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Abstract

An infinite sequence (Y1, Y2, . . . ) of independent Bernoulli random variables with P(Yi =
1) = a/(a + b + i − 1), i = 1, 2, . . . , where a > 0 and b ≥ 0, will be called a
Bern(a, b) sequence. Consider the counts Z1, Z2, Z3, . . . of occurrences of patterns
or strings of the form {11}, {101}, {1001}, . . . , respectively, in this sequence. The joint
distribution of the countsZ1, Z2, . . . in the infinite Bern(a, b) sequence has been studied
extensively. The counts from the initial finite sequence (Y1, Y2, . . . , Yn)have been studied
by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and
the factorial moments of Z1, the count of the string {1, 1}, for a general Bern(a, b).
We consider stopping the Bernoulli sequence at a random time and describe the joint
distribution of counts, which extends Holst’s results. We show that the joint distribution
of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of
independent Poissons property: there is a random vector conditioned on which the counts
are independent Poissons. To obtain these results, we extend the conditional marked
Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009).
Our results avoid previous combinatorial and induction methods which generally only
yield factorial moments.
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1. Introduction

In many areas of study, we observe the occurrence or nonoccurrence of some special event
over time or space. Thus, we may be observing the occurrence of record flows in a river, or flaws
in a material being produced. In species tracking we want to know if the new catch is from a new
species or not. In nonparametric Bayesian methods we want to know if the current observation
is different from previous observations or not. In a random permutation {π1, π2, . . . , πN }
of {1, 2, . . . , N}, we would like to know if a ‘cycle’ ended with πn, n = 1, 2 . . . , N . Such
observations can be represented by a Bernoulli sequence Y = (Y1, Y2, . . . ), where Yn = 1 or
Yn = 0 stands for the occurrence or nonoccurrence of the event being observed.

We wish to study the distributions of counts of certain patterns of occurrence of such special
events which have interesting interpretations. For instance, the count of the pattern {1, 1} in
a random permutation is the number of cycles of length 1, and the count for {1, 0, 1} is the
number of cycles of length 2, and so on. Similarly, each such pattern in the occurrence of flaws
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will represent failures of a special type. In general, for k ≥ 1, the pattern

{1, 0, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1}

will be called a string of order k. For a Bernoulli sequence Y , let the count Zk, k ≥ 1, be the
number of strings of order k defined by

Zk =
∞∑
i=1

1{Yi = Yi+k = 1, Yj = 0 for i < j < i + k}.

The purpose of this paper is to study the joint distribution of the count vector Z = (Z1, Z2, . . . ).
This has been the topic of several papers and we will summarize some of the results.

A well-studied Bernoulli sequence Y is Bern(a, b), which consists of independent random
variables Y1, Y2, . . . with

P(Yn = 1) = 1 − P(Yn = 0) = a

a + b + n− 1
, n = 1, 2, . . . , (1.1)

where a > 0 and b ≥ 0. Around 1996, Persi Diaconis noticed the surprising fact that, for the
Bern(1, 0) sequence, the count Z1 is Poisson with mean 1! This result had been discovered
earlier (see Kolchin (1971) and Hahlin (1995)), but Diaconis’s rediscovery sparked a widespread
interest in the topic, and very quickly this result was proved and extended by several people using
different techniques. The joint distribution of the count vector Z in Bern(a, 0)was obtained by
using combinatorial methods in Arratia et al. (2003). For Bern(1, b), b > 0, Joffe et al. (2004)
obtained the marginal distributions of Zk and Sethuraman and Sethuraman (2004) obtained
the joint distribution of Z by using generating functions of factorial moments. Holst (2007)
extended this result to Bern(a, b) by using a Pólya–Hoppe urn argument. Huffer et al. (2008),
(2009) gave a new construction for Bernoulli sequences through conditional marked Poisson
processes (CMPPs) which included all the Bernoulli sequences considered so far and several
dependent Bernoulli sequences. For all such Bernoulli sequences, they showed that Z possesses
the

mixture of independent Poissons (MIP) property: there is a random variable (or
vector) W conditioned on which the count variables Z1, Z2, . . . are independent
Poisson.

This is a more transparent description of the distribution of Z. Huffer et al. (2008) used beta
random variables to construct a CMPP leading to the Bern(a, b) sequence. Holst (2008a),
(2009), (2011) gave an interesting alternative CMPP construction using exponential random
variables, and used this construction to study the distribution of the number of occurrences
of r consecutive 1s in a Bern(a, b) sequence and the number of occurrences of two or more
consecutive 1s in a Bern(1, 0) sequence.

Holst (2007), (2008b) studied finite Bernoulli sequences. Let Bern(a, b, n) denote the
finite initial segment (Y1, . . . , Yn) of a Bern(a, b). Holst obtained expressions for the joint
factorial moments of (Z1, Z2, . . . , Zk) from Bern(a, 0, n) and the factorial moments of Z1
from Bern(a, b, n).

