Lemma 5.2. For any N1,N2 ∈ HCQ(W) the bimodule Hom(N1,N2) is also in HCQ(W).

Proof. The proof is pretty standard. We need to equip N := Hom(N1,N2) with a Q-stable

filtration FiN having the properties indicated in § 4.3. Pick Q-stable filtrations FiN1,FiN2

satisfying the conditions analogous to (1), (2) in § 4.3. Then define FiN to be the set of all maps

ϕ ∈ N such that ϕ(Fj N1) ⊂ Fi+j N2 for all j. It follows from [Los11a, Lemma 2.5.1] that N1 is a

finitely generated rightW-module. This easily implies that the filtration KiN is exhaustive. The

inclusion [KiW,Fj N ] ⊂ Fi+j−2N is checked in a straightforward way. To prove that grN is

finitely generated we note that grN is naturally embedded into HomK[S](grN1, grN2). Since both

grN1, grN2 are finitely generated K[S]-modules, we see that HomK[S](grN1, grN2) is finitely

generated. Hence (2) is satisfied. 2

Proposition 5.3. The bifunctors Hom(•, •)†,Hom(•†, •†) : HC(U) × HC(U) → HCQ(W) are

isomorphic.

Proof. The proof is in several steps, corresponding to the steps in the construction of •†.
Step 1. Pick M1,M2 ∈ HC(U) and pick good filtrations FiM1,FiM2. Let M1

~,M2
~ stand

for the Rees bimodules. Equip M := Hom(M1,M2) with the filtration FiM analogous to the

filtration in the proof of Lemma 5.2. Then, similarly to the proof of Lemma 5.2, we have that

FiM is a good filtration.

We claim that the Rees bimodule M~ is naturally identified with the space HomUopp
~

(M1
~,

M2
~) of homomorphisms of right U~-modules. To show this we need to verify that FiM is

identified with the space of maps of degree i in HomUopp
~

(M1
~,M2

~), i.e., the space of right

U~-module homomorphisms ϕ mapping FjM1~j to Fi+jM2~i+j for all j. Let ϕ′ :M1
→M2

be a map coinciding with the composition FjM1 ∼= FjM1~j → Fi+jM2~i+j ∼= Fi+jM2 on

FjM1. Since ϕ is K[~]-linear, we see that ϕ′ is well defined. It is easy to see that ϕ 7→ ϕ′ defines

a bijection between the space of maps of degree i in HomUopp
~

(M1
~,M2

~) and FiM.

Step 2. We claim thatM∧~ is naturally identified with HomU∧opp
~

(M1∧
~ ,M2∧

~ ). SinceM1
~,M2

~
are finitely generated as right U~-modules and U∧~ is a flat right U~-module, we see that

M∧~ = U∧~ ⊗U~ HomUopp
~

(M1
~,M2

~) = HomUopp
~

(M1
~,M2∧

~ ).

Our claim now follows from the fact thatM1∧
~ is naturally identified with U∧~ ⊗U~M1

~ (compare

with [Los11a, Proposition 2.4.1(1)]).

Step 3. Now let N ′1~ ,N ′2~ be the spaces of adV -invariants in M1∧
~ ,M2∧

~ , respectively. Then

Mi∧
~ = A∧~ ⊗̂K[[~]]N ′i~ . It is easy to see that

HomU∧opp
~

(M1∧
~ ,M2∧

~ ) = A∧~ ⊗̂K[[~]] HomW∧opp
~

(N ′1~ ,N ′2~ ).
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Step 4. Also it is easy to see that the space of K×-finite vectors in HomW∧opp
~

(N ′1~ ,N ′2~ ) is
naturally identified with HomWopp

~
(N 1

~ ,N 2
~ ), where N i

~ stands for the space of K×-finite vectors
in N ′i~ .

Step 5. Finally, set N i := N i
~/(~ − 1)N i

~, N := Hom(N 1,N 2). Of course, N i = Mi
†. Let

N~ stand for the Rees bimodule of N . Analogously to Step 1, N~ is naturally identified with
HomWopp

~
(N 1

~ ,N 2
~ ). In particular,

Hom(M1
† ,M2

†) = N ∼= HomWopp
~

(N 1
~ ,N 2

~ )/(~− 1) HomWopp
~

(N 1
~ ,N 2

~ ) = Hom(M1,M2)†. 2

5.3 ΛJΛ
O as a multi-fusion category

From now on the orbit O is supposed to be special. We fix a finite subset Λ ⊂ P+. Recall, from
the very end of § 2.1, that the category ΛJΛ

O has a tensor product bifunctor, a unit object 1, and
also has a duality functor •∗.
Lemma 5.4. With respect to these data ΛJΛ

O is a multi-fusion category.

Proof. The proof is based on Theorem 4.3. The functor •† embeds ΛJΛ
O as a full subcategory

into BimodQ(Wss
Λ ). This subcategory is closed under taking direct summands. Here Wss

Λ is
the quotient of W by the intersection of all primitive ideals of finite codimension with central
characters in Λ. Also •† maps 1 to the unit object Wss

Λ of BimodQ(WΛ), intertwines the tensor
products, the internal homs, and hence the duality functors. Now the claim of the lemma follows
from an easy fact that BimodQ(Wss

Λ ) itself is multi-fusion. 2

The following claim seems to be well known (at least for Λ = {ρ}, see [Lus84, 12.16]) but we
are going to provide its proof for the reader’s convenience.

Proposition 5.5. The multi-fusion category ΛJΛ
O is indecomposable.

Proof. We need to show that there is no decomposition 1 = e1⊕e2 in ΛJΛ
O such that e1

ΛJΛ
Oe2 = 0

(and then automatically, thanks to duality, e2
ΛJΛ

Oe1 = 0). The object 1 is represented by∑
J∈PrO(UΛ) U/J . We note that each U/J is a simple direct summand of 1 (because there is no

inclusion between the elements of PrO(U)). So our assumption implies that there is a partition
P1 t P2 = PrO(UΛ) such that the left and right annihilators of each simple M∈ ΛHCΛ(U) with
V(M) = O either both lie in P1 or both lie in P2.

Assume, first, that Λ contains a regular element, say %.
First of all, let us notice that PrO(U%) is contained in either P1 or P2. There are several possible

proofs of this. For instance, consider the equivalence relations∼,∼L,∼R on W indicating whether
two elements lie in the same two-sided, left, or right cell, respectively (this will be recalled in
§ 6 below). Then it is known that ∼ is generated by ∼L,∼R. Now take a simple HC bimodule
BG(L(w%)) with w ∈ c such that its left (and hence right) annihilator lies in P1. The set of all
w with this property is closed under both ∼L,∼R and hence coincides with c. So PrO(U%) ⊂ P1.

To show that P1 = PrO(UΛ) we recall that the right annihilator of BG(L(wλ)), where w and
λ are compatible, is J (wλ), while the right annihilator is J (w−1%) and hence lies in P1. But the
ideals of the form J (wλ) exhaust PrO(UΛ).

Now suppose that Λ contains no regular elements. Set Λ′ = Λt{%}. The category ΛJΛ
O can be

realized as e′ Λ
′
JΛ′
O e
′ ⊂ Λ′JΛ′

O . Such a subcategory is itself indecomposable, see Remark 3.3. 2

As we have mentioned in the proof, the objects U/J ,J ∈ PrO(UΛ), are simple direct
summands of 1. The object corresponding to a dominant weight λ and a left cell σ will be
denoted by eλσ.
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The following corollary is standard and well known: it can be deduced from [GJ81, 3.8] and
the standard properties of cells, see, for example, [Lus84, Corollary 12.16]. Also it follows from
Proposition 5.5 and Remark 3.3.

Corollary 5.6. For any two primitive ideals J1,J2 ∈ PrO(UP+) there is a simple HC bimodule
M with J1 = LAnnU (M),J2 = RAnnU (M).

5.4 Translations to/from the walls for W-modules
The goal of this subsection is to prove the following proposition.

Proposition 5.7. Let σ be a left cell, and λ a dominant weight compatible with σ. Then
Hσ ⊂ Hλ

σ with the equality when λ is strictly dominant.

Proof. Recall the Harish-Chandra bimodules T •• (•) that appeared in § 2.3. Pick an irreducible
W-module N such that the primitive ideal corresponding to N , i.e., AnnW(N)†, has central
character λ and corresponds to the left cell σ. Then for sufficiently large k we have

(T λρ (k))† ⊗W (T ρλ (1))† ⊗W N = (T λρ (k)⊗U T ρλ (1))† ⊗W N = N⊕|Wλ|.

Set Ñ = (T ρλ (1))†⊗WN and let N ′ be an irreducible subquotient of Ñ with (T λρ (k))†⊗WN ′ 6= 0.
Then N ′ ∈ Yσ. Let Q0 denote the stabilizer of the isomorphism class of N ′ under the action of Q.
Since the bimodule (T λρ (k))† is Q-equivariant, we see that the isomorphism class of (T λρ (k))†⊗W
N ′ is stable under Q0. But (T λρ (k))† ⊗W N ′ is just the direct sum of several copies of N . So the
isomorphism class of N is Q0-stable. This proves the claim. 2

5.5 The image of •†
We are starting the proof of Theorem 5.1. The goal of this subsection is to give a (very implicit)
description of the image of HCO(U) under •†. The main result is Proposition 5.10 below.

Let L be a finite-dimensional G-module. Then the space UL := L⊗U has a natural structure
of a Harish-Chandra bimodule: the left and right products with elements of g are defined by

ξ · l ⊗ u = (ξ · l)⊗ u+ l ⊗ ξu, (l ⊗ u) · ξ = l ⊗ uξ.

Let us describe the Q-equivariant Harish-Chandra W-bimodule UL†.
SetWL := HomG(L∗, W̃). The Q-action and the bimodule structure onWL are induced from

those on W̃.

Lemma 5.8. The bimodule WL is a Q-equivariant HC W-bimodule. Moreover, there is a Q-
equivariant isomorphism WL

∼= L⊗W of right W-modules.

Proof. A required filtration on WL is induced from the filtration on W̃: the associated graded
is HomG(L∗,K[X]). This is a finitely generated K[S] = K[X]G-module. The second claim of the
lemma follows from Lemma 4.1. 2

Proposition 5.9. There is an isomorphism UL† ∼=WL.

Proof. Recall the isomorphism

Φ~ : K[T ∗G]∧Gx[[~]]→ A∧~ ⊗̂K[[~]] K[X]∧Gx[[~]]

from Proposition 4.2. It induces the isomorphism

Φ~ : HomG(L∗,K[T ∗G]∧Gx[[~]])→ HomG(L∗,A∧~ ⊗̂K[[~]] K[X]∧Gx[[~]])
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of Q-equivariant U∧~ -bimodules. Note that HomG(L∗,K[T ∗G][~]) is precisely R~(UL), where the
filtration on UL is given by Fi UL := Fi U ⊗ L. Also note that

HomG(L∗,K[T ∗G]∧Gx[[~]]) ∼= R~(UL)∧.

On the other hand,

HomG(L∗,A∧~ ⊗̂K[[~]]K[X]∧Gx[[~]]) = HomG(L∗,K[X]∧Gx[[~]])⊗̂K[[~]]A∧~ .

Again, HomG(L∗,K[X]∧Gx[[~]]) is the completion of HomG(L∗,K[X][~]). So HomG(L∗,K[X][~])
coincides with the space of K×-finite vectors in HomG(L∗,K[X]∧Gx[[~]]) by [Los11a, Proposition
3.3.1]. The quotient of HomG(L∗,K[X][~]) modulo ~− 1 is nothing else but WL. Now the claim
of the proposition follows directly from the construction of •†. 2

Now we are ready to give some description of HCO(U)†.

Proposition 5.10. Let N ∈ HCQ
fin(W). Then the following conditions are equivalent:

(1) there is M∈ HCO(U) with M† ∼= N ;

(2) N is a quotient of WL for some finite-dimensional G-module L;

(3) N is a Q-stable sub-bimodule in WL/R, where L is a finite-dimensional G-module and R
is a Q-stable sub-bimodule in WL of finite codimension.

Proof. (1) ⇒ (2). It is easy to show that M is a quotient of UL for some finite-dimensional
G-module L. Since •† : HC(U)→ HCQ(W) is an exact functor, (2) follows from Proposition 5.9.

(2)⇒ (3). This is tautological.
(3)⇒ (1). This follows from assertion (6) of Theorem 4.4. 2

5.6 •† versus K
In this subsection we are going to obtain the following result that seems to be of independent
interest. We preserve the notation of § 4.4.

Theorem 5.11. The bifunctors (X,M) 7→ K(X ⊗M), X† ⊗ K(M) from HC(U) × W̃h
t
(e, θ) to

Õt(θ) are isomorphic.

We will give a proof after a series of lemmas.
For X ∈ HC(U) we set X∧ := lim

←−n→∞X/Xm̃n
χ. Since m̃ consists of nilpotent elements, we see

that X∧ has a natural structure of a U∧-bimodule (compare with [Los10a, § 3.2], the construction
of U∧). Moreover, X∧ becomes a topological U∧⊗̂U∧,opp-module (the word ‘topological’ here
means that the structure action map is continuous). Also we note that the topology on X is
complete and separated.

Lemma 5.12. Let X ∈ HC(U),M ∈ W̃h
t
(e, θ).

(1) The natural map U∧ ⊗U X → X∧ is an isomorphism.

(2) The natural map X ⊗U M → X∧ ⊗U∧ M is an isomorphism.

We note that, since the topology on M is discrete, X∧ ⊗U∧ M is the same as X∧⊗̂U∧M .

Proof. Let us check (1) for X = UL, where L is a finite-dimensional G-module. Here the assertion
boils down to the claim that the filtrations L ⊗ m̃k

χ and m̃k
χUL on UL = L ⊗ U are compatible.

This easily follows from the fact that m̃ acts on L by nilpotent endomorphisms. Also (2) is clear
for X = UL.
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In general, X has a resolution consisting of modules of the form ULi , where Li is a finite-
dimensional G-module. Since all functors in consideration are right exact, both assertions follow
from the 5-lemma. 2

Recall the isomorphism Φ : U∧ ∼−→ A(W)∧. The A(W)∧-bimodule Φ∗(X
∧) is complete in the

Φ(m̃χ)-adic or, equivalently, in the [(m̃ ∩ V )⊗ 1 + 1⊗W>0]-adic topology. Therefore the map

A∧ ⊗̂Φ∗(X
∧)adV

→ Φ∗(X
∧) (5.1)

is well defined.

Proposition 5.13. The map (5.1) is an isomorphism for any X ∈ HC(U).

In the proof we will need the following technical lemma.

