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Abstract

In this short note we present a common characterisation of the logarithmic function and the subspace of
all trace zero elements in finite von Neumann factors.
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1. Introduction

On the set Pn of all n × n positive definite complex matrices we have the identity
Tr(log(A)) = log(det A) for A ∈ Pn, where Tr and det stand for the usual trace functional
and the determinant function, respectively. By the multiplicativity of the determinant,
we deduce the identity

Tr(log(ABA) − (2 log A + log B)) = 0, A, B ∈ Pn.

Consequently, the linear span of all matrices log(ABA) − (2 log A + log B) for A,B ∈ Pn

is included in the linear space of all trace zero matrices. In the present note we use this
property to give a common characterisation of the logarithmic function and the space
of all trace zero elements in the case of factor von Neumann algebras.

Our aim is to prove the following statement.

Theorem 1.1. Let A be a von Neumann factor and f : (0,∞)→ R be a nonconstant
continuous function. Let A−1

+ denote the set of all positive invertible elements in A
and set

SAf = span { f (ABA) − (2 f (A) + f (B)) : A, B ∈ A−1
+ }.

Then either SAf = A or SAf ( A. In the latter case A is finite, f = a log holds with
some real number a , 0 and SAf equals the space of all trace zero elements ofA.
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Here span stands for the closed linear span relative to the norm topology in A.
The above statement can be viewed as a common characterisation of the logarithmic
function and the space of all trace zero elements (and hence the trace itself) in factor
von Neumann algebras of finite type.

2. Preliminaries

For the proof we need some preliminary preparations which follow. We call a linear
functional l on an algebraA tracial if it satisfies l(XY) = l(YX) for any X,Y ∈ A. IfA
is a *-algebra, a linear functional h :A→ C is called Hermitian if h(X∗) = h(X) holds
for all X ∈ A.

Assume now thatA is a C∗-algebra. For a tracial bounded linear functional l onA,
defining

l1(X) =
1
2

(l(X) + l(X∗)), l2(X) =
1
2i

(l(X) − l(X∗)), X ∈ A,

gives Hermitian tracial bounded linear functionals l1, l2 such that l = l1 + il2.
It is well known that every Hermitian bounded linear functional h on the

C∗-algebra A can be written as h = ϕ − ψ, where ϕ, ψ are positive (bounded) linear
functionals on A and the above decomposition, called the Jordan decomposition,
is uniquely determined by the condition ‖ϕ − ψ‖ = ‖ϕ‖ + ‖ψ‖ (see, for example,
[3, Theorem 3.2.5]). If h is tracial, so are ϕ and ψ. To see this, for any unitary
element U ∈ A, define ϕU(X) = ϕ(UXU∗) for X ∈ A and define ψU in a similar way.
It is obvious that ϕU , ψU are positive linear functionals, ‖ϕU‖ = ‖ϕ‖, ‖ψU‖ = ‖ψ‖,
‖ϕU − ψU‖ = ‖ϕ − ψ‖ and

ϕ(X) − ψ(X) = h(X) = h(UXU∗) = ϕU(X) − ψU(X), X ∈ A.

By the uniqueness of the Jordan decomposition mentioned above, it follows that
ϕU = ϕ and ψU = ψ, implying that ϕ, ψ are invariant under all unitary similarity
transformations. But it is well known that this implies that ϕ, ψ are necessarily tracial.
In fact, this follows from the argument given below in the paragraph containing (3.3)
or see [1, Proposition 8.1.1].

We can now prove the following statement. It is certainly known, but we present
the proof for the reader’s convenience. Recall that in any finite von Neumann algebra
there is a unique centre-valued positive linear functional which is tracial and acts as
the identity on the centre. This functional is called the trace (see [1, Theorem 8.2.8]).

Proposition 2.1. Assume that A is a von Neumann factor and l is a nonzero tracial
bounded linear functional on A. Then A is of finite type and l is a scalar multiple of
the (unique) trace.