This paper was motivated by Holst’s work on finite sequences. We consider initial segments
(Y1, Y2, . . . , Yζ ) of Y ∼ Bern(a, b) which are finite but have a random length ζ , and describe
in Section 2 a general class of random variables ζ for which the count vector Z retains the
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MIP property. The proof in Section 4 involves an extension of the CMPP construction in
Huffer et al. (2009). For this class of ζ , we give a general expression for the joint factorial
moments of (Z1, Z2, . . . , Zk). The simplest instance of this class is when ζ is a geometric
random variable (with P(ζ = k) = (1 − ξ)ξk for k ≥ 0) independent of Y . By specializing
our results to this case and using a power series expansion in ξ , we are able to deduce the
conditional moments given {ζ = n}, and in this way reproduce (in Sections 5 and 6) the results
of Holst for Bern(a, b, n) and Bern(a, 0, n), and, moreover, go beyond these results to obtain
a general expression for the joint factorial moments of Bern(a, b, n).

For the Bern(a, 0) sequence, the counts Z1, Z2, . . . are independent Poisson random
variables (i.e. no mixture is required). In this case, there is a choice of ζ which retains
this property; in Section 7 we construct ζ which is independent of the Bern(a, 0) sequence and
such that the counts from (Y1, . . . , Yζ ) are independent Poisson random variables.

2. Randomly stopped Bernoulli sequences

First we introduce some notation used throughout the paper. Any Bernoulli sequence Y is de-
termined by the positions of the 1s in the sequence which we denote by K = (K0,K1,K2, . . . ),
where 1 ≤ K0 < K1 < K2 < · · · and

{K0,K1,K2, . . . } = {i : Yi = 1}.
The sequence Y may also be described by its waiting time sequence L = (L0, L1, . . . ) defined
by L0 = K0 and Lj = Kj − Kj−1 for j ≥ 1. The value Lj is the waiting time after Kj−1
for the occurrence of the next 1. For j ≥ 1, the event {Lj = k} represents the occurrence of a
k-string so that

Zk =
∑
j≥1

1{Lj = k}. (2.1)

If the sequence Y contains only finitely many 1s (say m), we adopt the convention of setting
Kj = Lj = ∞ for j ≥ m. A sequence with L0 = ∞ is identically 0.

Let τ be a positive integer-valued random variable. Define the Bernoulli sequence Y ∗ =
(Y ∗

1 , Y
∗
2 , . . . ) by

Y ∗
i = Yi 1{i < τ },

so that Y ∗
i = 0 for all i ≥ τ . For the sequence Y ∗, we define the sequences K∗, L∗, and Z∗

giving the positions of the 1s, the waiting times, and the string counts, respectively, in exactly the
same way as we did for Y . Our main interest will be in the joint distribution of the counts Z∗.
The count vector for Y ∗ is clearly the same as that for the finite sequence Y1, . . . , Yζ with
ζ = τ − 1, but it is often notationally more convenient to work with the infinite sequence Y ∗.
We say that Y ∗ is obtained by ‘killing’ Y at time τ . (In our work the times τ we construct will
be stopping times for the sequence Y , but ζ = τ − 1 will not be. We introduce the term ‘kill’ to
avoid possible confusion arising from this.) Since Y ∗ contains only finitely many 1s, we have
K∗
j = L∗

j = ∞ for all sufficiently large j .
We now describe a general class of killing times τ . To avoid minor complications, we

assume that the sequence Y contains infinitely many 1s almost surely. Let φ = (φ1, φ2, . . . )

and ψ = (ψ1, ψ2, . . . ) be arbitrary sequences of constants in [0, 1] (with φj ≡ φ(j) and
ψj ≡ ψ(j)). We will kill the Bernoulli sequence Y at a time τ depending on φ and ψ
determined as follows. The values Y1, Y2, . . . are observed in sequence, and every time a ‘1’ is
observed, a decision is made whether or not to kill the sequence at that point, with a probability
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depending only on the waiting time since the previous ‘1’. If the first ‘1’ is observed at time
K0 = L0 = j , the sequence is killed at time τ = j with probability 1 − φj . For n ≥ 1, if the
sequence survives beyond timeKn−1 then we kill it at time τ = Kn with probability 1−ψ(Ln).
More formally, we define

τ = KN, (2.2a)

where N ≥ 0 satisfies

P(N = 0 | L) = 1 − φ(L0) and
P(N = n | L)

P(N ≥ n | L)
= 1 − ψ(Ln) for n ≥ 1. (2.2b)

This implies by elementary probability that

P(τ > Kn | L) = P(N > n | L) = φ(L0)

n∏
i=1

ψ(Li). (2.3)

We allowN to take the value ∞ with P(N = ∞ | L) = φ(L0)
∏∞
i=1 ψ(Li), and define τ = ∞

whenever N = ∞.
For τ satisfying (2.2), there is a simple relationship between the probabilities for Y and Y ∗.