Lemma 5.14. Let V be a symplectic vector space, U ⊂ V be a lagrangian subspace, A be the
Weyl algebra of V , A∧ := lim

←−A/AUk. Further, let Y be a topological A∧⊗̂A∧,opp-module such
that the topology on Y is complete and separated. Then a natural map A∧⊗̂Y adV

→ Y is an
isomorphism.

Proof. First of all, we note that all A∧-sub-bimodules in A∧⊗̂Y adV have the form A∧⊗̂Y0 for
Y0 ⊂ Y adV . This can be proved following the lines of the proof of [Los10a, Lemma 3.4.3]. It
follows that the map (5.1) is injective.

It remains to prove that the map (5.1) is surjective. Let q1, . . . , qk denote a basis in the
lagrangian subspace U . Choose a complimentary lagrangian subspace U∗ ⊂ V and let p1, . . . , pk
denote the dual basis to q1, . . . , qk. So we have [qi, pj ] = δij . Let us reduce the proof to the case
k = 1.

Consider the Weyl algebras A0 of the span V0 of p1, q1 and A0 of the span V 0 of p2, . . . , pk,
q2, . . . , qk. Let A∧0 ,A0∧ be their completions with respect to the subspaces spanned by q1 and by
q2, . . . , qk. Then, of course, A∧ = A∧0 ⊗̂A0∧. Suppose now that the natural map A∧0 ⊗̂Y adV0 → Y
is bijective. The space Y adV0 is a closed A0-subbimodule of Y and, in particular, an A0∧⊗̂A0∧opp-
module. Also the topology on Y adV0 induced from Y is again complete and separated. So it is
enough to show the claim of the lemma for k = 1. Below we write p, q instead of p1, q1. We note
that A∧0 qi form a fundamental system of neighborhoods of 0 in A∧0 .

Define the following two linear operators on Y :

α(y) :=
∞∑
k=0

1

k!
ad(p)k(y)qk,

β(y) :=

∞∑
k=0

(−1)k

k!
pk ad(q)k(y).

(5.2)

From the conditions on the topology on Y it follows that the operators α, β are well defined and
continuous. We note that for y0 ∈ Y adV we have α(piy0q

j) = δj,0p
iy0q

j and β(piy0q
j) = δi,0p

iy0q
j .

These equalities actually motivated the definition.
It is checked directly that [α, β] = 0 and [p, α(y)] = [q, β(y)] = 0 for all y ∈ Y . In particular,

im(α ◦ β) ⊂ Y adV . Further, similarly to the previous paragraph, the series

∞∑
k,l=0

1

k!l!
pkα ◦ β(ad(q)k ad(p)ly)ql (5.3)
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converges for any y ∈ Y . Moreover, expanding α and β in (5.3) (and getting a summation over
four indexes) one gets that this sum coincides with y. So (5.3) is a presentation of y as an element
of A∧⊗̂Y adV ⊂ Y . 2

Proof of Proposition 5.13. Set U := m̃∩V . Consider Y :=X∧ as an A∧-bimodule by means of the
isomorphism U∧ ∼= A∧ ⊗̂W∧. Since Y is a complete and separated topological U∧-bimodule, it is
also a complete and separated topological A∧-module. Our claim now follows from Lemma 5.14.

For X ∈ HC(U) we set X‡ := Φ∗(X
∧)adV . This is a topological T -equivariant bimodule

over W∧. On the other hand, pick Y ∈ HC(W) and consider its completion Y ∧ :=
lim
←−n→∞ Y/Y (W>0)n. This is also a topological T -equivariant W∧-bimodule.

Lemma 5.15. The functors •‡ and (•†)∧ from HC(U) to the category of topological T -equivariant
W∧-bimodules are isomorphic.

Proof. We start by constructing a natural transformation (•†)∧ → •‡. Pick X ∈ HC(U) and
choose a finite-dimensional ad(g)-submodule X0 ⊂ X generating X as a left (or as a right)
U-module. Define the filtration on X using X0 as in the construction of •†. Consider the
A∧~ ⊗̂K[[~]]W∧~ -bimodule X∧~ . We have the twisted Kazhdan action of K× on X∧~ , compare with
the end of § 4.4. So we can consider the subspace (X∧~ )K×-fin of K×-finite vectors in X∧~ . Set

X♥ := (X∧~ )K×-fin/(~− 1)(X∧~ )K×-fin.

It is easy to see that X♥ = U♥ ⊗U X. So we get that the natural homomorphism X → X∧

extends to X♥→ X∧.
Let us show that there is a natural homomorphism X† → (X♥)adV . Indeed, T acts locally

finitely on the space of K×-finite (with respect to the usual Kazhdan action) elements in (X∧~ )adV

so this space of K×-finite elements is included into [(X∧~ )K×-fin]adV . The image of the induced
homomorphism

X† = [(X∧~ )adV ]K×-fin/(~− 1)[(X∧~ )adV ]K×-fin→ (X∧~ )K×-fin/(~− 1)(X∧~ )K×-fin = X♥

lies in (X♥)adV .
So we have constructed a homomorphism X† → X‡. From the construction it follows that

this homomorphism is functorial. Since X‡ is complete with respect to theW>0-adic topology, we
see that this homomorphism extends to X∧† → X‡. We are going to show that the corresponding
natural transformation •∧† → •‡ is an isomorphism.

Both functors are right exact (for •‡ this follows from Lemma 5.13). Similarly to the proof
of Lemma 5.12, it is enough to show that (UL†)∧ ∼= (UL)‡ or, alternatively, that the map

A(UL†)∧→ U∧L (5.4)

induced by (UL†)∧→ UL‡ is an isomorphism. Recall (Proposition 5.9) that UL† =WL.
The proof of Proposition 5.9 implies that Φ~ induces an isomorphism (UL)♥ → A(WL)♥.

Analogously to [Los10a, § 3.2], we see that A(WL)∧ is the completion of A(WL)♥ in the
[(m̃∩V )⊗1+1⊗W>0]-adic topology. Similarly, U∧L is the completion of U♥L in the m̃χ-adic topology.
So the isomorphism A(WL)♥→ U♥L extends to a topological isomorphism A(WL)∧→ U∧L . This
isomorphism is nothing else but (5.4). 2

Proof of Theorem 5.11. By Lemma 5.12, X ⊗U M = X∧⊗̂U∧M . We have (see the discussion on
the construction of K)

Φ∗(X
∧⊗̂U∧M) = A∧(X‡)⊗̂A∧(W∧)(K[m̃ ∩ V ]⊗K(M)) = K[m̃ ∩ V ]⊗ (X‡⊗̂W∧K(M)).
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By Lemma 5.15, X‡ = (X†)
∧. So it remains to show that (X†)

∧ = X† ⊗W W∧. The proof is
similar to that of Lemma 5.12. 2

5.7 Equivalence relation on Irrfin(K)
In this subsection we will introduce an equivalence relation on the set Irrfin(W) of (isomorphism
classes) of finite-dimensional irreducible W-modules. For this we will need to introduce tensor
products of W-modules with G-modules, compare with [Goo11]. Then we will define a relation
∼ on Irrfin(W) using Proposition 5.19. Finally, we will prove that ∼ is indeed an equivalence
relation, Theorem 5.21.

Let L be a finite-dimensional G-module. Define the functor L i • : W-Mod→ W-Mod by
LiN :=WL ⊗W N .

Proposition 5.16. (1) We have a functorial q-equivariant isomorphism L iN ∼= L ⊗N . If N
is Q-equivariant (meaning that Q acts on N such that W ⊗ N → N is Q-equivariant and the
Q-action integrates the action of q ⊂ W), then the isomorphism above is also Q-equivariant.

(2) The functor Li • is exact.

Proof. Assertion (1) follows from Lemma 4.1. The second assertion follows easily from the first
one. 2

Below we will need the following lemma.

Lemma 5.17. Let N be a finite-dimensional W-module and L a finite-dimensional G-module.
Then there is a sub-bimodule R ⊂ WL of finite codimension and such that R⊗W N = 0 so that
LiN ∼= (WL/R)⊗W N .

Proof. Set R :=WL AnnW(N). Since AnnW(N) has finite codimension in W and WL is finitely
generated as a rightW-module, we see that dimWL/R <∞. On the other hand,R⊗WN = 0. 2

The following claim follows from Theorem 5.11.

Corollary 5.18. Let L,L1, L2 be finite-dimensional G-modules. Then:

(1) the functors Li • and L∗ i • from Ot(θ) to itself are mutually adjoint;

(2) the functors L1 i (L2 i •) and (L1 ⊗ L2)i • are isomorphic.

Proof. Recall that by Proposition 5.9, UL† = WL. By Theorem 5.11, the functors K(L ⊗ •),
LiK(•) : W̃h

t
(e, θ)→ Õt(θ) are isomorphic. Both claims of the lemma follow from the fact that

K is an equivalence between W̃h
t
(e, θ) and Õt(θ). 2

Proposition 5.19. Let N1, N2 be irreducible W-modules. Then the following conditions are
equivalent.

(1) There is an irreducible finite-dimensional G-module L such that N2 is a quotient of LiN1.

(2) There is an irreducible finite-dimensional G-module L such that N2 is a subquotient of
LiN1.

(3) There is an irreducible finite-dimensional G-module L such that the W-bimodule
HomK(N1, N2) is a quotient of WL.

(4) There is an irreducible finite-dimensional G-module L and a sub-bimodule R ⊂WL of finite
codimension such that HomK(N1, N2) is a subquotient of WL/R.
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We say that N1, N2 are equivalent and write N1 ∼ N2 if the pair (N1, N2) satisfies one of the
four equivalent conditions of Proposition 5.19. Below we will see that this is indeed an equivalence
relation.

Proof. (3)⇒(1). It is enough to show that the functors

(N1, N2) 7→ HomW−Wop(WL,HomK(N1, N2)),HomW(LiN1, N2)

from W-modfd×W-modopp
fd to the category of vector spaces are isomorphic. Recall that LiN1

is, by definition, WL ⊗W N1. Now the isomorphism of functors is a standard fact.
(1)⇒(2). This is tautological.
(2)⇒(4). Let R be a sub-bimodule inWL of finite codimension such that R⊗WN1 = 0 existing

by Lemma 5.17. Set P := WL/R. Choose a composition series 0 = P 0 ⊂ P 1 ⊂ · · · ⊂ Pm = P
for P and let N i

1, N
i
2 be such that P i/P i−1 = HomK(N i

1, N
i
2). Since the tensor product functor

is right exact, we see that any composition factor of L iN1 = P ⊗W N1 has the form N i
2 with

N i
1 = N1.

(4)⇒(3). Being a sub-bimodule in WL, R is Q◦-stable. Replacing R with
⋂
q∈Q q ·R we may

assume, in addition, that R is Q-stable. The bimodule Hom(N1, N2) is a subquotient ofWL/R if
and only if it is a direct summand of a composition factor of the Q-equivariant bimoduleWL/R.
By Proposition 5.10, this composition factor is a quotient of WL′ for some finite-dimensional
G-module L′. 2

Remark 5.20. SinceWL is a Q-equivariant bimodule, we see that ∼ is an A(e)-invariant relation,
where A(e) denotes the component group of e, i.e., A(e) := Q/Q◦.

Proposition 5.21. The relation ∼ is an equivalence relation.

Proof. Reflectivity (N ∼ N) is clear: take L = K. The claim that ∼ is symmetric follows from
Corollary 5.18: HomW(LiN1, N2) = HomW(N1, L

∗ iN2).
Let us check transitivity: let N1, N2, N3 be irreducible finite-dimensional W-modules and

L12, L23 be irreducible G-modules with HomW(L23iN3, N2),HomW(L12iN2, N1) 6= 0. Choose
nonzero elements ϕ ∈ HomW(L23 i N3, N2), ψ ∈ HomW(L12 i N2, N1). Since N1, N2 are
irreducible, we see that ϕ,ψ are surjective. Since the functor L12 h • is exact, we see that the
homomorphism ϕ̃ : (L12⊗L23)iN3 = L12i (L23iN3)→ L12iN2 induced by ϕ is surjective.
So ψ ◦ ϕ̃ is a nonzero element of HomW((L12 ⊗ L23)iN3), N1). Hence N1 ∼ N3. 2

The reason why we need the equivalence relation ∼ is as follows. Proposition 5.19 and
Proposition 5.10 show that Theorem 5.1 is equivalent to the following claim.

(∗) Any two irreducible W-modules N1, N2 with integral central characters that differ by an
element of P+ are equivalent.

In the next two subsections we will prove that (∗) holds.

5.8 The case of even nilpotents
In this subsection we will prove Theorem 5.1 in the case when O is even, i.e., when all eigenvalues
of adh are even. But first we will need a more general result.

Proposition 5.22. Let O be an arbitrary special nilpotent orbit in g. Any two A(e)-orbits in
Y P+

have equivalent points.

Recall that Y P+
stands for the set of isomorphism classes of finite-dimensional irreducible

W-modules with integral central characters.
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Proof. This claim is a reformulation of Corollary 5.6. 2

Next we are going to treat the case when e is even.

Proposition 5.23. Suppose O is even. Then there is an A(e)-fixed point in Y P+
.

Proof. In the notation of the end of § 4.1, let P be the parabolic subgroup of G corresponding to
the parabolic subalgebra

⊕
i>0 g(i) ⊂ g. As Borho and Brylinski checked in [BB82], the action

of G on G/P induces a surjection U � D(G/P ) (see [BB82, Theorem 3.8]), its kernel J has an
integral central character (see [BB82, Corollary 3.7]). Since Q ⊂ P , we see that a natural map
T ∗(G/P )→ O is birational and hence is a resolution of singularities. Let us note that U/J is the
algebra of global sections of the sheaf DG/P of differential operators on G/P , while K[O] is the
algebra of global sections of OT ∗(G/P ). Since grDG/P = OT ∗(G/P ) and all higher cohomologies of
OT ∗(G/P ) vanish, it is a standard fact that grU/J = K[T ∗(G/P )]. The latter algebra coincides
with the normalization of K[O], i.e., with K[O]. Therefore the multiplicity of U/J on O is 1. So
J† has codimension 1 in W and is A(e)-stable. A unique irreducible representation of W/J† is
fixed by A(e). 2

Then the claim (∗) for an even e follows directly from Propositions 5.22, 5.23 and
Remark 5.20.

5.9 A reduction
We use the notation introduced in § 4.4. Let G0 be the Levi subgroup of G corresponding to g0.
Let ∼0 denote the equivalence on Irrfin(W) defined by the tensor product with G0-modules.

Proposition 5.24. Let N1, N2 be W-modules. If N1 ∼0 N2, then Lθ(N1) ∼ Lθ(N2).