Proof. By the previous discussion, we may assume that l is Hermitian. Consider
the Jordan decomposition l = ϕ − ψ of l. As we have seen above, the positive linear
functionals ϕ, ψ are also tracial and one of them is necessarily nonzero.
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Suppose that ω is a nonzero positive tracial functional on A. Then A cannot be
infinite. Indeed, in such a case we would have I = P + Q with some projections
P, Q ∈ A both equivalent to I. Since ω clearly takes equal values on equivalent
projections, from ω(I) = ω(P) + ω(Q) we infer that ω(I) = 0. By positivity, this
implies that ω vanishes on all projections, which, by continuity and the spectral
theorem, would yield ω = 0, which is a contradiction. Therefore, the existence of a
nonzero positive tracial functional ω onA implies thatA is necessarily finite and, by
[1, Theorem 8.2.8], it is a constant multiple of the trace. �

3. Proof of Theorem 1.1

After these preliminaries we can now present the proof of our main result.

Proof of Theorem 1.1. Let A be a von Neumann factor and f : (0,∞)→ R be a
nonconstant continuous function. Assume that SAf is not equal to the whole algebra
A. By the Hahn–Banach theorem, we have a nonzero bounded linear functional l on
A such that

l( f (ABA) − (2 f (A) + f (B))) = 0, A, B ∈ A−1
+ . (3.1)

Since l is not zero and, by the spectral theorem, the closed linear span of the set of
all projections in A equals A, it follows that we have a projection P ∈ A such that
l(P) , 0. Denote P⊥ = I − P. Put A = tP + P⊥ and B = sP + P⊥ into (3.1), where t, s
are arbitrary positive real numbers. It follows from (3.1) that

l((( f (t2s) − (2 f (t) + f (s)))P − 2 f (1)P⊥) = 0

and hence
(( f (t2s) − (2 f (t) + f (s)))l(P) = 2 f (1)l(P⊥)

for all t, s > 0. This implies that

f (t2s) − (2 f (t) + f (s)) = −2c

for all t, s > 0 with some given real number c. This means that, for f ′ = f − c,

f ′(t2s) − (2 f ′(t) + f ′(s)) = 0, t, s > 0.

Substituting t = s = 1, we obtain f ′(1) = 0. Substituting s = 1, we get f ′(t2) = 2 f ′(t)
and finally

f ′(ts) = f ′(t) + f ′(s), t, s > 0.

Considering the function t 7→ f ′(exp(t)), we have a continuous real function which
is additive and hence linear, implying that it is a scalar multiple of the identity.
Consequently, f ′ is a scalar multiple of the logarithmic function and f = a log + b
holds with some real scalars a, b.

Clearly, a is nonzero and the equality (3.1) can be rewritten as

l(log(ABA) − (2 log(A) + log(B))) = d, A, B ∈ A−1
+ ,
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with d = (2b/a)l(I). Inserting A = B = I, it follows that d = 0 and hence

l(log(ABA)) = 2l(log(A)) + l(log(B))), A, B ∈ A−1
+ . (3.2)

Now, the validity of (3.2) implies that the linear functional l is tracial. In fact, this is
the content of [2, Lemma 15]. For the sake of completeness, we present the proof.
First pick projections P,Q inA. Let

A = I + tP, B = I + tQ,

where t > −1 is any real number. Easy computation shows that

ABA = (I + tP)(I + tQ)(I + tP) = I + t(2P + Q) + t2(P + PQ + QP) + t3(PQP).

Recall that in an arbitrary unital Banach algebra, for any element a with ‖a‖ < 1,

log(1 + a) =

∞∑
n=1

(−1)n+1an

n
.

This shows that for a suitable positive real number ε, the elements log(ABA), log A
and log B ofA can be expressed by power series of t (|t| < ε) with coefficients from the
algebra. In particular, considering the coefficients of t3 on both sides of the equality
(3.2) and, using their uniqueness, we obtain the equation

l(PQP − 1
2 ((2P + Q)(P + PQ + QP) + (P + PQ + QP)(2P + Q)) + 1

3 (2P + Q)3)

= l( 1
3 (P + Q + P)).