Let �0, . . . , �n be any positive integers. Then

P(L∗
0 = �0, . . . , L

∗
n = �n) = P(N > n, L0 = �0, . . . , Ln = �n)

= φ(�0)

n∏
j=1

ψ(�j )P(L0 = �0, . . . , Ln = �n), (2.4)

since L∗
j < ∞ implies that both N > j and Lj = L∗

j .
We show in Section 4 that if Y is Bern(a, b) and τ satisfies (2.2) for some sequences φ

and ψ , then Z∗ satisfies the MIP property. However, for the moment, we keep the discussion
general and make no restrictions on the sequence Y .

An important special case is where

φj = ψj = ξj for all j with 0 < ξ < 1. (2.5)

This corresponds to killing Y at a geometrically distributed time, for in this case (2.3) becomes
P(τ > Kn | L) = ξKn since Kn = L0 + L1 + · · · + Ln. To make this more precise, suppose
that the geometric random variable τ ′ is independent of Y with P(τ ′ = k) = (1 − ξ)ξk−1 for
k ≥ 1, and define τ = KN , where N = inf{i : Ki ≥ τ ′}. Killing Y at either τ ′ or τ produces
the same sequence Y ∗ (since Yi = 0 for τ ′ ≤ i < τ ), and it is easily verified that N so defined
satisfies the conditions in (2.2).

Let Zn denote the counts for the finite Bernoulli sequence (Y1, Y2, . . . , Yn). The importance
of case (2.5) for us later lies in the fact that, because Y and τ ′ are independent, the distribution
of Z∗ given τ ′ = n+ 1 is identical to the distribution of Zn. Thus, we have the expansion

L(Z∗) =
∞∑
n=0

L(Z∗ | τ ′ = n+ 1)P(τ ′ = n+ 1) = (1 − ξ)

∞∑
n=0

L(Zn)ξn. (2.6)

Applying this to Bern(a, b) will enable us to re-derive Holst’s results for Bern(a, b, n) and
Bern(a, 0, n). This is done in Sections 5 and 6.

We work chiefly with (2.5), but will briefly describe some other interesting examples. When
φi = ψi = ξ for all i, the sequence Y is killed when a geometrically distributed number of 1s
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have been observed, leading to a sequence Y ∗ for which S = ∑∞
j=1 Y

∗
j satisfies P(S = k) =

(1 − ξ)ξk for k ≥ 0. When φi = ψi = 1 for i ≤ m and φi = ψi = 0 for i > m, the sequence
Y is killed at the first occurrence ofm or more consecutive 0s. When φi = 1 for all i, ψm = 0,
and ψi = 1 for all i �= m, the sequence Y is killed at the first occurrence of a ‘1’ following
exactlym trials after the previous ‘1’. In all of these cases, when Y is Bern(a, b), the resulting
string counts Z∗ satisfy the MIP property; see the discussion following Theorem 4.1.

3. Conditional marked Poisson processes

We will now describe the CMPP model introduced in Huffer et al. (2009). The properties
of Poisson processes we use may be found in Resnick (1992) or Kingman (1993). In what
follows, N = {1, 2, 3, . . . }.

Suppose that

1. W has probability measure ν;

2. conditional on W = w, the sequence X = (X1, X2, X3, . . . ) of points in R with 0 <
X1 < X2 < X3 < · · · < 1 is a nonhomogeneous Poisson process with intensity function
λw(·) on (0, 1).

Furthermore, suppose that the sequence L = (L0, L1, L2, . . . ) satisfies

3 P(L0 = k | X,W = w) = r(w, k) for k ∈ N;

4 for n ≥ 1, P(Ln = k | W,X, L0, . . . , Ln−1, Xn = x) = q(x, k) for k ∈ N.

Then we say that (W,X,L) is the CMPP M(ν, λ, r, q).
The intensity functions λw(·) satisfy λw(x) ≥ 0,

∫ x
0 λw(u) du < ∞ for 0 < x < 1, and∫ 1

0 λw(u) du = ∞. The functions r(x, k) and q(x, k) are mass functions in k for each value
of x. Conditional on W = w, the pairs (Xn, Ln), n ≥ 1, form a marked Poisson process. To
each point Xn, n ≥ 1, is assigned a random positive integer mark Ln. A point Xn = x

is assigned the mark value Ln = k with probability q(x, k), independently of all other
points and their marks. Since a marked Poisson process is just a Poisson process on a space
which includes the mark values, an alternative description is that, conditional on W = w,
the pairs (X1, L1), (X2, L2), . . . form a Poisson process with intensity function λw(x)q(x, k)
on (0, 1)× N.

A CMPP (W,X,L) determines a Bernoulli sequence Y by taking L to be the sequence of
waiting times for Y , that is, by defining Kn = ∑n

i=0 Li for n ≥ 0 and taking Yi = 1 when
i ∈ {K0,K1,K2, . . . }. This sequence Y automatically satisfies the MIP property, which we
may state explicitly as follows.