In the proof we will need an auxiliary lemma.
Let N be an irreducibleW-module, α ∈ K be a maximal eigenvalue of θ on N with eigenspace

N (‘maximal’ means that α + n is not an eigenvalue for a positive integer n) so that N ∼=
Lθ(N). Let L be an irreducible G-module, β ∈ K be the maximal eigenvalue of θ, and L be the
corresponding eigenspace. Then L is an irreducible G0-submodule of L with the same highest
weight (with respect to an appropriate Borel subgroup) as L. Finally, set N1 := L i N . Let γ
be the maximal eigenvalue of θ on N1, N1 being the corresponding eigenspace. Then N1 is a
W0-module and so we can consider it as W-module.

Lemma 5.25. We have γ = α+ β and N1 ∼= LiN (an isomorphism of W-modules).

Proof. The equality γ = α+β follows from the observation that N1 and L⊗N are Q-equivariantly
isomorphic (Proposition 5.16).

Let us prove the isomorphism. Recall an element δ ∈ t∗ introduced in [BGK08], see also
[Los12b, Remark 5.5] for the definition of δ. If α is the maximal eigenvalue of θ inN , then α+〈δ, θ〉
is the maximal eigenvalue of θ in K−1(N). Theorem 4.5 implies that N is the θ-eigenspace with
eigenvalue α+ 〈δ, θ〉 in K−1(N)m̃χ . The Skryabin equivalence theorem implies that S0(N) is the
θ-eigenspace with eigenvalue α+ 〈δ− δ0, θ〉 (where δ0 is the analog of δ for g0) in K−1(N)g>0 and
(since this eigenvalue is the maximal one) also in K−1(N). Similarly, S0(N1) is the θ-eigenspace
with eigenvalue γ + 〈δ − δ0, θ〉 in K−1(LiN). But L⊗ S0(N) is the θ-eigenspace of eigenvalue
γ + 〈δ − δ0, θ〉 in L ⊗ K−1(N). According to Theorem 5.11, L ⊗ S0(N) ∼= S0(L i N), while
K−1(LiN) = L⊗K−1(N). It follows that S0(LiN) = S0(N1) and so LiN = N1. 2

Proof of Proposition 5.24. Pick a G0-module L′ such that L′iN1�N2. Let λ denote its highest
weight. Assume for a moment that L′ = L for some G-module L, equivalently, λ is dominant
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for G. Then L′iN1 is the highest weight subspace in LiLθ(N1) by Lemma 5.25. Hence Lθ(N2)

is a composition factor in Li Lθ(N1), and we are done.

In general, there is a character µ of L such that both µ and λ + µ are dominant for G. Let

Kµ denote the 1-dimensional module with highest weight µ for G0. Replacing N2 with KµiN2

we get to the situation of the previous paragraph. 2

Now we are in position to finish the proof of (∗).

Proof. Assume that g0 is chosen such that e is distinguished in g0, i.e., all semisimple elements in

zg0(e) are in the center of g0. Such an element is necessarily even in g0, see, for example, [CM93,

8.2].

Pick N1, N2 ∈ Y P+
. Then N1 = Lθ(N1), N2 = Lθ(N2), where N1, N2 are irreducible W-

modules. They have integral central characters (for G0). This follows, for example, from [BGK08,

Theorem 4.7] or from [Los11b, Theorem 5.1.1]. Thanks to Proposition 5.24, N1 ∼ N2 provided

N1 ∼ N2. The latter follows from § 5.8. 2

6. Preliminaries on cells, Springer correspondence and Lusztig’s groups

6.1 Cells in Weyl groups and cell modules

Let H be the Hecke algebra of W viewed as a Z[q±1/2]-algebra. Let cw, w ∈W, be the Kazhdan–

Lusztig basis, see for example [Lus84, 5.1.1]. Recall (see for example [Lus84, § 5.1]) that one can

use it to partition W into two-sided, left and right cells as follows. For w ∈W consider the based

two-sided ideal Idw in H generated by cw (‘based’ means ‘spanned by basis elements’). By the

two-sided cell cw of w we mean the set of all u such that cu ∈ Idw but cu 6∈ Idw′ for Idw′ ( Idw.

Similarly, we can consider the left (respectively, right) based ideal I lw (respectively, Irw) generated

by w and define the left (respectively, right) cell σw of w. It is clear that W gets partitioned into

two-sided cells, and each two-sided cell gets partitioned into left cells. Moreover, one can show

that the map w 7→ w−1 preserves two-sided cells and maps left cells to right ones, and vice versa.

Also it is clear from the definition that the equivalence relation ∼ induced by the partition of W

into two-sided cells is generated by the equivalence relations ∼L,∼R corresponding to partitions

into left and right cells, respectively.

To each two-sided cell c we assign the cell H-bimodule [c]q that is the quotient of Idw, w ∈ c,

by the sum of all Idw′ ( Idw. Similarly, to each left cell σ we assign the left H-module [σ]q. All cell

bimodules and modules are flat over Z[q±1/2]. Since ZW = H /(q1/2−1), we get the W -bimodule

[c] and the left W -module [σ]. It is clear that dim[σ] = |σ|. In the sequel we will consider [c] as

a left module. As such it decomposes as [c] =
⊕

σ⊂c[σ].

We say that an irreducible W -module belongs to c if it appears as an irreducible constituent

of [c]. This defines a partition of Irr(W ) into families Irr(W )c (in the sense of Lusztig, [Lus84]).

Each family has a distinguished irreducible module, called a special module (or a special

representation).

In [Lus84] Lusztig introduced a certain parameterization of Irr(W )c. This parameterization

involves a certain finite group Ā (=Āc) constructed by Lusztig for the two-sided cell c. This group

will be described below (see for example § 6.3). To each U ∈ Irr(W )c Lusztig assigned a pair

(xU , VU ), where xU is an element in Ā defined up to conjugacy, and VU is an irreducible ZĀ(xU )-

module. Following Lusztig, we denote the set of such pairs by M(Ā). For different irreducibles

the corresponding pairs are different, but not every pair arises from some irreducible module.
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6.2 Orbits, Harish-Chandra bimodules, and the algebra J

It is a classical fact that left and two-sided cells admit an alternative description in terms of

primitive ideals in Pr(Uρ). Namely, it happens that the left cells are precisely the fibers of the

map W → Pr(Uρ), w 7→ J (wρ). Furthermore, the two-sided cells are the fibers of the map that

sends w ∈ W to the open orbit in V(U/J (wρ)). So we get bijections c 7→ Oc,O 7→ cO between

the set of the special orbits and the set of the two-sided cells.

Pick a special orbit O and let c be the corresponding two-sided cell. Recall that JO denotes

the category ρHCρ
O(U)ss. The based Q-algebra [JO] is known to be isomorphic to the block Q⊗ZJO

corresponding to O of the (rational form of the) Lusztig asymptotic Hecke algebra Q⊗Z J. Recall

that JO has a basis tx indexed by c. The set of simples in JO is again parameterized by elements

of c via w 7→Mw := BG(L(wρ)). An isomorphism [JO]→ JO sends BG(L(wρ)) to tw−1
∗

, where

w 7→ w∗ is a certain involution on W studied by Joseph in [Jos87]. The results mentioned above

in this paragraph follow from [Jos87] and the claim that the category JO is multi-fusion, see for

example, Lemma 5.4.

Recall that Lusztig defined an explicit (but complicated) homomorphism H→ J⊗ZZ[q±1/2];

see for example [Lus87, § 3.2]. Under the specialization q1/2 = 1, this homomorphism induces an

isomorphism Q(W )
∼−→ Q ⊗Z J, see for example [Lus87, § 3.5]. The last isomorphism induces a

bijection between irreducible representations of [JO] and Irr(W )O(=Irr(W )c), see [Lus87].

Lusztig’s homomorphism Z(W ) → JO can be described as follows. Let us identify Z(W )

with the Grothendieck ring of the category of projective functors sending the generalized central

character ρ to itself, see [BG80] or [Maz12, 5.1, 5.2]. Let 1 ∈ JO be the unit object and let 1̃ be

an arbitrary lift of 1 ∈ JO ⊂ HCO(U) to an object of HCŌ(U). Let F be a projective functor as

above. Then the map

Z(W ) 3 [F ] 7→ [F (1̃) (mod HC∂O(U))] ∈ [HCO(U)] = [JO] = JO (6.1)

is well defined and it follows from the results of [BG80] combined with the Kazhdan–Lusztig

conjecture that it coincides with Lusztig’s homomorphism defined as in [Lus87, § 3.5]. We notice

that the fact that the map (6.1) is a homomorphism of rings is far from being trivial.

Let us introduce some notation. The left and right annihilators ofMw are J (wρ),J (w−1ρ).

Consider the subcategory Jσ of all objects in JO such that the right annihilator of the

corresponding simple Harish-Chandra bimodule is J (wρ), w ∈ σ. The tensor product functor

JO�JO→ JO clearly restricts to JO�Jσ→ Jσ. The rational K-group [Jσ] is naturally identified

with [σ].

Similarly we can consider the subcategory σJ with left annihilator corresponding to σ. Next,

for left cells σ1, σ2, set σ1Jσ2 := σ1J ∩ Jσ2 .

Now let us discuss the categories like λJ in the case of an arbitrary (integral) central character

λ. Of course, if λ is regular, then λJ is identified with J via a translation functor. For a singular

character λ we need some modifications. Thanks to (1)–(3) in the end of § 2.3, we see that the

condition that w is compatible with λ ∈ P+ holds or does not hold simultaneously for all w in

a given left cell. So the notion of compatibility of left cells and dominant weights makes sense.

For λ ∈ P+ compatible with a left cell σ let λ
σJ be the full subcategory in λJ whose simples are

in the image of T λρ (σJ).

6.3 Springer representation

Let us recall that to each nilpotent orbit O Springer attached a W ×A(e)-module Spr(O). As a

vector space, the Springer representation has a basis indexed by irreducible components of the
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Springer fiber Be that is the preimage of e ∈ g under the natural morphism T ∗B → g ∼= g∗. In
other words, Be consists of all Borel subalgebras in g containing e.

The group A(e) acts on the set of irreducible components of Be by permutations and so
acts also on Spr(O). It turns out that there is a natural action of W commuting with A(e) on
Spr(O). An important property of Spr(O) is that it is a multiplicity free W ×A(e)-module, i.e.,
each irreducible W × A(e)-module appears at most once. Furthermore, the trivial A(e)-module
always appears in Spr(O), and the corresponding W -module is a unique special representation
in Irr(W )O provided the orbit O is special.

Now consider the isotypic component Spr(O)c, that is, the sum of all irreducible W -modules
that appear in [c]. Then Āc is the quotient of A(e) by the kernel of the action of A(e) on Spr(O)c,
see [Lus84, 13.1.3].

The following result establishes a relationship between Lusztig’s parameterization U 7→
(xU , VU ) of Irr(W )c, see the end of § 6.1, and the structure of Spr(O)c. It follows from [Lus12,
Corollary 0.5].

Proposition 6.1. We have the following isomorphism of W × Ā-modules:

Spr(O)c =
⊕

U∈Irr(W )c,xU=1

U ⊗ VU .

6.4 Lusztig’s subgroups Hσ

In [Lus87, Proposition 3.8], to each left cell σ in c, Lusztig assigned a subgroup Hσ ⊂ Ā
determined up to conjugacy. The subgroups depend on the cell modules rather than on the
left cells themselves.

Let us explain an important property of those subgroups, [Lus87, Proposition 3.16]. Consider
the left cells σ1, σ2 in c.

Lemma 6.2. The number # σ1Jσ2 of simples in σ1Jσ2 (equal to |σ−1
1 ∩ σ2|) coincides with

# CohHσ2 (Ā/Hσ1) = # CohĀ(Ā/Hσ1 × Ā/Hσ2).

We will also need a relationship between the (left) cell modules, Spr(O), and the Lusztig
subgroups.

Proposition 6.3. We have an Ā-equivariant isomorphism Q(Ā/Hσ)∼= HomW ([Jσ], Spr(O)) (the
latter is an Ā- and not just an A(e)-module, thanks to Proposition 6.1).

A problem is that it is not quite easy to extract the necessary information on Lusztig’s
subgroups from his work. So, in the next three subsections, we will produce certain subgroups
in Ā and prove Lemma 6.2 and Proposition 6.3 for them. One can also show that our subgroups
are the same as Lusztig’s but since the lemma and the proposition above is all we need, we will
not prove that the definitions are equivalent.

6.5 Explicit descriptions: types B and C
We recall (see [Lus84, § 4.5]) that the irreducible representations of the Weyl group W (Bn) '
W (Cn) are labeled by symbols of rank n and defect 1. By definition, such a symbol Λ =

(
M ′

M

)
is

just two subsets M,M ′ of Z>0 with |M ′| = |M |+ 1 and
∑

x∈M x+
∑

x∈M ′ x = n+ |M |2 up to an
equivalence relation described in [Lus84, § 4.5]; each equivalence class contains a unique reduced
symbol with 0 6∈M ∩M ′.

In types B,C the combinatorial description of families (i.e., the subsets of the form Irr(W )c)
is as follows: two representations labeled by reduced symbols

(M ′1
M1

)
and

(M ′2
M2

)
are in the same
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family if and only if M1 ∪M ′1 = M2 ∪M ′2 and M1 ∩M ′1 = M2 ∩M ′2, see [Lus84, § 4.5]. Thus a
family is completely determined by two subsets Z1, Z2 ⊂ Z>0 such that Z1 ∩Z2 = ∅, 0 6∈ Z2 and
|Z1| is odd: the family corresponding to Z1, Z2 consists of representations with reduced symbols(
M ′

M

)
such that M ∩M ′ = Z2 and M ∪M ′ = Z1 ∪Z2; let F(Z1, Z2) denote such a family. Let us

write the elements of Z1 in an increasing order: z0 < z1 < · · ·< z2m. Then any representation from
F(Z1, Z2) corresponds to reduced symbol

(Z2∪(Z1−M)
Z2∪M

)
where M is a subset of Z1 with |M | = m;

thus we have a bijection between F(Z1, Z2) and the set of subsets of Z1 of cardinality m. The
special representation from F(Z1, Z2) corresponds to the subset M0 = {z1, z3, . . . , z2m−1} ⊂ Z1.

Fix a family F(Z1, Z2) and let c,O be the corresponding two-sided cell and the special
nilpotent orbit. Recall that in the classical types nilpotent orbits are parameterized by partitions.
[Car93, 13.3] provides a combinatorial recipe to compute O (i.e., the corresponding partition)
from the symbol of the special representation inside F(Z1, Z2).

We now describe representations of the form [σ] with σ ⊂ c. The W -modules of the form [σ]
(but not the left cells themselves!) are in bijection with Temperley–Lieb patterns of the following
form.