Executing the operations and subtracting those terms which appear on both sides of
this equation, we arrive at the equality

l( 1
3 (PQP) − 1

3 (QPQ)) = 0.

Therefore,
l(PQP) = l(QPQ)

holds for all projections P,Q ∈ A.
We claim that this implies that l is tracial. To see this, select an arbitrary pair P,Q

of projections inA, define S = I − 2P and compute

l(Q + S QS ) = 1
2 l((I − S )Q(I − S ) + (I + S )Q(I + S ))

= 1
2 l(4PQP + 4(I − P)Q(I − P))

= 2l(PQP + (I − P)Q(I − P))
= 2l(QPQ + Q(I − P)Q) = 2l(Q).

Since the symmetries (that is, the self-adjoint unitaries) in A are exactly the elements
of the form S = I − 2P with some projection P ∈ A, we see that l(Q) = l(S QS ) holds
for every symmetry S and every projection Q in A. By the continuity of the linear
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functional l and the spectral theorem, we infer that l(X) = l(S XS ) holds for any X ∈ A
and symmetry S ∈ A. This implies that

l(S X) = l(S (XS )S ) = l(XS ) (3.3)
for every X ∈ A and symmetry S ∈ A. Plainly, this shows that l(PX) = l(XP) for every
projection P ∈ A. Finally, we conclude that l(XY) = l(YX) for all X, Y ∈ A, that is, l
is a nonzero tracial bounded linear functional. By Proposition 2.1, it follows that the
factorA is of finite type and l is a (nonzero) scalar multiple of the trace. In particular,
l(I) , 0 and, since 0 = d = (2b/a)l(I), it follows that b = 0, yielding f = a log.

To see that SAf equals the space of all trace zero elements ofA, observe that above
we have seen that any nonzero bounded linear functional l on A with the property
SAf ⊂ ker l is necessarily a scalar multiple of the same linear functional, namely, the
trace. This implies that SAf must equal the kernel of the trace, that is, it equals the
space of all trace zero elements ofA. The proof of the theorem is complete. �

We remark that one can easily find other variants of our result. Here we mention
the following one. For any pair A, B ∈ A−1

+ of positive invertible elements, we denote
by A#B their geometric mean, that is, A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

Corollary 3.1. LetA be a von Neumann factor and f : (0,∞)→ R be a nonconstant
continuous function. Set

LAf = span { f (A#B) − (1/2)( f (A) + f (B)) : A, B ∈ A−1
+ }.

Then either LAf =A or LAf (A. In the latter case,A is finite, f = a log + b holds for
some constants a, b with a , 0 and LAf equals the set of all trace zero elements ofA .

Proof. We only sketch the proof. First observe that by replacing f by the function
f − f (1) we may and do assume that f (1) = 0. If LAf ( A, then we have a nonzero
bounded linear functional l onA such that

l( f (A#B) − (1/2)( f (A) + f (B))) = 0, A, B ∈ A−1
+ .

In the same way as in the proof of Theorem 1.1,
f (
√

ts) − (1/2)( f (t) + f (s)) = 0
for any real numbers t, s > 0 and we easily deduce that f = a log with some scalar a.
Since f is assumed to be nonconstant, it follows that a , 0 and

l(log(A#B) − (1/2)(log(A) + log(B))) = 0, A, B ∈ A−1
+ .

It is known that A#B is the unique solution X ∈ A−1
+ of the equation XA−1X = B (the

Anderson–Trapp theorem). Therefore, the above displayed equation is equivalent to
l(2 log(X) − (log(A) + log(XA−1X))) = 0, A, X ∈ A−1

+

and, replacing A by A−1, this is equivalent to
l(log(XAX) − (2 log(X) + log(A))) = 0, A, X ∈ A−1

+ .

By the proof of Theorem 1.1, we already know that this implies that the algebra A
is finite and l is a constant multiple of the trace. The proof can now be completed
easily. �
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