MIP Property. Conditional on W = w, the counts Z1, Z2, . . . are independent Poisson
random variables with

E(Zk | W = w) =
∫ 1

0
λw(x)q(x, k) dx. (3.1)

This is Theorem 2.2 of Huffer et al. (2009). It follows from standard decomposition
properties of Poisson processes: conditional onW = w, for all k ≥ 1, the set {Xn : Ln = k} of
points Xn assigned a mark value of k forms a Poisson process on (0, 1) with intensity function
λw(x)q(x, k), with these processes being independent for different values of k. The total
number of points in {Xn : Ln = k}, which is Zk according to (2.1), will thus have a Poisson
distribution with the mean given in (3.1).
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4. The Bernoulli sequence obtained by killing a CMPP

Let (W,X,L) be the CMPP M(ν, λ, r, q) described in the previous section, and let Y be
its associated Bernoulli sequence. Let φ = (φ1, φ2, . . . ) and ψ = (ψ1, ψ2, . . . ) be arbitrary
sequences of constants in [0, 1] as in Section 2. We now describe a way to ‘kill’ the CMPP M
by adding to it a sequence of secondary marks D = (D0,D1, . . . ) called ‘death’ marks, taking
values in {0, 1} with distributions

P(D0 = 0 | W,X,L, L0 = �0) = φ(�0),

P(Dn = 0 | W,X,L,D0, . . . , Dn−1, Ln = �n) = ψ(�n) for n ≥ 1,
(4.1)

that is, the marked point (Xn, Ln) is assigned the value Dn = 0 with probability ψ(Ln),
independently of all other marked points. Define

N = inf{n : n ≥ 0, Dn = 1}, τ = KN, and Y ∗
i = Yi 1{i < τ } for i ≥ 1, (4.2)

and let Y ∗ = (Y ∗
1 , Y

∗
2 , . . . ). The conditions in (4.1) clearly imply that N satisfies the require-

ments in (2.2). Thus, τ belongs to the class of killing times studied in Section 2, so that Y and
Y ∗ are related as in (2.4).

Introduce the fictitious pointX0 = 0 (not considered part of the Poisson process), and define

T = XN = inf{Xn : n ≥ 0, Dn = 1}. (4.3)

The finite waiting times L∗
i for the sequence Y ∗ are exactly the set of marks Li for which

Xi < T . When T = 0 (which occurs when D0 = 1), this set is empty and according to the
convention in Section 2 we take L∗

i = ∞ for all i ≥ 0, corresponding to the sequence Y ∗ being
identically 0. We think of the process M as being killed at time T , and the sequence Y ∗ as
arising from the marks Li observed before this time.

We now show that the string counts Z∗ for the sequence Y ∗ satisfy the MIP property.

Theorem 4.1. Consider the CMPP M(ν, λ, r, q) and its corresponding Bernoulli sequence Y .
Let D, Y ∗, and T be as defined in (4.1), (4.2), and (4.3), and let Z∗ = (Z∗

1 , Z
∗
2 , . . . ) be the

string counts for Y ∗.

(a) Conditional on {W = w, T = t}, the counts Z∗
1 , Z

∗
2 , . . . are independent Poisson

random variables with means given by

µk(w, t) = E(Z∗
k | W = w, T = t) =

∫ t

0
λw(x)q(x, k)ψ(k) dx for k = 1, 2, 3, . . . .

(4.4)

(b) The random variable T satisfies

P(T > t | W = w) = H(w) exp

(
−

∫ t

0
ηw(x) dx

)
for t ∈ (0, 1), (4.5)

where

H(w) =
∑
k∈N

r(w, k)φ(k), (4.6)

ηw(x) =
∑
k∈N

λw(x)q(x, k)(1 − ψ(k)). (4.7)
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Proof. The equations in (4.1) imply that, conditional onW =w, the points in {(Xn, Ln,Dn) :
n ≥ 1} form a Poisson process on (0, 1)×N×{0, 1} with intensity λw(x)q(x, k)ψ(k, d), where
we define ψ(k, 0) = ψ(k) and ψ(k, 1) = 1 − ψ(k). Thus, conditional on W = w, the sets
of points E0 = {(Xn, Ln) : n ≥ 1, Dn = 0} and E1 = {(Xn, Ln) : n ≥ 1, Dn = 1} are
independent Poisson processes on (0, 1) × N with intensity functions λw(x)q(x, k)ψ(k) and
λw(x)q(x, k)(1−ψ(k)), respectively. Ignoring the marksLn on the points in E1, we obtain the
Poisson process E ′

1 = {Xn : n ≥ 1, Dn = 1} with intensity ηw(x) as in (4.7), which is again
conditionally independent of E0 given W = w.

The random variable T in (4.3) is equal to 0 if D0 = 1, and is equal to the first point in E ′
1

otherwise. Since P(D0 = 0 | W = w) = H(w) as in (4.6), and the probability given W = w

that the interval (0, t) contains no points from E ′
1 is exp(− ∫ t

0 ηw(x) dx), (4.5) is immediate. The
conditional independence of E0 and E ′

1 implies that of E0 and T . Thus, given {W = w, T = t},
the counts

Z∗
k =

∑
{i : i≥1, Xi<T }

1{Li = k} =
∑

{i : (Xi ,Li)∈E0, Xi<T }
1{Li = k}

are independent Poisson random variables with means as given in (4.4). This concludes the
proof.