•

z0 z1 z2 z3 z4 z5 . . . z2m

Here is a formal definition: a Temperley–Lieb (TL) pattern above is embedded into an
R × [0, 1] unoriented cobordism of the set Z1 ⊂ Z ⊂ R = R × 0 ⊂ R × [0, 1] to a 1-point set
embedded into R = R×1 ⊂ R× [0, 1]. To such a pattern Y one associates a representation [Y ] of
W (Bn) which is the direct sum of the irreducible representations labeled by symbols

(Z2∪(Z1−M)
Z2∪M

)
(all with multiplicities 1) where M ⊂ Z1 contains precisely one of each zi and zj connected by an
arc. This procedure produces a bijection between TL patterns and left cell modules, see [Lus82,
11.1] and [Lus86].

Example 6.4. Assume that Z2 = {1, 3} and Z1 = {0, 2, 5, 6, 7}. Then the pattern

•

0 2 5 6 7

corresponds to the following cell representation of W (B12):(
0, 1, 2, 3, 7

1, 3, 5, 6

)
+

(
1, 2, 3, 6, 7

0, 1, 3, 5

)
+

(
0, 1, 3, 5, 7

1, 2, 3, 6

)
+

(
1, 3, 5, 6, 7

0, 1, 2, 3

)
.

Now let us describe the Lusztig group Ā := Āc. Let VZ1 be the set of subsets of Z1 of even
cardinality. Then VZ1 has a natural structure of a symplectic vector space over the field F2: the
sum is the symmetric difference and the symplectic form is

(M,M ′) = |M ∩M ′| (mod 2).

Let ei = {zi−1, zi} ∈ VZ1 . Then e1, . . . , e2m is a basis of VZ1 with (ei, ej) = 1 if and only if
|i− j| = 1.

Let ĀB, ĀC ⊂ VZ1 be the Lagrangian subspaces with bases {e1, e3, . . . , e2m−1} (for ĀB) and
{e2, e4, . . . , e2m} (for ĀC). It is clear that VZ1 = ĀB ⊕ ĀC and the symplectic form gives the
identification (ĀB)∗ = ĀC .
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It turns out that the Lusztig group Ā gets identified with ĀB in type B and with ĀC in type
C, see [Lus84, § 4.5]. So we have an identification of VZ1 with Ā⊕ Ā∗ and hence with Lusztig’s
set M(Ā) recalled in § 6.1.

Now let us describe the Lusztig parameterization U 7→ (xU , VU ) with xU ∈ Ā, VU ∈ Ā∗.
The set F(Z1, Z2) is embedded in VZ1 as follows: the representation labeled by the symbol(Z2∪(Z1−M)

Z2∪M
)

corresponds to the symmetric difference of M and M0 = {z1, z3, . . . , z2m−1}. This
gives the Lusztig parameterization (we take the ‘same type component’ of the image of U for
xU , and the ‘different type component’ for VU ).

It will be convenient for us to describe the cell modules in a way slightly different from the
above.

Let T be a Temperley–Lieb pattern as above; then the subspace LT of VZ1 with basis given
by two element subsets {zi, zj}, where zi and zj are connected by an arc, is Lagrangian.

Lemma 6.5. We have LT ⊂ F(Z1, Z2) and [T ] =
⊕

(xU ,VU )∈LT U .

Proof. An element ` of LT is the union of pairs {zik , zjk}, each pair being connected by an arc.
We remark that an arc always connect elements with different parities. The set M0 consists of
all elements with fixed parity. For M take the symmetric difference of M0 and the union of all
pairs in `. Then ` corresponds to the representation with symbol

(Z2∪(Z1−M)
Z2∪M

)
.

The second statement is just the reformulation of the description of the map U 7→ (xU , VU )
given above. 2

We now describe the subgroup Hσ ⊂ Ā corresponding to a left cell σ. For this we first
introduce certain subgroups HB

T ⊂ ĀB, HC
T ⊂ ĀC for a TL pattern T .

Type B: connect z0 and z1, z2 and z3 and so on. A basis of HB
T ⊂ ĀB is labeled by the

connected components of the resulting picture homeomorphic to a circle; the basis element
corresponding to such a connected component is

∑
e2i+1, where the summation is over the

indices i such that the arc connecting z2i, z2i+1 appears in that connected component.
Type C: connect z1 and z2, z3 and z4 and so on. A basis of HC

T ⊂ ĀC is labeled by the
connected components of the resulting picture homeomorphic to a circle; the basis element
corresponding to such a connected component is

∑
e2i with the summation over the indices i

such that the arc connecting z2i−1, z2i appears in that connected component.

Example 6.6. Consider this pattern.

•

z0 z1 z2 z3 z4 z5 z6

The procedure above in type B gives the following pattern.

•

z0 z1 z2 z3 z4 z5 z6

Thus, HB
T = 〈e1 + e3〉 ⊂ 〈e1, e3, e5〉.
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The procedure above in type C gives this pattern.

•

z0 z1 z2 z3 z4 z5 z6

Thus, HC
T = 〈e2, e6〉 ⊂ 〈e2, e4, e6〉.

Lemma 6.7. For a Temperley–Lieb pattern T the subgroup HB
T ⊕ HC

T ⊂ ĀB ⊕ ĀC = VZ1

equals LT .

Proof. It follows from the definitions of HB
T , H

C
T that both are contained in LT . It remains to

show that dimHB
T + dimHC

T = m. This is done by induction on m. Namely, in T there will be
an arc connecting zi, zi+1 for some i. The vector ei lies either in HB

T or in HC
T . Then delete the

points zi, zi+1. Denote the resulting TL pattern by T ′. Replace the arcs connecting zi−1 with zi
and zi+1 with zi+2 (used when we construct H•B, H

•
C) with the arc connecting zi−1, zi+2. We will

get some subspaces HT ′
B , H

T ′
C with dimHT ′

B ⊕HT ′
C = m− 1. But HT

B ⊕HT
C = HT ′

B ⊕HT ′
C ⊕ 〈ei〉

and so the dimension of HT
B ⊕HT

C equals m. 2

Proposition 6.8. Let σ ⊂ c be a left cell, and let T be a unique TL pattern with [T ] = [σ].
Then Hσ := HB

T in type B and Hσ := HC
T satisfy Lemma 6.2 and Proposition 6.3.

Proof. Take cells σ, σ′ and let T, T ′ be the corresponding TL patterns. We will consider type B,
type C is completely analogous.

Lemma 6.5 implies that dim HomW ([T ], [T ′]) = |LT ∩ LT ′ |. On the other hand

# CohĀ(Ā/Hσ × Ā/Hσ′) =
|Ā||Hσ ∩Hσ′ |
|Hσ||Hσ′ |

.

The equality |LT1 ∩ LT2 | = (|Ā||Hσ ∩Hσ′ |)/(|Hσ||Hσ′ |) is a straightforward consequence of
Lemma 6.7.

Now let us check that Proposition 6.3 holds. Clearly, we have HomW ([T ], Spr(O)) =
HomW ([T ],Spr(O)c). From Proposition 6.1, we deduce that HomW ([T ], Spr(O)c) is the direct
sum of the irreducible Ā-modules from LT ∩ (ĀB)∗, each with multiplicity 1. But thanks to
Lemma 6.7, the latter sum is nothing else but Q(ĀB/HB

T ) (as an ĀB-module). 2

In our proof of Theorem 1.1 in § 7.4 we will need the existence of left cells σ with very special
Lusztig subgroups. This is established in the following proposition.

Proposition 6.9. There exist left cells σ0, σ∅, σ1, . . . , σm ⊂ c (where m is the dimension of Ā
over F2) such that Hσ0 = Ā,Hσ∅ = {0}, codimĀHσj = 1 for all j and

⋂m
j=1Hσj = {0}.

Proof. We are just going to present TL patterns such that the corresponding HB and HC-
subgroups have the indicated properties.

Consider the following Temperley–Lieb pattern TB.

•

z0 z1 z2 z3 . . . z2m−2 z2m−1 z2m

It is clear that HB
TB

= ĀB and HC
TB

= {0}.
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Similarly, consider the Temperley–Lieb pattern TC .

•

z0 z1 z2 z3 z4 . . . z2m−1 z2m

It is clear that HB
TC

= {0} and HC
TC

= ĀC .
Now consider the patterns T jB (and similar patterns for type C) given by the following.

•

z0 z1 . . . z2j−2 z2j−1 . . . z2m

It is clear thatHB
T jB

is spanned by e2i−1, i 6= j, and so these subgroups have the required properties.
2

Remark 6.10. In fact, it is important for our purposes to present Ā not as an abstract group
but as a quotient of A(e), e ∈ O. Let us explain a recipe to compute the epimorphism A(e)� Ā.
The group A(e) is again the direct sum of several copies of Z/2Z and can be read explicitly from
the partition corresponding to O, see, for instance, [CM93, § 6.1]. Recall that, by our definition,
Ā is the smallest quotient of A(e) acting on Spr(O)c. Proposition 6.1 asserts that Spr(O)c is the
direct sum of U ⊗ VU for all U ∈ F(Z1, Z2) ∩ Ā∗. In fact, Ā∗ ⊂ F(Z1, Z2), because Ā∗ = LT for
T = TC in type B and T = TB in type C. Pick a basis V1, . . . , Vm in Ā∗. Let U1, . . . , Um be the
corresponding irreducible W -modules, whose symbols we can compute explicitly, thanks to the
above description of the embedding F(Z1, Z2) ↪→ VZ1 . Then from the symbols we can recover
the irreducible A(e)-modules (=A(e)-characters) χ1, . . . , χm corresponding to U1, . . . , Um, see
[Car93, 13.3]. The dual map to the epimorphism A(e)� Ā must send Vi to χi and this determines
A(e)� Ā uniquely.

6.6 Explicit descriptions: type D
Recall, see [Lus84, § 4.6], that a symbol Λ =

(
M ′

M

)
=
(
M
M ′

)
of rank n and defect 0 is an unordered

pair (M,M ′) of subsets of Z>0 with |M | = |M ′| and
∑

x∈M x +
∑

x∈M ′ x = n + |M |2 − |M | up
to an equivalence relation described in [Lus84, § 4.6]; each equivalence class contains a unique
reduced symbol with 0 6∈M ∩M ′. Such a symbol is called degenerate if M = M ′ (this condition
does not depend on the representative from the equivalence class) and non-degenerate otherwise.
To each symbol Λ of rank n and defect zero one associates a representation [Λ] of the Weyl group
W (Dn) as in [Lus84, § 4.6]; the representation [Λ] is irreducible if Λ is non-degenerate and splits
into a sum of two distinct irreducible representations [Λ]I and [Λ]II if Λ is degenerate. This gives
a parameterization of irreducible representations of W (Dn): they are of the form [Λ], [Λ]I, [Λ]II
and all these representations are distinct.

Representations [Λ]I and [Λ]II are special and each of them form a family by itself. The group
Ā is trivial.

From now on we will consider only non-degenerate symbols Λ. Two representations labeled
by reduced symbols

(M ′1
M1

)
and

(M ′2
M2

)
are in the same family if and only if M1∪M ′1 = M2∪M ′2 and

M1 ∩M ′1 = M2 ∩M ′2, see [Lus84, § 4.6]. Thus a family is completely determined by two subsets
Z1, Z2 ⊂ Z>0 such that Z1 ∩ Z2 = ∅, 0 6∈ Z2 and |Z1| is even: the corresponding family consists
of representations with reduced symbols

(
M ′

M

)
such that M ∩M ′ = Z2 and M ∪M ′ = Z1∪Z2; we

will denote such a family by F(Z1, Z2). Let us write the elements of Z1 in an increasing order:
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z1 < · · · < z2m. Then any representation from F(Z1, Z2) corresponds to the reduced symbol(Z2∪(Z1−M)
Z2∪M

)
, where M is a subset of Z1 with |M |=m; thus we have a bijection between F(Z1, Z2)

and the set of subsets of Z1 of cardinality m modulo an identification of M and Z1 −M . The
special representation from F(Z1, Z2) corresponds to the subset M0 = {z1, z3, . . . , z2m−1} ⊂ Z1

or to the subset {z2, z4, . . . , z2m} ⊂ Z1.
Fix a family F(Z1, Z2) and the corresponding two-sided cell c (and the corresponding

special orbit O). Let us describe the possible left cell modules. They are again in bijection
with Temperley–Lieb patterns, now of the following form.

z1 z2 z3 z4 z5 . . . z2m

To such a pattern T one associates a representation [T ] of W (Dn) which is a direct sum of
representations labeled by symbols

(Z2∪(Z1−M)
Z2∪M

)
(all with multiplicities 1) where M ⊂ Z1 contains

precisely one of each zi and zj connected by an arc.

Example 6.11. Assume that Z2 = {1, 3} and Z1 = {0, 2, 5, 6, 7, 9}. Then the pattern

0 2 5 6 7 9

corresponds to the following representation of W (D17):(
0, 1, 2, 3, 7

1, 3, 5, 6, 9

)
+

(
1, 2, 3, 6, 7

0, 1, 3, 5, 9

)
+

(
0, 1, 3, 5, 7

1, 2, 3, 6, 9

)
+

(
1, 3, 5, 6, 7

0, 1, 2, 3, 9

)
.

Let us proceed to describing the group Ā. Let VZ1 be the set of subsets of Z1 of even
cardinality; we consider it as an F2-vector space with sum given by the symmetric difference.
The space VZ1 is endowed with an alternating bilinear form (M,M ′) = |M ∩M ′| (mod 2). The
elements ei = {zi, zi+1} with 1 6 i 6 2m− 1 form a basis of VZ1 with (ei, ej) = 1 if and only if
|i − j| = 1. Let V ′Z1

be the quotient of VZ1 by the kernel of the bilinear form (which is the line
spanned by Z1); clearly V ′Z1

is a symplectic vector space spanned by the images ēi of ei; the only
relation between the images ēi is ē1 + ē3 + · · · ē2m−1 = 0. Let ĀD, Ā∗D ⊂ V ′Z1

be the Lagrangian
subspaces spanned by {ē2, ē4, . . . , ē2m−2} and {ē1, ē3, . . . , ē2m−1}. It is clear that V ′Z1

= ĀD⊕Ā∗D
and the symplectic form gives the identification (ĀD)∗ = Ā∗D.

The set F(Z1, Z2) is embedded in V ′Z1
as follows: the representation labeled by the symbol(Z2∪(Z1−M)

Z2∪M
)

corresponds to the symmetric difference of M and M0. The Lusztig’s quotient Ā
associated with family F(Z1, Z2) is the group ĀD, see [Lus84, § 4.6]. So F(Z1, Z2) ⊂ V ′Z1

=
ĀD ⊕ (ĀD)∗ = M(ĀD), which is precisely Lusztig’s embedding from [Lus84] recalled in § 6.1.