Since it was shown in Huffer et al. (2009) that the Bern(a, b) sequence arises from a CMPP,
this verifies the assertion made in Section 2 that killing a Bern(a, b) sequence by any τ satisfying
(2.2) produces counts possessing the MIP property.

Finally, for use in the applications of Sections 5 and 6, we give a general expression for the
joint factorial moments of the counts Z∗

1 , . . . , Z
∗
k .

Corollary 4.1. Let Z∗
1 , . . . , Z

∗
k be the string counts in Theorem 4.1 obtained by killing the

CMPP M(ν, λ, r, q). Suppose that ηw(·) in (4.7) satisfies

ν

{
w :

∫ 1

0
ηw(x) dx = ∞

}
= 1, (4.8)

and that (r1, . . . , rk) �= (0, . . . , 0) are nonnegative integers. Then

E

( k∏
i=1

(
Z∗
i

ri

))
=

∫ ∫ 1

0

[ k∏
i=1

(µi(w, t))
ri

ri !
]
H(w)ηw(t)

× exp

(
−

∫ t

0
ηw(x) dx

)
dt dν(w). (4.9)

Proof. For a Poisson random variable Z with mean θ , we know that

E

(
Z

r

)
= θr

r! for integers r ≥ 0.

Thus, (4.4) implies that

E

( k∏
i=1

(
Z∗
i

ri

))
= E E

( k∏
i=1

(
Z∗
i

ri

) ∣∣∣∣ W,T
)

= E

( k∏
i=1

(µi(W, T ))
ri

ri !
)
. (4.10)

The conditional distribution L(T | W) is determined by (4.5). This distribution has an atom at
T = 0 (of size P(T = 0 | W = w) = 1−H(w)) which does not contribute to the expectation in
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(4.10) sinceZ∗
i = 0 for all i whenT = 0. Assumption (4.8) guarantees that P(T < 1 | W) = 1.

For 0 < T < 1, the conditional distribution has a density given by

− ∂

∂t
P(T > t | W = w) = H(w)ηw(t) exp

(
−

∫ t

0
ηw(x) dx

)
,

which leads to the integral expression for (4.10) given in (4.9).

5. Joint moments of Zn from Bern(a, b, n)

In this section we apply the general results of Section 4 to the Bern(a, b) sequence Y defined
in (1.1). In particular, we calculate the joint factorial moments in (4.9) for the sequence Y ∗
obtained by killing Y by τ satisfying (2.2) and (2.5), and use these to give a new derivation of
the moment formulae in Holst (2007), (2008b) for the Bern(a, b, n) sequence (Y1, . . . , Yn).

We begin by restating Proposition 3.1 of Huffer et al. (2009) which gives a CMPP model to
generate Bern(a, b) when b > 0.

Proposition 5.1. (Huffer et al. (2009, Proposition 3.1).) Consider the CMPP M(ν, λ, r, q)

with

ν ∼ Beta(b, a) with density dν(w) = B(b, a)−1wb−1(1 − w)a−1dw, 0 < w < 1, (5.1)

where B(b, a) = 
(b)
(a)/
(a + b),

λw(x) = a

1 − x
1{w < x < 1}, (5.2)

r(x, k) = q(x, k) = xk−1(1 − x), k ∈ N. (5.3)

This CMPP determines a Bernoulli sequence Y which has distribution Bern(a, b).

Throughout this section, Y = (Y1, Y2, . . . ) denotes the Bern(a, b) sequence obtained via
this proposition. For α > 0 and nonnegative integers r1, . . . , rk , define

B̃(α; r1, . . . , rk) =
∫ 1

0
xα−1

k∏
i=1

(1 − xi)ri dx.

Let cp = c(c − 1) · · · (c − p + 1) and cp = c(c + 1) · · · (c + p − 1) denote descending and
ascending factorial products, with c0 = c0 = 1. We now prove the following.

Theorem 5.1. Let Zn = (Zn1 , Z
n
2 , . . . ) be the string counts for the Bern(a, b, n) sequence

(Y1, . . . , Yn), and let (r1, . . . , rk) �= (0, . . . , 0) be nonnegative integers. Define R = ∑k
i=1 ri

and M = ∑k
i=1 iri . Then

E

( k∏
i=1

(
Zni
ri

))
= 1{n ≥ M + 1} aR+1∏k

1 ri ! iri
B(n+ b, a)

B(b, a)

×
n−M−1∑
p=0

(−1)p
(a − 1)p

p!
(a + 1)n−M−p−1

(n−M − p − 1)! B̃(b + p; r1, . . . , rk). (5.4)

In particular,

E

(
Zn1
r

)
= ar+1

r!
B(b + n, a)

B(b, a)

n−r−1∑
p=0

(−1)p
(a − 1)p

p!
(a + 1)n−r−p−1

(n− r − p − 1)!B(b+ p, r + 1). (5.5)
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Proof. Let Y ∗ be the sequence obtained by killing Y by τ satisfying (2.2) and (2.5), and let
Z∗ be the corresponding counts. We will calculate the factorial moments of Z∗ using (4.9),
expand these in a power series in ξ , and then exploit the relationship between Z∗ and Zn given
in (2.6) to obtain the moments for Zn.

Using (2.5), (4.4), (4.6), (4.7), (5.2), and (5.3), we find by simple calculations that

µi(w, t) = aξ i

i
(t i − wi) 1{w < t}, (5.6a)

H(w) = (1 − w)ξ

1 − ξw
, (5.6b)

ηw(x) =
(

a

1 − x
− aξ

1 − ξx

)
1{w < x < 1} = a(1 − ξ)

(1 − x)(1 − ξx)
1{w < x < 1}, (5.6c)

∫ t

0
ηw(x) dx = a log

[
(1 − ξ t)(1 − w)

(1 − t)(1 − ξw)

]
1{w < t}. (5.6d)

Substituting these along with (5.1) into (4.9) and simplifying, we obtain

E

( k∏
i=1

(
Z∗
i

ri

))
= QξM+1(1 − ξ)

∫∫
A

wb−1 (1 − t)a−1(1 − ξw)a−1

(1 − ξ t)a+1

k∏
i=1

(t i − wi)ri dw dt,

(5.7)
where

Q = aR+1

B(b, a)
∏k

1 ri ! iri
and A = {0 < w < t < 1}.

Upon substituting the expansions

(1 − ξw)a−1 =
∞∑
p=0

(−1)p
(a − 1)p

p! ξpwp and
1

(1 − ξ t)a+1 =
∞∑
q=0

(a + 1)q

q! ξq tq, (5.8)

(5.7) becomes

QξM+1(1 − ξ)

∞∑
s=0

ξ s
s∑

p=0

(−1)p
(a − 1)p

p!
(a + 1)s−p

(s − p)!

×
∫∫

A

wb+p−1t s−p(1 − t)a−1
k∏
i=1

(t i − wi)ri dw dt.

We can separate the integration over w and t above with the transformations x = w/t and
y = t , yielding ∫∫

A

wb+p−1t s−p(1 − t)a−1
k∏
i=1

(t i − wi)ri dw dt

=
∫ 1

0
tb+s+M(1 − t)a−1 dt

∫ 1

0
xb+p−1

k∏
i=1

(1 − xi)ri dx

= B(b + s +M + 1, a)B̃(b + p; r1, . . . , rk). (5.9)
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If we substitute this into the above and let n = s +M + 1, then (5.7) becomes

E

( k∏
i=1

(
Z∗
i

ri

))
= (1 − ξ)

∞∑
n=M+1

ξnQB(b + n, a)

×
n−M−1∑
p=0

(−1)p
(a − 1)p

p!
(a + 1)n−M−1−p

(N −M − 1 − p)! B̃(b + p; r1, . . . , rk).

Since the coefficient of (1 − ξ)ξn in this series agrees with (5.4), using (2.6) completes the
proof.

Our expression for the factorial moments of Zn1 in (5.5) is very different from that given by
Holst (2008b), i.e.

E

(
Zn1
r

)
= ar

(a + b + n− 1)r

r∑
k=1

(
r − 1

r − k

)(
n− r

k

)
ak

(a + b)k
, (5.10)

but we can show that they are equal by the following argument. Write (5.7) with k = 1 and
r1 = r explicitly as a double integral, i.e.

E

(
Z∗

1

r

)
= ar+1ξ r+1(1 − ξ)

B(b, a)r!
∫ 1

0
wb−1

∫ 1

w

(1 − ξw)a−1

(1 − ξ t)a+1 (1 − t)a−1(t − w)r dt dw, (5.11)

and manipulate the inner integral to obtain

∫ 1

w

(1 − ξw)a−1

(1 − ξ t)a+1 (1 − t)a−1(t − w)r dt

= (1 − ξw)r−1

1 − ξ

∫ 1

w

(x − w)a−1
(

1 − x

1 − ξx

)r
dx

= r

a

∫ 1

w

(x − w)a(1 − x)r−1 (1 − ξw)r−1

(1 − ξx)r+1 dx, (5.12)

where the first equality is obtained by applying the substitution

x = w + (1 − ξw)

(
1 − t

1 − ξ t

)

and the second equality follows from integration by parts using

d

dx

(
1 − x

1 − ξx

)r
= −r(1 − ξ)

(1 − x)r−1

(1 − ξx)r+1 .

Noting that

1 − ξw

1 − ξx
= 1 + ξ(x − w)

1 − ξx
,
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we use a binomial expansion followed by expanding (1 − ξx)−(k+1) as in (5.8) to obtain

(1 − ξw)r−1

(1 − ξx)r+1 =
(

1 + ξ(x − w)

1 − ξx

)r−1 1

(1 − ξx)2

=
r∑
k=1

(
r − 1

r − k

)
ξk−1(x − w)k−1

(1 − ξx)k+1

=
∞∑
i=0

ξ i
r∑
k=1

(
r − 1

r − k

)(
i + 1

k

)
(x − w)k−1xi−k+1.