Let T be a Temperley–Lieb pattern as above; then the subspace LT of V ′Z1
spanned by two

element subsets {zi, zj} where zi and zj are connected by an arc is Lagrangian. It is clear from
the above that the representation [T ] is the direct sum of the representations corresponding to
the elements of LT .

We now describe the subgroup Hσ ⊂ Ā corresponding to a left cell σ. The subgroup Hσ

again depends only on [σ]; thus we will use the notation HT for Hσ, where [σ] = [T ] for a
Temperley–Lieb pattern T . Let us connect z2 and z3, z4 and z5 and so on. A basis of HT ⊂ ĀD
is labeled by the connected components of the resulting picture homeomorphic to a circle; the
basis element corresponding to such a connected component is

∑
ē2i, where the summation is

over the indices i such that the arc connecting z2i, z2i+1 appears in that connected component.
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Example 6.12. Consider the following pattern.

z1 z2 z3 z4 z5 z6 z7 z8

The procedure above gives this pattern.

z1 z2 z3 z4 z5 z6 z7 z8

Thus, HT = 〈ē2 + ē4〉 ⊂ 〈ē2, ē4, ē6〉.
Remark 6.13. One observes that the orthogonal complement H⊥T ⊂ (ĀD)∗ ' Ā∗D can be
computed in terms of T as follows: connect z1 and z2, z3 and z4 etc. Then H⊥T is spanned
by the elements

∑
ē2i−1 labeled by the connected components of the resulting picture with the

summation over the indices i such that the arc connecting z2i−1, z2i appears in that connected
component. In addition, one has LT = HT ⊕H⊥T ⊂ ĀD ⊕ Ā∗D ' V ′Z1

.

Remark 6.14. The combinatorics described in this section is completely parallel to the
combinatorics in type B via the following transformation of Temperley–Lieb patterns: a type D
pattern T with Z1 = {z1, . . . , z2m}

z1 z2 z3 z4 z5 . . . z2m

corresponds to the type B pattern T ′ with Z1 = {z2, . . . , z2m}.
•

z2 z3 z4 z5 . . . z2m

More precisely, consider the F2-linear isomorphism ι : ĀB
∼−→ ĀD given by e2i−1 → ē2i, i =

1, . . . ,m and the induced isomorphism ι : ĀB ⊕ (ĀB)∗
∼−→ ĀD ⊕ (ĀD)∗. This isomorphism maps

the lagrangian subspace LT ′ ⊂ ĀB ⊕ (ĀB)∗ to LT and so HB
T ′ to HT .

Thanks to the previous remark, Proposition 6.8 implies that Proposition 6.3 and Lemma 6.2
hold for the subgroups HT ⊂ ĀD. Also we have a complete analog of Proposition 6.9.

Proposition 6.15. There exist left cells σ0, σ∅, σ1, . . . , σm ⊂ c (where m is the dimension of Ā
over F2) such that Hσ0 = Ā,Hσ∅ = {0}, codimĀHσj = 1 for all j and

⋂m
j=1Hσj = {0}.

6.7 Explicit descriptions: exceptional cases with Ā = Z/2Z
All explicit results in this subsection are obtained by inspecting the list of left cell modules,
[Car93, 13.2], and tables in [Car93, 13.3] giving the component groups A(e) and the Springer
W ×A(e)-modules.

Recall that one can describe Ā in terms of Spr(O)c. We get the following lists of special
orbits with Ā = Z/2Z:

G2: no;

F4: Ã1, F4(a1);

E6: A2, E6(a3);

E7: A2, A2 +A1, D4(a1) +A1, A4, A4 +A1, D5(a1), E6(a3), E6(a1), E7(a3);

E8: A2, A2 + A1, 2A2, A4, D4(a1) + A2, A4 + A1, D5(a1), A4 + 2A1, E6(a3), D6(a1), E6(a1),
D7(a2), E6(a1) +A1, E7(a3), E8(a5), E8(a4), E8(a3).
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All modules Spr(O)c have the form U1 ⊗ V1 ⊕ U2 ⊗ Vε, where V1, Vε are the trivial and the
sign modules for Ā.

There are two possible behaviors of the left cell modules. First, for all but three orbits, there
are two different left cell modules and they have the form U1 := U1⊕U2, U

2 := U1⊕Ũ2. Here Ũ2 is
an irreducible W -module different from U1, U2. Define Hσ = {1} if [σ] = U1, Hσ = Ā if [σ] = U2.
It is straightforward to see that these subgroups satisfy Proposition 6.3 and Lemma 6.2.

Now, for the orbits A4 +A1 in E7, A4 +A1, E6(a1) +A1 in E8 there is only one cell module
U1⊕U2. These orbits (and the corresponding two-sided cells) are called exceptional. All subgroups
Hσ are equal to {1}.

6.8 Explicit descriptions: exceptional cases with Ā = S3, S4, S5

The results in this subsection are obtained in the same way as in the previous one.

6.8.1 Ā = S3. We have the following numbers of special orbits with Ā = S3: one for G2, one
for E6, two for E7, six for E8.

First, we consider theG2 case. Here the Springer representation has the form U0⊗V3⊕U1⊗V21.
Here U0, U1 are certain irreducible W -modules, U0 is special, and for a partition λ of 3 we
write Vλ for the corresponding irreducible S3-module. There are two possibilities for the left
cell modules as follows: U1 := U0 + U1 + Ũ1, U

2 := U0 + Ũ1 + Ũ2, where Ũ1, Ũ2 are some other
irreducible W -modules different from U0, U1. Set Hσ := S2 if [σ] = U1, and Hσ := S3 if [σ] = U2.
Proposition 6.3 and Lemma 6.2 hold for this choice of subgroups.

In the remaining cases the situation is uniform. There the Springer representation has the
form U0 ⊗ V3 + U1 ⊗ V21 + U2 ⊗ V111. There are three possibilities for the left cell modules
U1 := U0 + U⊕2

1 + U2, U
2 := U0 + U1 + Ũ1, U

3 := U0 + Ũ1 + Ũ2. We have Hσ = {1}, S2, S3 when
[σ] = U1, U2, U3, respectively. Again, Proposition 6.3 and Lemma 6.2 hold.

6.8.2 Ā = S4. There is only one special orbit with this Ā and it is in type F4. The Springer
representation is of the form U0 ⊗ V4 + U1 ⊗ V31 + U2 ⊗ V22 + U3 ⊗ V211, in the notation similar
to the S3-part.

There are five different left cell modules:

(i) U1 = U0 + Ũ1 + Ũ2 + Ũ3 + Ũ4;

(ii) U2 = U0 + Ũ1 + U1 + Ũ3 + Ũ5;

(iii) U3 = U0 + Ũ1 + 2Ũ2 + U2 + Ũ4 + Ũ6;

(iv) U4 = U0 + Ũ1 + 2U1 + U2 + Ũ5 + U3;

(v) U5 = U0 + 2Ũ1 + U1 + Ũ2 + U2 + Ũ7.

Here, as above, Ũ1, . . . , Ũ7 are pairwise non-isomorphic irreducible W -modules different from
U0, . . . , U3.

For [σ] = U i, we set Hσ = H i, where H1 := S4, H
2 := S3, H

3 := Dyh8, H
4 := S2, H

5 :=
S2 × S2. Here Dyh8 is the dihedral group of order 8. It is not difficult but tedious to check that
Proposition 6.3 and Lemma 6.2 hold for this choice of subgroups.

6.8.3 Ā = S5. Here Spr(O) has the form U0 ⊗ V5 ⊕ U1 ⊗ V41 + U2 ⊗ V32 ⊕ U3 ⊗ V311 ⊕
U4 ⊗ V221 ⊕ U5 ⊗ V2111. There are seven left cell modules U1, . . . , U7, we need the modules
including the special representation φ4480,16. They correspond to the following Lusztig subgroups
H1 := S5, H

2 := S4, H
3 := S3 × S2, H

4 := Dyh8, H
5 := S3, H

6 := S2 × S2, H
7 := S2 (the latter

is generated by a single transposition). Again, it is not very difficult but very tedious to check
that both Proposition 6.3 and Lemma 6.2 hold in this situation.
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6.9 Classification of left cells

Lemma 6.16. For any finite Weyl group W the cell modules are linearly independent as virtual
representations of W .

Proof. Since cell modules corresponding to different families are disjoint it is enough to show
that the statement is true for the cell modules from a fixed family. We can assume that W is
irreducible (since families and cell modules for W ′×W ′′ are just tensor products of those for W ′

and W ′′). For W of type A the statement is trivial; for W of exceptional types one verifies it by
a direct check.

For W of types B and C we compute the matrix of scalar products of (characters of)
cell modules. It follows from the description in § 6.5 that the scalar product of cell modules
corresponding to TL patterns T ′ and T ′′ can be computed as follows: turn the TL pattern
T ′′ upside down and concatenate it with TL pattern T ′. The scalar product of cell modules
corresponding to T ′ and T ′′ is 2d where d is the number of compact components (i.e. circles) in
the resulting picture. One observes that the resulting matrix is, by definition, the matrix of the
composition pairing Hom([1], [2n+ 1])×Hom([2n+ 1], [1])→ Hom([1], [1]) = Q in the so called
Temperley–Lieb category T L(τ) with τ = 1, see for example, [GW03]. Since the category T L(1)
is semisimple (see [GW03]), the pairing above is non-degenerate and the lemma is proved in this
case.

Finally, for W of type D one proceeds similarly, or uses Remark 6.14. 2

Recall that [c] =
⊕

σ⊂c[σ], see § 6.1. Clearly, [c] =
⊕

E∈Irr(W )c dim(E)E. Thus Lemma 6.16
guarantees that we can compute the number of left cells σ with a given cell module. In particular,
we can compute explicitly the Lusztig set Y ′ =

⊔
σ Ā/Hσ, see § 6.4.

Example 6.17. (a) Assume that g = so(15) and the (special) nilpotent orbit O corresponds
to partition (7, 32, 12). Using [Car93, § 13.3] one computes that the corresponding special
representation of W has a symbol

(
0,2,5
1,3

)
. Here is a table of dimensions of the representations

from the corresponding family:(
0,2,5
1,3

) (
0,1,2
3,5

) (
0,1,3
2,5

) (
0,1,5
2,3

) (
0,2,3
1,5

) (
0,3,5
1,2

) (
1,2,3
0,5

) (
1,2,5
0,3

) (
1,3,5
0,2

) (
2,3,5
0,1

)
210 14 63 70 84 105 35 126 112 21

The representations
(

0,1,2
3,5

)
and

(
2,3,5
0,1

)
appear only in the cell modules corresponding to the

following TL patterns.

T1 = •

0 1 2 3 5

T2 = •

0 1 2 3 5

Thus we will have dim
(

0,1,2
3,5

)
= 14 left cells with left cell module described by T1 and

dim
(

2,3,5
0,1

)
= 21 left cells of type T2. Similarly, using representation

(
1,2,3
0,5

)
we find that there

are 35 left cells of type T3 where

T3 = •

0 1 2 3 5
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and the two remaining TL patterns are as follows.

T4 = •

0 1 2 3 5

T5 = •

0 1 2 3 5

The representation
(

0,1,5
2,3

)
appears only in left cell modules corresponding to T4 and T2; thus the

number of left cells of type T4 is dim
(

0,1,5
2,3

)
− 21 = 49. Similarly, using representation

(
0,3,5
1,2

)
we

find that the number of left cells of type T5 is 91.
Using the descriptions of the group Ā and the subgroups Hσ from § 6.5, we find that Ā = 〈e1,

e3〉 and
Y ′ = (Ā/〈e3〉)14 t (Ā/〈e1 + e3〉)21 t (Ā/〈e1〉)35 t (Ā)49 t (Ā/Ā)91.

In particular, the cardinality of Y ′ is 14 · 2 + 21 · 2 + 35 · 2 + 49 · 4 + 91 = 427.
(b) Let g = sp(14) and O correspond to partition (6, 4, 22). The corresponding special

representation of W again has a symbol
(

0,2,5
1,3

)
and using almost the same computation as above

we find that Ā = 〈e2, e4〉 and

Y ′ = (Ā/〈e2 + e4〉)14 t (Ā/〈e2〉)21 t (Ā/〈e4〉)35 t (Ā/Ā)49 t (Ā)91.

(c) Let O be a special orbit such that the corresponding cell c is non-exceptional with Ā =
Z/2Z. The corresponding family contains three representations of W : the special representation
U0, the representation U1 which appears in Spr(O), and one more representation Ũ1. It is well
known (and it follows from [Lus86]) that dim(U0) = dim(U1) + dim(Ũ1). In all such cases we
have

Y ′ = (Ā)dim(U1) t (Ā/Ā)dim(Ũ1).

(d) We list here all cases where Ā = Sr, 3 6 r 6 5 (we follow [Car93, § 13] in the notation
for nilpotent orbits):

g is of type G2 and O is of type G2(a1): in this case Ā = S3 and Y ′ = S3/S2 t S3/S3;
g is of type E6 and O is of type D4(a1): in this case Ā = S3 and

Y ′ = (S3)20 t (S3/S3)10 t (S3/S2)50;

g is of type E7 and O is of type D4(a1): in this case Ā = S3 and

Y ′ = (S3)35 t (S3/S3)70 t (S3/S2)210;

g is of type E8 and O is of type D4(a1) or E8(b5): in both cases Ā = S3 and

Y ′ = (S3)56 t (S3/S3)448 t (S3/S2)896;

g is of type E8 and O is of type D4(a1) +A1 or E8(a6): in both cases Ā = S3 and

Y ′ = (S3)350 t (S3/S3)175 t (S3/S2)875;

g is of type F4 and O is of type F4(a3): in this case Ā = S4 and

Y ′ = (S4/S4)3 t (S4/S3)3 t (S4/S2 × S2)4 t S4/S2 t S4/Dyh8;

g is of type E8 and O is of type E8(a7): in this case Ā = S5 and

Y ′ = (S5/S5)420 t (S5/S4)756 t (S5/Dyh8)168 t (S5/S2)70 t (S5/S3 × S2)1596

t (S5/S2 × S2)1092 t (S5/S3)378.

Above we have determined (in some form, at least) the number of left cells with given cell
module. One, however, can ask how to compute the cell module starting from a cell itself. In
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fact, in classical types there is a combinatorial classification of left cells due to Barbash and
Vogan, [BV82]. To each w ∈ W they combinatorially assigned a standard 2n-tableau. Then
they proved that w,w′ are in the same left cell if their tableaux coincide and provided a recipe
to determine V(U/J (wρ)) from the tableau of w. Garfinkle in a series of papers produced an
equivalent (but simpler) combinatorial classification of left cells in terms of standard domino
n-tableaux of special form that are again produced from Weyl group elements, see [Gar90]
for the definition. In [McG96] McGovern found a combinatorial recipe to produce the cell
module from the Garfinkle tableau corresponding to a left cell. So the conclusion is that one
can combinatorially compute the group Hσ starting from an element w ∈ σ.