Substituting this into (5.12) and placing it back into (5.11) leads to

E

(
Z∗

1

r

)
= ar(1 − ξ)

B(b, a)(r − 1)!
∞∑

n=r+1

ξn
r∑
k=1

(
r − 1

r − k

)(
n− r

k

)

×
∫ ∫

0<w<x<1
xn−r−k(1 − x)r−1wb−1(x − w)a+k−1 dx dw

= ar(1 − ξ)

B(b, a)(r − 1)!
∞∑

n=r+1

ξn
r∑
k=1

(
r − 1

r − k

)(
n− r

k

)
B(a + b + n− r, r)B(b, a + k).

In going from the first equality to the second, we have separated the integrals using the
transformations u = w/x and v = x (as in (5.9)) and evaluated the resulting integrals in
terms of beta functions. After simplifying the beta functions, we find that the coefficient of
(1 − ξ)ξn in this expression agrees with (5.10), which (upon using (2.6)) completes the proof
of (5.10).

6. Joint moments of Zn from Bern(a, 0, n)

The previous section required that b > 0. We now consider b = 0, which leads to some
simplifications. We begin by describing a CMPP which generates the Bern(a, 0) sequence.

Proposition 6.1. The CMPP M(ν, λ, r, q) with ν = δ0 and λ, r , q as in (5.2) and (5.3)
determines a sequence Y which is Bern(a, 0).

This result is Remark 3.2 of Huffer et al. (2009, p. 2129). It may be proved by taking the
limit b ↓ 0 in Proposition 3.1 of Huffer et al. (2009) or by direct calculation, following the proof
of Proposition 3.1. The CMPP in this special case has (W,L0) = (0, 1) with probability 1.

Using this CMPP, we will prove the following result, which is Proposition 3 of Holst (2007).
We use the notation in Theorem 5.1.

Theorem 6.1. The joint factorial moments of counts from Bern(a, 0, n) are given by

E

( k∏
i=1

(
Zni
ri

))
= 1{n ≥ M + 1} aR∏k

1 ri ! iri
(n− 1)M

(a + n− 1)M
. (6.1)

Proof. We use the same argument as in Theorem 5.1. Let Y ∗ be the sequence obtained
by killing Y by τ satisfying (2.2) and (2.5), and let Z∗ be the corresponding counts. We will
calculate the factorial moments of Z∗ using (4.9), expand in a power series in ξ , and then
use (2.6).
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Since ν = δ0, the double integral in (4.9) reduces to a single integral over t with w set to
zero everywhere in the integrand (i.e. all the quantities in (5.6) are evaluated at w = 0). This
leads to

E

( k∏
i=1

(
Z∗
i

ri

))
= aR+1ξM+1(1 − ξ)∏k

1 ri ! iri
∫ 1

0
tM

(1 − t)a−1

(1 − ξ t)a+1 dt.

Expanding (1 − ξ t)−(a+1) as in (5.8) and then evaluating the resulting integrals in terms of beta
functions and juggling the factorials yields

aR+1ξM+1(1 − ξ)∏k
1 ri ! iri

∞∑
q=0

ξq
(a + 1)q

q! B(m+ q + 1, a) = aR(1 − ξ)∏k
1 ri ! iri

∞∑
n=M+1

ξn
(n− 1)M

(a + n− 1)M
.

Since the coefficient of (1 − ξ)ξn in this series is (6.1), using (2.6) completes the proof.

7. Stopping a Bern(a, 0) sequence so that the counts are still independent Poisson

In this section we prove the following result.

Theorem 7.1. Let Y be a Bern(a, 0) sequence, and let τ be independent of Y and take values
in {2, 3, 4, . . . } with distribution given by

P(τ > k) = B(k − 1, a + 1)−1
∫ U

0
xk−2(1 − x)a dx (7.1)

for k ≥ 2. Here U is an arbitrary fixed value in (0, 1). Then Y ∗ defined by Y ∗
i = Yi 1{i < τ }

is a Bernoulli sequence whose counts Z∗
k , k ≥ 1, are independent Poisson random variables

with means aUk/k.

Proof. The sequence Y arises from the CMPP (call it M) in Proposition 6.1. Let K0,K1,

K2, . . . be the positions of the 1s in Y . For M, we have P(W = 0) = 1, so that X1, X2, . . .

are simply the points in a Poisson process with intensity λ(x) ≡ λ0(x) = a/(1 − x) on (0, 1).
Define

τ̃ = inf{Kn : Xn ≥ U},
and consider the sequence Ỹ with Ỹi = Yi 1{i < τ̃ } which corresponds to observing the marks
Li only for points Xi in (0, U). For this sequence, let K̃i , L̃i , and Z̃i denote the positions of
the 1s, waiting times, and counts, respectively. By the same argument used to prove (3.1) and
(4.4), we see that the counts Z̃k are independent Poisson random variables with means

E(Z̃k) =
∫ U

0
λ(x)q(x, k) dx =

∫ U

0

a

1 − x
xk−1(1 − x) dx = aUk

k
,

which is the property required in our theorem.
We now complete the proof by showing that Ỹ has the same distribution as Y ∗ in the statement

of Theorem 7.1 (that is, killing Y by τ or by τ̃ produces sequences with the same distribution),
so that (Z̃1, Z̃2, . . . ) and (Z∗

1 , Z
∗
2 , . . . ) have the same distribution.
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Choose arbitrary integers k0, . . . , kn satisfying 1 = k0 < k1 < k2 < · · · < kn < ∞, and let
�i = ki − ki−1 for i = 1, . . . , n. Then

P(L̃1 = �1, . . . , L̃n = �n) = P(K̃1 = k1, . . . , K̃n = kn)

= P(K1 = k1, . . . , Kn = kn, τ̃ > kn)

= P(L1 = �1, . . . , Ln = �n, τ̃ > kn) (7.2)

= P(L1 = �1, . . . , Ln = �n,Xn < U).

Since the points (X1, L1), (X2, L2), . . . form a Poisson process on (0, 1) × N with intensity
λ(x)q(x, k), we have

P(L1 = �1, . . . , Ln = �n, Xn < U)

=
∫
An(U)

P(L1 = �1, . . . , Ln = �n, X1 ∈ dx1, . . . , Xn ∈ dxn)

=
∫
An(U)

exp

(
−

∫ xn

0
λ(u) du

) n∏
i=1

λ(xi)q(xi, �i) dx1 · · · dxn

=
∫
An(U)

(1 − xn)
a
n∏
i=1

ax
�i−1
i dxi,

where An(U) = {0 < X1 < X2 < · · · < Xn < U} and (1 − xn)
a = exp(− ∫ xn

0 λ(u) du) is
the probability of no points other than x1, . . . , xn in [0, xn]. By successively integrating over
x1, then x2, etc., we obtain

an

�1(�1 + �2) · · · (�1 + �2 + · · · + �n)

∫ U

0
x�1+�2+···+�n−1
n (1 − xn)

a dxn. (7.3)

(This calculation is similar to that in Proposition 3.1 of Huffer et al. (2009).) The corresponding
probability for the usual Bern(a, 0) sequence without any killing is obtained by setting U = 1
in (7.3), so that taking a ratio and using (7.2) and kn = 1 + ∑n

i=1 �i leads to

P(L̃1 = �1, . . . , L̃n = �n)

P(L1 = �1, . . . , Ln = �n)
= P(τ̃ > kn | L1 = �1, . . . , Ln = �n)

=
∫ U

0 xkn−2(1 − x)a dx∫ 1
0 x

kn−2(1 − x)a dx

= P(τ > kn) (7.4)

by (7.1).
Now consider the sequence Y ∗

1 , Y
∗
2 , Y

∗
3 , . . . of Theorem 7.1, and let L∗

1, L
∗
2, L

∗
3, . . . be the

waiting times for this sequence. Then, using (7.4), we obtain

P(L∗
1 = �1, . . . , L

∗
n = �n)

= P(L1 = �1, . . . , Ln = �n, τ > kn)

= P(L1 = �1, . . . , Ln = �n)P(τ > kn)

= P(L1 = �1, . . . , Ln = �n)P(τ̃ > kn | L1 = �1, . . . , Ln = �n)

= P(L1 = �1, . . . , Ln = �n, τ̃ > kn)

= P(L̃1 = �1, . . . , L̃n = �n),

so that Y ∗ and Ỹ have the same distributions, completing the proof.
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An interesting related fact is the following.

Corollary 7.1. LetM be the position of the last ‘1’ in the sequence Y ∗ of Theorem 7.1, that is,
M = sup{i : Y ∗

i = 1}. Then M − 1 has a negative binomial distribution with probability mass
function

P(M − 1 = k) =
(
a + k − 1

k

)
(1 − U)aUk for k = 0, 1, 2, . . .

and moment generating function

E exp(s(M − 1)) =
(

1 − U

1 − Ues

)a
. (7.5)

Proof. We verify that M − 1 has the moment generating function given in (7.5). Since Y ∗
and Ỹ have the same distribution, we have

M = sup{i < τ : Yi = 1}
d= sup{i < τ̃ : Yi = 1}
= sup{Ki : Xi < U}
= 1 +

∑
{i : Xi<U}

Li

= 1 +
∑

{i : L̃i<∞}
L̃i

= 1 +
∞∑
k=1

kZ̃k

according to (2.1). The random variables Z̃k are independent Poisson random variables with
means aUk/k, so that the moment generating function of M − 1 is easily calculated using the
fact that a Poisson random variable with mean θ has moment generating function eθ(e

s−1). This
calculation (which is omitted) leads to (7.5).
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