7. Proof of the main theorem

7.1 Results of Dodd: Irrfin(Wρ) versus Spr(O)
In this subsection we will quote results of Dodd, [Dod13], relating the K-group [Wλ -modfd] of the
category of finite-dimensional modules over the central reduction Wλ for some central character
λ to the Springer W ×A(O)-module Spr(O).

In [Dod13, § 3], Dodd defined a natural A(O)-equivariant map [Wλ -modfd] → Spr(O);
moreover he proved that this map is an embedding, see [Dod13, Theorem 1]. Furthermore, for
λ = ρ he used Goodwin’s translation functors from [Goo11] to define a W -action on [Wρ -modfd]
and proved that the map above is W -equivariant with respect to the standard W -action on
Spr(O), see [Dod13, § 8]. Recall that [Wρ -modfd] carries another W -action coming from the
epimorphism Q(W )� [JO], see § 6.2.

Proposition 7.1. The two W -actions on [Wρ -modfd] described above coincide.

Proof. From Theorem 5.11 (applied in the case, when T is trivial and so θ = 0) it follows that
this action coming from the Goodwin translation functors is the same as the one coming from

ρHC(U)ρ ×Wρ -modfd→Wρ -modfd, (X,N) 7→ X† ⊗W N (7.1)

(where the superscript ρ means the generalized central character ρ). We claim that the action
JO×Wρ -modfd→Wρ -modfd induced by (7.1) is compatible with the epimorphism Q(W )� [JO]
from § 6.2. Indeed, consider the category ˆρHCρ(U) whose objects have the form lim

←−n,mXn,m,
where Xn,m is an HC bimodule annihilated by Z(U)nρ on the left and Z(U)mρ on the right. In
particular, ρHCρ(U) ⊂ ˆρHCρ(U). An advantage of ˆρHCρ(U) over ρHCρ(U) is that the former
has enough projective objects. The category ˆρHCρ(U) is monoidal: its objects are bimodules over
the completion lim

←−n U/UZ(U)nρ , and we take tensor products of bimodules over this algebra. The
projective objects of this category are identified with projective functors sending the generalized
central character ρ to itself so that the tensor product becomes the composition, see [BG80]. As
we have already mentioned in § 6.2, the Q-form of the Grothendieck ring of ˆρHCρ(U) -proj is
QW .

For X ∈ ˆρHCρ(U), Y ∈ HCO(U), N ∈ W-mod we have X†⊗W (Y†⊗WN) = (X⊗U Y )†⊗WN
by Theorem 4.4 (4). Now let N be a simple in Wρ-mod, Y = 1 ∈ JO be the unit object, and
X ∈ ˆρHCρ(U). Then, of course, Y ⊗WN = N and so we have (X⊗U 1)†⊗WN = X†⊗WN . On the
level of the Grothendieck groups, the map QW → JO that sends the class of X ∈ ˆρHCρ(U) -proj
to the class of X ⊗ 1 is just Lusztig’s homomorphism, see (6.1).

So Dodd’s action of Q(W ) on [Wρ -modfd] is the same as ours. 2

Remark 7.2. We sketch here an alternative proof of the Dodd’s result on the injectivity of the map
[Wρ -modfd]→ Spr(O) based on some results of Lusztig from [Lus12]. Namely, Dodd considers a
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map [Wρ -modfd]→H∗(Be) that is the composition of the reduction mod p for p� 0 and the map
from the Grothendieck group of the restricted representations of the W -algebra in characteristic p
to H∗(Be) ∼= Q⊗ZK0(Coh(Be)). The first map is injective from the construction. The second is an
isomorphism; it comes from the derived localization, that is an equivalence of the corresponding
derived categories. So the map [Wρ -modfd]→H∗(Be) is injective. Dodd’s main result is that the
image of that map actually lies in the top cohomology, [Dod13, § 7]. Independently, the map above
is also shown to be W -equivariant, see [Dod13, § 8.2]. Proposition 7.1 implies that irreducible
constituents of its image are in Irr(W )O = Irr(W )c. But according to [Lus12, Proposition 0.2],
if a representation from Irr(W )c appears in H∗(Be), it only appears in the top degree, i.e., in
Spr(e). So the W -equivariance actually implies the injectivity.

7.2 Summary
In this subsection we are going to summarize the results obtained so far in a form suitable
for the proof of the main theorem. We start by interpreting results from § 4.3, Theorem 5.1,
Proposition 5.3. Until the end of the paper we assume that G is of adjoint type.

Fix a finite set Λ of dominant weights (for g) containing a regular weight %. Let Wss
Λ be the

quotient of W by the intersection of all maximal ideals of finite codimension in W with central
characters from Λ. This is a finite-dimensional semisimple associative algebra equipped with a
Hamiltonian action of Q. So we can consider the category BimodQ(Wss

Λ ) of finite-dimensional
Q-equivariant bimodules. The Q-equivariance condition implies, in particular, that the Q◦-action
on an object of BimodQ(Wss

Λ ) is recovered from the adjoint Wss
Λ -action. Pick a finite subgroup

A ⊂ Q surjecting onto A(O) = Q/Q◦. The existence of such a subgroup is a standard fact;
see, for example, [Vin96, Proposition 7]. Then we have a natural inclusion BimodQ(Wss

Λ ) ↪→
BimodA(Wss

Λ ). The category BimodA(Wss
Λ ) is known to be isomorphic to CohA,ψ(Y Λ×Y Λ), for

an appropriate collection of 2-cocycles ψ, see [BO04, § 5.1].
Lemma 5.4 and Proposition 5.5 imply the following:

(A1) there is an embedding ΛJΛ
O ↪→ CohA,ψ(Y Λ×Y Λ) of multi-fusion categories. Moreover, ΛJΛ

O
is indecomposable.

Let YΛ := Coh(Y Λ). We can view YΛ as a left ΛJΛ
O-module via the embedding ΛJΛ

O ↪→
CohA,ψ(Y Λ × Y Λ). Theorem 5.1 means:

(A2) the left ΛJΛ
O-module YΛ is indecomposable.

Next, Proposition 5.7 gives:

(A3) we have Hσ ⊂ Hλ
σ for any compatible σ and λ.

Now let us interpret results from § 3. Lemma 3.1 together with assertion (iii) of Lemma 3.2
imply the following statement.

(B1) There is a quotient Ā of A and a class ω ∈ H3(Ā,K×) independent of Λ such that the
action of A on Y Λ factors through Ā and ΛJΛ

O = (Vecω
Ā

)∗
YΛ . For the decomposition Y Λ =⊔

λ∈Λ,σ Y
λ
σ into Ā-orbits, we have Coh(Y λ

σ ) = Yλ
σ := eλσ⊗YΛ. The latter are indecomposable

right Vecω
Ā

-modules.

Further, applying Lemmas 3.2, 3.4, 6.2 we get:

(B2) for any dominant weights λ, µ and any left cells σ, τ compatible with λ, µ (meaning that
w and λ are compatible for each w ∈ σ and similarly for τ, µ), respectively, the following
numbers are all equal:
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(1) # λ
σJ

µ
τ ;

(2) Hom[ ΛJΛ]([J
λ
σ], [Jµτ ]);

(3) HomW ([σ], [τ ]);

(4) # CohĀ(Ā/Hσ × Ā/Hτ );

(5) # CohĀ,ψ(Y λ
σ × Y µ

τ ).

In more detail, the coincidence of (1) and (2) follows from Lemma 3.4 (applied to the direct
summand eτµ of unit and M := ΛJ Λ⊗eσλ). The coincidence of (2) and (3) follows from § 6.2. The
coincidence of (3) and (4) is Lemma 6.2. Finally, the coincidence of (1) and (5) is Lemma 3.2(iii)
(applied to the direct summands eλσ, e

µ
τ of 1 and M := YΛ; here we interpret the category in (5)

as FunVecω
Ā

(eµτM, eλσM)).
Now we are going to apply Lemma 3.2(i), and Lemma 3.4 to eσ(:= eρσ) and M = Y.

(B3) For any dominant weight λ and a left cell σ compatible the following A-modules coincide:

(1) HomW ([σ], [Y]), where W acts on [Y] as explained in § 7.1;

(2) [FunJO(Jσ,Y)], where the Ā-action comes from the right Vecω
Ā

-action on Y;

(3) Q(Yσ) = [eσ ⊗Y].

Finally, let us recall an embedding Q(Y ) ↪→ Spr(O)c of W × A-modules quoted in § 7.1.
It induces an embedding HomW ([σ],Q(Y )) ↪→ HomW ([σ], Spr(O)) of A-modules. The source
module is Q(Yσ) by (B3), while the target module is Q(Ā/Hσ) by Proposition 6.3. Combining
this with Proposition 6.1, we get:

(B4) there is an embedding Q(Yσ) ↪→ Ā/Hσ of A-modules. The image coincides with the sum
of all V -isotypic components of Q(Ā/Hσ), where V is an Ā-module such that V (or,
equivalently, the W -module corresponding to (1, V ) under the Lusztig parameterization)
appears in Q(Y ).

7.3 Preparation for the proof
We use the notation introduced in the previous subsection. Recall that Hλ

σ denotes the stabilizer
of a point from Y λ

σ . Our main goal is to prove that Hλ
σ coincides with Hσ (up to conjugacy).

Lemma 7.3.

(i) If Hσ = Ā, then Hλ
σ = Ā.

(ii) If the two-sided cell c is non-exceptional (this excludes precisely three cells in types E7, E8),
then there is σ with Hσ = Ā.

(iii) If Hλ
σ = Ā for some compatible λ, σ, then ω = 0.

Proof. Part (i) follows from (B4), and (ii) follows from the explicit descriptions of the subgroups
Hσ given in § 6. To prove (iii) let us recall that Yλ

σ = Coh(Y λ
σ ) is an indecomposable right module

over Vecω
Ā

, see (B1). From the description of indecomposable Vecω
Ā

-modules in § 3.2 we see that
ω|Hλ

σ
is trivial (in fact, it does not matter whether we consider left or right modules). Since

Hλ
σ = Ā, we are done. 2

In particular, we see that for non-exceptional cells ω is 0. So YΛ is isomorphic to the right

VecĀ-module corresponding to some collection ψ̄ of 2-cocycles. In particular ΛJΛ
O
∼= CohĀ,ψ̄

(Y Λ × Y Λ),

Here is a technical claim that we are going to prove.
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Theorem 7.4. Assume that the two-sided cell c is not exceptional.

(i) The quotient Ā of A coincides with Lusztig’s quotient Ā. Moreover, Hλ
σ = Hσ, whenever λ

and σ are compatible.

(ii) There is ψ̄0 ∈ H2(Ā,K×) such that ψ̄σ is cohomologous to the restriction of ψ̄0 to Hσ.

(iii) The image of the embedding Q(Y σ) ↪→ Spr(O) is Spr(O)c.

Remark 7.5. We will see below that Ā acts faithfully on Y , i.e., only the unit element acts

trivially.

Remark 7.6. Although we do not know yet that Ā coincides with Ā, we can say from the

beginning that |Ā| = |Ā|. Indeed, the categories ΛJΛ
O and (Vecω

Ā
)∗
YΛ are indecomposable multi-

fusion categories and for such categories the Frobenius–Perron dimensions (see [EON05, § 8.2])

of all component categories (i.e., of fusion categories of the form eCe ⊂ C, where e is an

indecomposable summand of unit) coincide, see [EON05, Corollary 8.14]. For the category

(Vecω
Ā

)∗
YΛ this common value equals |Ā| by [EON05, Corollary 8.14]. For the category ΛJΛ

O
this common value can be read from the character tables of Grothendieck rings of component

categories computed in [Lus87] and equals |Ā| (cf. [BFO09, p. 225]). We deduce the desired

equality since ΛJΛ
O = (Vecω

Ā
)∗
YΛ by (B1).

Remark 7.7. We note that Theorem 7.4 gives an alternative proof of Lusztig’s conjecture proved

in [BFO09, Theorem 4]. Also we want to note that not only is ΛJΛ
O isomorphic to CohĀ(Y Λ×Y Λ)

but actually this equivalence is realized by the embedding ΛJΛ
O ↪→ CohA(Y Λ×Y Λ). Let us explain

what we mean by this. Consider a simple object M∈Λ JΛ
O and a point (x, y) ∈ Y Λ × Y Λ, where

the fiber of M is nonzero. It is not true that the fiber is a genuine representation of Ā(x,y), it is

still a projective Ā(x,y)-module but the Schur multiplier is a coboundary, so we can view the fiber

as an Ā(x,y)-module, say V . By construction, the embedding ΛJΛ
O ↪→ CohĀ(Y Λ×Y Λ) sendsM to

the simple equivariant sheaf corresponding to (x, y, V ). In particular, the multiplicity ofM on O
can be computed as follows. According to Theorem 4.4, this multiplicity equals dimM†. But as

a vector space, M† := V
⊕
|Ā/Ā(x,y)| ⊗ HomK(Nx, Ny), where Nx, Ny are irreducible W-modules

corresponding to the points (x, y). So

multO(M) =
|Ā|
|Ā(x,y)|

dimV dimNx dimNy. (7.2)

This formula will be of great importance in [Los12a] and is one of the main reasons why our

classification business is important for the computation of the Goldie ranks.

Now let us establish a few more technical tools to be used in the proof of Theorem 7.4.

Lemma 7.8. Let σ0 be a left cell with Hσ0 = Ā. Then for any compatible λ, σ we have

# Rep(Hσ) = # Repψ̄σ0−ψ̄
λ
σ (Hλ

σ).

Proof. The left- and right-hand sides are (4) and (5) in (B2), respectively. 2

Corollary 7.9. Suppose σ is not exceptional. Then # Rep Ā = # Rep Ā.

Proof. Take a left cell σ0 with Hσ0 = Ā. By Lemma 7.3, Hσ0 = Ā. Applying Lemma 7.8 to

σ = σ0, we get the required equality. 2
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Lemma 7.10. Suppose that Ā-modules V1, . . . , Vm occur in Q(Y ). Let Q(Ā/Hσ)′ denote the sum
of all irreducible components of Q(Ā/Hσ) isomorphic to V1, . . . , Vn. Then we have inclusions
Q(Ā/Hσ)′ ↪→ Q(Yσ) ↪→ Q(Ā/Hσ).

Proof. This follows from (B4). 2

Corollary 7.11. If Ā is abelian, we have an A-equivariant surjection Ā/Hσ � Ā/Hσ.

Now let us explain the general strategy of the proof. First, we note that, in virtue of
Lemma 7.10, the claims (i) and (iii) of the theorem for λ = ρ are very closely related (in fact,
equivalent when Ā is abelian). So, basically, we need to establish the existence of sufficiently many
irreducible constituents of Q(Y ). On the other hand, the only tool for us to get constituents of
Q(Y ) is to prove the equalities Hσ = Hσ. For some Hσ (roughly, for large ones) this is doable
by using Lemma 7.8 and the second inclusion of Lemma 7.10.

When (i) is fully established, proving (ii) is not difficult (sometimes we need to prove these
two claims simultaneously, though). After establishing (i), (ii) for λ = ρ we will treat the case of
general λ.

Now we give a proof of Theorem 7.4 in the case when the cell c is exceptional. It is proved
in [Ost13, Theorem 1.1 and Remark 1.2(iv)] that in this case we have a tensor equivalence
ΛJΛ

O
∼= VecωZ/2Z�Coh(Y ′ × Y ′) for the non-trivial element ω ∈ H3(Z/2Z,K×) ∼= Z/2Z and

some finite set Y ′. It follows from [Ost03b, Proposition 2.3 and Example 2.1] that the category
VecωZ/2Z�Coh(Y ′ × Y ′) has a unique (up to equivalence of module categories) indecomposable
module category, namely VecωZ/2Z�Coh(Y ′). The assertions of Theorem 7.4 follow easily from
this and statement (A2) in § 7.2. Notice that in this case A = Ā = Z/2Z and Hσ is trivial for
any left cell σ ⊂ c.

7.4 Proof for classical types
Recall, §§ 6.5, 6.6 that Ā ∼= Fm2 .

In the proof we will need to use cells σ0, σ1, . . . , σm, σ∅ with the following properties:Hσ0 = Ā,
Hσk has index 2 in Ā, and

⋂m
k=1Hσk = {1}, and, finally, Hσ∅ = {1}. The existence of such cells

for all classical types follows from Propositions 6.9 (types B and C) and 6.15 (type D). In fact,
Hσ∅ = Hσ∅ implies Hλ

σ = Hσ for all λ, σ. But to prove that Hσ∅ = Hσ∅ we will need to check
the coincidence of the subgroups for σ1, . . . , σm.

The proof will be divided into the following steps.

Step 1: Prove Ā/Hσi = Ā/Hσi (the equality of quotients of A) for i = 1, . . . ,m.

Step 2: Establish the inclusion of ‘sufficiently many’ simple Ā-modules into Q(Y ).

Step 3: Prove Ā = Ā.

Step 4: Prove Hσ∅ = Hσ∅ based on Step 2.

Step 5: Deduce Hλ
σ = Hσ in general.

Step 6: Prove (ii) of the theorem.

Step 7: Prove (iii) of the theorem.

Step 1. Set σ := σ0 and τ := σi for some i. Corollary 7.11 implies that either Hτ = Ā or
Ā/Hτ = Ā/Hτ . By Lemma 7.8, # Repψ̄

σ−ψ̄τ (Hτ ) = # Rep(Hτ ). The right-hand side is |Ā|/2
or, equivalently, by Remark 7.6, |Ā|/2.

We remark that if ψ̄ is a non-trivial (not coboundary) 2-cocycle on Hτ , then there is no
1-dimensional representation in Repψ̄ Hτ . The category Repψ̄ Hτ is the same as the category
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of modules over the twisted group algebra Kψ̄Hτ with dimKψ̄Hτ = |Hτ |. It follows that∑
V (dimV )2 = |Hτ |, where the summation is taken over all irreducible Kψ̄Hτ -modules. But

the number of simple representations in Repψ̄ Hτ is |Ā|/2 = |Ā|/2 by the previous paragraph.
From here we see that Hτ 6= Ā (otherwise the number of simples is # Rep Ā = # Rep Ā = |Ā|

if ψ̄ is a coboundary (the first equality follows from Corollary 7.9) and does not exceed |Ā|/4 =
|Ā|/4 otherwise). So the quotients Ā/Hτ and Ā/Hτ coincide.

Step 2. Now apply (B4) to σ = σ0, τ = σi. We get that the non-trivial Ā/Hσi-module Vi
appears in the Ā-module Q(Y ).

Step 3. From the previous step we see that V1, . . . , Vm appear in Q(Y ). But the common
kernel of those representations in A coincides with the kernel of the projection A� Ā. On the
other hand, the A-action on the right-hand side factors through Ā. From here we get Ā � Ā
and hence Ā = Ā.

Step 4. Now apply Lemma 7.10 to σ = σ∅ and the Ā-modules V1, . . . , Vm. The Ā = Ā-
module Q(Ā/Hσ)′ is just

⊕m
i=1 Vi. It follows that the Ā-action on Q(Yσ) is faithful and therefore

Hσ = {1}.
Step 5. Now let σ = σ∅, λ = ρ, and take arbitrary compatible µ, τ . Expression (4) in (B2)

is |Ā/Hτ |, while (5) is |Ā/Hµ
τ |. So (B2) implies |Hτ | = |Hµ

τ |. For µ = ρ we deduce Hτ = Hτ

from Corollary 7.11. For general µ (A3) reads Hτ = Hτ ⊂ Hµ
τ and hence Hτ = Hµ

τ . So (i) of
Theorem 7.4 is fully proved.

Step 6. Now set σ := σ0, λ = ρ, ψ̄0 := ψ̄σ and pick arbitrary compatible µ, τ . Using the
equality of (4) and (5) in (B2) we see that # Repψ̄0−ψ̄τµ Hτ = # RepHτ . Similarly to Step 1, this
implies that ψ̄0 − ψ̄τµ is cohomologous to 0.

Step 7. To get (iii) of Theorem 7.4, apply (B4) to σ = σ∅ and λ = ρ.

7.5 Proof for exceptional types
Now we are going to prove Theorem 7.4 for non-exceptional cells in exceptional types. We need
to consider the cases Ā = Z/2Z, S3, S4, S5 separately.

7.5.1 Ā = Z/2Z. The proof repeats that of the classical case (where we omit Steps 4 and 6
because the second cohomology vanishes for the subgroups of Ā).

7.5.2 Ā = S3. Recall that Hσ is one of the subgroups {1}, S2, S3. We have Ā = Hλ
σ provided

Hσ = S3, thanks to Lemma 7.3 and (A3). We also remark that (ii) follows readily from the fact
that the second cohomology of a subgroup of S3 vanishes. Lemma 7.8 implies that # Rep Hλ

σ =
# RepHσ. Also Lemma 7.10 together with (A3) shows that Q(S3/H

σ
λ) ↪→ Q(S3/Hσ) (as A-

modules). From here it is easy to deduce that |Hλ
σ| = |Hσ| and hence Q(S3/H

λ
σ) = Q(S3/Hσ).

The A-action on the left hand side factors through Ā. Since Ā= S3 acts faithfully on Q(S3/S2) we
deduce from |Ā| = |Ā| that Ā = Ā. Finally, we see that Hσ = Hλ

σ. Assertion (iii) of Theorem 7.4
follows from (B4) applied to σ with Hσ = {1} (outside G2) and with Hσ = S2 (in G2).

7.5.3 Ā = S4. Recall that we have the following Lusztig subgroups H1 = S4, H
2 = S3,

H3 = Dyh8, H
4 = S2, H

5 = S2 × S2. Recall that Hλ
σ = Hσ whenever Hσ = H1. We use the

notation for Ā-modules and for W -modules introduced in § 6.8.
Thanks to Remark 7.6, the group Ā has 24 elements.
The proof of Theorem 7.4 is carried out in the following steps.

Step 1: Prove that V31, V22 appear in Q(Y ).

Step 2: Deduce that Ā = Ā.

Step 3: Deduce that Hσ = Hσ if Hσ = S3,Dyh8, S2 × S2.
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Step 4: Prove that Hσ = Hσ whenever Hσ = S2.

Step 5: Deduce assertion (iii) of Theorem 7.4.

Step 6: Prove that Hλ
σ = Hσ for all λ.

Step 7: Deduce assertion (ii).

Step 1. Let us show that both V22 and V31 appear in Q(Y ). Assume the converse. Let σ, τ

be left cells with Hσ = S4, Hτ = S2 × S2. We have Q(S4/S2 × S2) = V4 ⊕ V31 ⊕ V22. Applying

(B4) to the left cell τ , we see that Hτ = Ā (neither V31 nor V22 appear in Q(Y )) or Q(Ā/Hτ ) =

Q(S4/S3) (V31 appears in Q(Y ) but V22 does not) or Q(Ā/Hτ ) = Q(S4/Dyh8). Lemma 7.8

implies # Repψ̄
σ−ψ̄τ (Hτ ) = # Rep(Hτ ) = 4. But the sum of squared dimensions of the simples

in Repψ̄
σ−ψ̄τ (Hτ ) must be equal to |Hτ |. Since Ā consists of 24 elements, we see that |Hτ | = 6

or 8 or 24. But neither of these numbers can be represented as the sum of four positive squares.

So V31, V22 ⊂ Q(Y ).

Step 2. The equality Ā = Ā follows now from |Ā| = 24 and the observation that S4 acts

faithfully on V31.

Step 3. Let σ be as in Step 1, and τ be one of the cells with Hτ = H2, H3 or H5. Thanks

to Step 1 and Lemma 7.10, we have Q(S4/Hτ ) = Q(S4/Hτ ). It is easy to see that this equality

actually implies Hτ = Hτ .

Step 4. Now take τ with Hτ = S2. We have Q(S4/S2) = V4 ⊕ V ⊕2
31 ⊕ V22 ⊕ V2111. Thanks to

Lemma 7.10 applied to V31 and V22, we see that V4 ⊕ V ⊕2
31 ⊕ V22 ⊂ Q(S4/Hτ ) ⊂ V4 ⊕ V ⊕2

31 ⊕
V22 ⊕ V2111. The dimension of V4 ⊕ V ⊕2

31 ⊕ V22 is 9 and does not divide 24. So Q(S4/Hτ ) =

V4 ⊕ V ⊕2
31 ⊕ V22 ⊕ V2111. From here one can deduce that Hτ = S2.

Step 5. Assertion (iii) of the theorem follows from (B4) applied to τ with Hτ = S2, compare

with the proof for the classical types.

Step 6. Take σ with Hσ = S2 and arbitrary compatible µ, τ . Apply (B2) to that choice (with

λ = ρ). From the coincidence of (4) and (5) we deduce that the number of S2-equivariant sheaves

on S4/Hτ and on S4/H
µ
τ coincide. Recall, see (A3), that Hτ ⊂ Hµ

τ .

For an S2-set X the number s(X) of simple S2-equivariant sheaves on X is 2nX + 1
2mX ,

where nX (respectively, mX) is the number of S2-fixed (respectively, non S2-fixed) points. Since

the transpositions generate S4, we see that mX > 0 unless the S2-action is trivial.

If Hτ = S3, then s(S4/H
µ
τ ) = s(S4/S3) = 5 and S3 ⊂ Hµ

τ . This is only possible if Hµ
τ = S3.

If Hτ = Dyh8, then s(S4/H
µ
τ ) = s(S4/Dyh8) = 3 and Dyh8 ⊂ Hµ

τ . This is only possible if

Hµ
τ = Dyh8.

If Hτ = S2×S2, then s(S4/H
µ
τ ) = s(S4/S2×S2) = 6 and S2×S2 ⊂Hµ

τ . This is only possible

if Hµ
τ = S2 × S2 because the only subgroups containing S2 × S2 are Dyh8 and S4.

Finally, consider the case Hτ = S2. Here s(S4/S2) = 9. So for X = S4/H
µ
τ we should have

s(X) = 2nX+ 1
2mX = 9. Also nX+mX = |X| divides 12. This is only possible if nX = 2,mX = 10

and so Hµ
τ = S2.

Step 7. Applying Lemma 7.8 to µ and τ we see that # Repψ̄σ−ψ̄
µ
τ (Hτ ) = # Rep(Hτ ). Doing

the sum of squares analysis as above, we see that the category on the left hand side is forced to

have a 1-dimensional representation. This implies that the 2-cocycle is actually a coboundary,

compare with Step 1 of the proof in the classical types.

7.5.4 Ā = S5. Again, our proof is in several steps, more or less following the pattern of the

preceding cases.

Step 1. Let us prove that, first, Ā = S5 (as quotients of A), second, Hτ = Hτ for Hτ = S3×S2

and, third, V41, V32 appear in Q(Y ).
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We start by showing that Ā ∼= S5 as abstract groups. Indeed, σJσ ∼= Rep(Ā) ∼= Rep(S5) by
Lemma 3.2(ii). Now [EG01] implies that S5 and Ā have to be isomorphic.

Let us notice that Q(S5/S3 × S2) = V5 ⊕ V41 ⊕ V32. By Lemma 7.10, we have an embedding
Q(Ā/Hτ ) ↪→ Q(S5/S3 × S2) of A-modules. This means that we have four possibilities for the
module Q(Ā/Hτ ) and so Hτ is forced to have one of the following orders: 120, 24, 20, 12. On
the other hand, Lemma 7.8 gives # Repψ̄σ−ψ̄τ (Hτ ) = # Rep(S3 × S2) = 6. According to the
last table in [BFO09], this implies that Hτ = S3 × S2 (and then the 2-cocycle is a coboundary
automatically) because the order of Hτ is at least 12.

To complete the proof of the claims in the beginning of the step it remains to show that
Ā = Ā as quotients of A. This follows from the observation that S5 acts faithfully on both V41

and V32 that are constituents of Q(S5/S3 × S2).
Step 2. We have Q(S5/S4) = V5 ⊕ V41. Applying Lemma 7.10 to τ with Hτ = S4 to the

S5-module V41, we see that Hτ = S4. Also checking the appropriate table in [BFO09], we see
that ψ̄σ − ψ̄τ is a coboundary.

Step 3. Let us show that Hτ = Hτ if Hτ = S3 and that V311 is contained in Q(Y ). We have
Q(S5/S3) = V5 ⊕ V ⊕2

41 ⊕ V32 ⊕ V311. Applying Lemma 7.10 to our cell τ and the irreducible
S5-modules V41, V32, we see that V5 ⊕ V ⊕2

41 ⊕ V32 ⊂ Q(Ā/Hτ ) ⊂ V5 ⊕ V ⊕2
41 ⊕ V32 ⊕ V311. Since

dimQ(S5/Hτ ) divides 120, we see that V311 ⊂ Q(Y ) and Q(S5/Hτ ) = Q(S5/S3). Since V41

appears in Q(S5/Hτ ) with multiplicity 2, it follows that the Hτ -fixed point space in the reflection
representation V41 is 2-dimensional. Together with |Hτ | = 6 this implies Hτ = S3.

Step 4. Now we are going to deal with Hτ = Dyh8. We have Q(S5/Dyh8) = V5 ⊕ V41 ⊕
V32 ⊕ V221. Similarly to the previous step, we also see that V5 ⊕ V41 ⊕ V32 ⊂ Q(S5/Hτ ) ⊂
V5 ⊕ V41 ⊕ V32 ⊕ V221. Assume that Q(S5/Hτ ) = V5 ⊕ V41 ⊕ V32. Here Hτ = S3 × S2. But,
again, 5 = # Rep(Dyh8) does not coincide with the number of simples in Repψ(S3 × S2) that
equals 3 or 6, see [BFO09]. Applying Lemma 7.8, we see that one cannot have Hτ = S3 × S2.
So Q(S5/Hτ ) = V5 ⊕ V41 ⊕ V32 ⊕ V221. Since Dyh8 is the only subgroup of order 8 in S5 up to
conjugacy, we are done. Also we see that V221 appears in Q(Y ).

Step 5. Consider a left cell τ with Hτ = S2×S2. We have Q(S5/S2×S2) = V5⊕V ⊕2
41 ⊕V311⊕

V ⊕2
32 ⊕ V221. As we have seen in the previous steps, all irreducible summands lie in Q(Y ) and so,

thanks to Lemma 7.10, Q(S5/Hτ ) = Q(S5/S2 × S2). Since the space of Hτ -fixed vectors in V41

is 2-dimensional and |Hτ | = 4, we see that Hτ = S2 × S2.
Step 6. Now we are going to consider the remaining subgroup Hτ = S2. The multiplicity of

V2111 in Q(S5/S2) is 1. Also, by Lemma 7.10, we know that Q(Ā/Hτ ) = Q(S5/S2) or Q(Ā/Hτ ) =
(Q(S5/S2))/V2111. However, the dimension of the last space, 56, does not divide 120 and so we
have Q(Ā/Hτ ) = Q(S5/S2). As above, this implies Hτ = S2 and completes the proof of Hτ = Hτ

for all τ . Also we see that all irreducible constituents of Spr(O)c appear in Q(Y ), whence (iii).
Step 7. Now we are going to verify Hµ

τ = Hτ for all compatible µ, τ . Recall, (A3), that
Hτ = Hτ ⊂ Hµ

τ . Similarly to the S4-case we have (in the notation of that proof)

2mS5/H
µ
τ

+ 1
2nS5/H

µ
τ

= 2mS5/Hτ + 1
2nS5/Hτ . (7.3)

The last equality shows that |Hµ
τ |/|Hτ | = 4 is only possible if nS5/H

µ
τ

= 0 = mS5/Hτ . However
the last equality means that Hτ contains no transposition, which never happens by the above.

Assume now that |Hµ
τ |/|Hτ | = 3, equivalently, the fibers of the natural projection S5/Hτ �

S5/H
µ
τ consist of three elements. But in this case the fiber of each S2-fixed point again contains

an S2-fixed point. So mS5/Hτ > mS5/H
µ
τ

and (7.3) cannot hold.
So it only remains to consider the case |Hµ

τ |= 2|Hτ |. This is only possible for Hτ = S2, S2×S2,
S3. If all transpositions contained in Hµ

τ are also contained in Hτ , we have mS5/Hτ > mS5/H
µ
τ
,
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which is impossible. This excludes the case Hτ = S2×S2. So we have either Hτ = S2,H
µ
τ = S2×S2

orHτ = S3,H
µ
τ = S3×S2. We have s(S5/S2) = 2·6+1

2(60−6) = 39, s(S5/S2×S2) = 2 ·6+1
224 = 24.

Next, s(S5/S3) = 2 · 6 + 1
2(20 − 6) = 19, s(S5/S3 × S2) = 2 · 2 + 1

2(10 − 2) = 8. So we see that
|Hµ

τ | 6= 2|Hτ | and the equality Hµ
τ = Hτ is proved.

Step 8. Finally, let us prove assertion (ii). This basically follows from the fact that
# Rep(Hτ ) 6= # Repϕ(Hτ ) for a non-trivial class ϕ. The latter inequality can be checked using
the last table in [BFO09].

7.6 Conjectures in the non-integral case
We concentrate on the case when the central character is regular. The general case should be
obtained from this one using the translations. We have two conjectures generalizing Theorem 1.1.

Let λ be a representative of the central character in h∗ that is dominant in the sense that
〈λ, α∨〉 6∈ Z<0 for every positive root α (there may be several such λ but we fix one). Let Wλ

be the integral Weyl group of λ, i.e., the subgroup of W generated by all reflections sα, where
〈λ, α∨〉 ∈ Z.

Let Wa be the affine Weyl group, that is, the semi-direct product of W with the root lattice.
It is well known that Wa is a Coxeter group, so the theory of cells applies to it. A deep theorem
of Lusztig [Lus89, Theorem 4.8] states that two-sided cells in Wa are in bijection with nilpotent
orbits. Let caO denote the two sided cell in Wa corresponding to the orbit O. We recall that each
left cell in Wa contains a unique distinguished involution. Let DO be the set of distinguished
involutions contained in caO; as explained above the set DO is in bijection with the set of left cells
contained in caO. Conjecture [Lus89, 10.5] associates to each left cell contained in caO a subgroup
of finite index in Q defined up to conjugacy. We note that a weak form of this conjecture proved
in [BO04, Theorem 4] is sufficient to define this subgroup. Equivalently, for each d ∈ DO we have
a subgroup Hd ⊂ A(e) defined up to conjugacy.

Recall that the group Wλ is a parahoric subgroup, that is, the projection under the canonical
epimorphism Wa→W of a conjugate of a standard parabolic subgroup WI of Wa. The subgroup
WI is uniquely determined by Wλ. It follows from [Lus89, Lemma 7.4] and [Jos85, Theorem 3.10]
that the set PrO(Uλ) is in bijection withWI∩DO (equivalently, with the set of left cells inWI∩caO).

Conjecture 7.12. Assume that J ∈ PrO(Uλ) corresponds to d ∈ WI ∩ DO. The stabilizer of
the A(e)-orbit in Irrfin(W) lying over J is the subgroup Hd ⊂ A(e).

It is easy to see that Conjecture 7.12 holds in the extreme cases of regular and trivial nilpotent
orbits; however it is not clear whether Conjecture 7.12 is compatible with Theorem 1.1.

Let us now explain our second conjecture that basically generalizes Theorem 7.4(iii).
Let E be the irreducible representation of W which corresponds to the trivial local system

on the orbit O under the Springer correspondence. We consider the special representations E1

of Wλ with the following properties, cf. [Lus09, 1.3]:
(a) E1 appears with nonzero multiplicity in E|Wλ

;
(b) the number aE1 (see [Lus84, § 4.1]) equals (dim g− rk g− dimO)/2.
It follows from [Jos85, Theorem 3.10] that there is a natural bijection J 7→ σJ between

the set PrO(Uλ) and the set of left cells in Wλ such that the corresponding cell representation
contains a special representation satisfying (a) and (b) above. Let IrrO(Wλ) denote the set of
all irreducible Wλ-modules that appear in cell representations corresponding to the left cells
described in the previous sentence.

Let Spr(O)λ be the maximal submodule of Spr(O)|Wλ
with irreducible constituents from

IrrO(Wλ). Notice that if λ is integral then Spr(O)λ = Spr(O)c.
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Conjecture 7.13. Let HJ be the stabilizer of the A(e)-orbit in Irrfin(W) lying over J ∈
PrO(Uλ). Then there is an isomorphism of A(e)-modules Q(A(e)/HJ ) ∼= HomWλ

([σJ ],Spr(O)).

This isomorphism determines the subgroup HJ uniquely up to conjugacy. The Grothendieck

group of the category of finite-dimensional W-modules with central character represented by λ

is isomorphic to Spr(O)λ as an A(e)-module. In particular, the number of isomorphism classes of

irreducible finite-dimensional W-modules with regular central character represented by λ equals

dim Spr(O)λ.

Obviously, Conjecture 7.13 is compatible with Theorem 1.1; however it is not clear whether

Conjecture 7.13 is compatible with Conjecture 7.12.

Now let λ be an arbitrary dominant but not necessarily regular weight. Let W 0
λ ⊂ Wλ be

the stabilizer of λ with respect to the dot action. We expect that the Grothendieck group of the

category of finite-dimensional W-modules with central character represented by λ is isomorphic

to (Spr(O)λ)W
0
λ as an A(e)-module.
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Lus82 G. Lusztig, A class of irreducible representations of a Weyl group, II, Proc. Kon. Nederl. Akad.,
Ser. A 85 (1982), 219–226.

Lus84 G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies,
vol. 107 (Princeton University Press, Princeton, NJ, 1984).

Lus86 G. Lusztig, Sur les cellules gauches des groupes de Weyl, C. R. Acad. Sci. Paris 1 (1986), 5–8.

Lus87 G. Lusztig, Leading coefficients of character values of Hecke algebras, in The Arcata conference
on representations of finite groups, Part 2, Proceedings of Symposia in Pure Mathematics, vol. 47
(American Mathematical Society, Providence, RI, 1987), 235–262.

Lus89 G. Lusztig, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 36 (1989),
297–328.

Lus97 G. Lusztig, Cells in affine Weyl groups and tensor categories, Adv. Math. 129 (1997), 85–98.

Lus09 G. Lusztig, Unipotent classes and special Weyl group representations, J. Algebra 321 (2009),
3418–3449.

Lus12 G. Lusztig, Families and Springer’s correspondence, Pacific J. Math., to appear, arXiv:1201.55
93.

McG96 W. McGovern, Left cells and domino tableaux in classical Weyl groups, Compositio Math. 101
(1996), 77–98.

Maz12 V. Mazorchuk, Lectures on algebraic categorification, The QGM Master Class Series (European
Mathematical Society, 2012).

Ost03a V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8
(2003), 177–206.

1075

https://doi.org/10.1112/S0010437X13007604 Published online by Cambridge University Press

http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://dx.doi.org/10.1093/imrn/rnt106
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1209.1083
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
http://www.arxiv.org/abs/1201.5593
https://doi.org/10.1112/S0010437X13007604


I. Losev and V. Ostrik

Ost03b V. Ostrik, Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not.
IMRN 27 (2003), 1507–1520.

Ost13 V. Ostrik, Tensor categories attached to exceptional cells in Weyl groups, Int. Math. Res. Not.
IMRN 2013 (2013), doi:10.1093/imrn/rnt086.

Pre02 A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1–55.

Pre07 A. Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, J. Eur. Math. Soc. 9
(2007), 487–543.

Vin96 E. Vinberg, On invariants of a set of matrices, J. Lie Theory 6 (1996), 249–269.

Wan11 W. Wang, Nilpotent orbits and W-algebras, Fields Institute Communications Series, vol. 59
(American Mathematical Society, Providence, RI, 2011), 71–105.

Ivan Losev i.loseu@neu.edu

Department of Mathematics, Northeastern University, Boston, MA 02115, USA

Victor Ostrik vostrik@darkwing.uoregon.edu

Department of Mathematics, University of Oregon, Eugene, OR 97403, USA

1076

https://doi.org/10.1112/S0010437X13007604 Published online by Cambridge University Press

http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
http://dx.doi.org/10.1093/imrn/rnt086
https://doi.org/10.1112/S0010437X13007604

	1 Introduction
	1.1 Finite W-algebras
	1.2 Known classification results
	1.3 Main theorem
	1.4 Discussion
	1.5 Applications
	1.6 Structure of the paper
	1.7 Conventions and notation
	1.7.1 Lie algebras and algebraic groups
	1.7.2 Nilpotent orbits
	1.7.3 Central characters
	1.7.4 Cells and Lusztig's groups
	1.7.5 Primitive ideals and Harish-Chandra bimodules
	1.7.6 Irreducible W-modules
	1.7.7 Miscellaneous notation


	2 Preliminaries on Harish-Chandra bimodules
	2.1 Subcategories and subquotients
	2.2 Bernstein–Gelfand equivalence
	2.3 Translation functors

	3 Reminder on multi-fusion categories and their modules
	3.1 Multi-fusion categories: definition and examples
	3.2 Module categories: definition and examples
	3.3 Functors between C-modules

	4 Preliminaries on W-algebras
	4.1 Definition
	4.2 Decomposition theorem
	4.3 Primitive ideals and Harish-Chandra bimodules versus W-algebras
	4.4 Category O for a W-algebra and the equivalence K

	5 Further study of functor •†
	5.1 Main result
	5.2 •† versus internal Hom
	5.3 ΛJΛO as a multi-fusion category
	5.4 Translations to/from the walls for W-modules
	5.5 The image of •†
	5.6 •† versus K
	5.7 Equivalence relation on Irrfin(K)
	5.8 The case of even nilpotents
	5.9 A reduction

	6 Preliminaries on cells, Springer correspondence and Lusztig'sgroups
	6.1 Cells in Weyl groups and cell modules
	6.2 Orbits, Harish-Chandra bimodules, and the algebra J
	6.3 Springer representation
	6.4 Lusztig's subgroups Hσ
	6.5 Explicit descriptions: types B and C
	6.6 Explicit descriptions: type D
	6.7 Explicit descriptions: exceptional cases with =Z/2Z
	6.8 Explicit descriptions: exceptional cases with =S3,S4,S5
	6.8.1 =S3
	6.8.2 =S4
	6.8.3 =S5

	6.9 Classification of left cells

	7 Proof of the main theorem
	7.1 Results of Dodd: Irrfin(Wρ) versus Spr(O)
	7.2 Summary
	7.3 Preparation for the proof
	7.4 Proof for classical types
	7.5 Proof for exceptional types
	7.5.1 =Z/2Z
	7.5.2 =S3
	7.5.3 =S4
	7.5.4 =S5

	7.6 Conjectures in the non-integral case

	Acknowledgements
	References

	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 
	42: 
	43: 
	44: 
	45: 
	46: 

	ikona: 
	1025: 
	1026: 
	1027: 
	1028: 
	1029: 
	1032: 
	1033: 
	1034: 
	1035: 
	1036: 
	1037: 
	1038: 
	1039: 
	1040: 
	1041: 
	1042: 
	1043: 
	1044: 
	1045: 
	1046: 
	1047: 
	1048: 
	1049: 
	1050: 
	1052: 
	1053: 
	1054: 
	1055: 
	1056: 
	1057: 
	1059: 
	1060: 
	1061: 
	1063: 
	1064: 
	1065: 
	1066: 
	1068: 
	1069: 
	1072: 
	1073: 

	TooltipField: 


