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Abstract

We consider two different models of small-world graphs on nodes whose locations are
modelled by a stochastic point process. In the first model each node is connected to a
fixed number of its nearest neighbours, while in the second model each node is connected
to all nodes located within some fixed distance. In both models, nodes are additionally
connected via shortcuts to other nodes chosen uniformly at random. We obtain sufficient
conditions for connectivity in the first model, and necessary conditions in the second
model. Thereby, we show that connectivity is achieved at a smaller value of total degree
(nearest neighbours plus shortcuts) in the first model. We also obtain bounds on the
diameter of the graph in this model.
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1. Introduction

A classical random graph model introduced by Erdős and Rényi [5] consists of n nodes,
with the edge between each pair of nodes being present with probability pn, independent of
all other edges. This model, which is known as the Bernoulli random graph model, has been
studied extensively, and many of its properties are well understood. For instance, Erdős and
Rényi showed that this random graph model exhibits a sharp threshold for connectivity at
pn = log n/n. Precisely, if npn − log n → c as n → ∞ for some constant c, then the
probability that the graph is connected goes to exp(−e−c). Note that (n − 1)pn is the expected
node degree, so the result states that there is a sharp threshold for connectivity at an expected
node degree of log n. A number of variants of the above model, such as random regular graphs,
have also been studied extensively. A feature common to these models is that the nodes are
exchangeable.

Recently, there has been considerable interest in a different class of models, namely, spatial
or geometric random graphs; see, for example, [9] and [11]. Here, the nodes are associated
with coordinates in a Euclidean space, and the probability of an edge between a pair of nodes
is typically some function of the distance between them (or, more generally, of their spatial
coordinates). The node positions are also the realisation of some random process. One example
is obtained by placing n nodes uniformly on the unit square and putting an edge between
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any pair of nodes if the distance between them is smaller than a threshold rn. Penrose [10]
showed that the probability of connectivity goes to 0 if πnr2

n − log n → −∞, and goes to 1
if πnr2

n − log n → +∞. Similar results were also obtained by Gupta and Kumar [6] in the
context of a model of wireless networks.

Since πnr2
n is the expected degree of each node (except near the edges of the square), we see

that there is a threshold for connectivity at a mean degree of log n, which is the same as in the
Bernoulli random graph. A somewhat different model was studied in Xue and Kumar [13]. Here,
each node is connected to its mn nearest neighbours; more precisely, the edge between u and v is
present if either u is one of the mn nodes closest to v or v is one of the mn nodes closest to u. For
this model, the authors show that the probability of connectivity goes to 1 if mn > 5.1774 log n

and to 0 if mn < 0.074 log n. These results were improved by Balister et al. [1] who showed
that mn ≥ 0.3043 log n is necessary and mn > 0.5139 log n is sufficient for connectivity (with
the probability going to 1 as n tends to ∞). It is not known whether there is a threshold for
the connectivity at c log n for some constant c. We remark that in the above models the same
results hold if we consider a Poisson point process of intensity n instead of n points uniformly
distributed on the unit square.

One of the motivations for interest in spatial random graphs is their applicability to wireless
communication networks [6], [13]. Spatial random graphs on high-dimensional spaces might
offer good models for social networks, which are poorly described by Bernoulli random graphs.
Another class of models that has attracted attention in the latter context are so-called ‘small-
world networks’. One commonly used way to model such networks is to consider nodes as
located at the points of a (finite or infinite) d-dimensional lattice, and to augment the lattice with
shortcuts, which are additional edges between pairs of nodes. The shortcut between a pair of
nodes is present with a probability that is typically some function of the distance between them.
Since the lattice is already connected, interest in these models has focused on how the diameter
is reduced by the presence of shortcuts (see, for example, [2], [4], and [12, pp. 66–70]), and
also on whether efficient decentralised routeing is possible [7].

In this paper we consider two variants of the above small-world model. We model node
locations by a stochastic point process, e.g. independent and identically distributed uniformly
on a square. Nodes are connected by nearest neighbour links, either to a fixed number of nodes
closest to them, or to all nodes within a fixed distance. In addition, nodes are joined by shortcuts
to other nodes chosen uniformly at random. We are interested in how connectivity depends on
the number of nearest neighbours and the number of shortcuts. In the next section we address
this question after providing a precise definition of the models. We also obtain bounds on the
graph diameter of the small-world network in the connected regime.

2. Main results

We consider two different models of a small-world network, denoted Model A and Model B.
In each case we consider a sequence of random networks Gn indexed by a parameter n ∈ N,
which we call the size of the network. We say that a property Q holds with high probability
(w.h.p.) if P(Gn possesses the property Q) goes to 1 as n tends to ∞. In all cases we consider
undirected graphs.

Model A. There are n nodes, and each node chooses mn other nodes to connect to, called its
nearest neighbours. In addition, a shortcut is present between each pair of nodes with probability
pn, independently of all other edges. (If two nodes are connected by both a nearest neighbour
edge and a shortcut, we replace the multiple edge by a simple one.)
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Note that the ‘nearest neighbour’relation need not be symmetric. An edge is present between
nodes x and y if either y is one of the mn nearest neighbours of x or x is one of the mn nearest
neighbours of y or there is a shortcut between them. The model is parametrised by the sequences
mn and pn, and shortcuts are the only source of randomness in this model. The terminology
of ‘nearest neighbour’ may be misleading: as far as our results, below, are concerned, it only
matters that each node connects to mn other nodes, chosen arbitrarily. However, we have chosen
to use this term for concreteness, and because it was motivated by applications.

Example. Suppose that the nodes are located uniformly at random on the unit square. In this
case Model A incorporates elements of both Bernoulli random graphs and the Xue–Kumar
model, and our results, stated in Theorem 1, below, apply to every realisation of the node
locations.

Model B. There are n nodes, located uniformly at random on the torus obtained by identifying
the opposite sides of the square [−√

n/2,
√

n/2]2 of area n centred at the origin. Each node is
connected to all nodes within a radius rn and, in addition, shortcuts are present between each
pair of nodes with probability pn, independent of all other edges.

Model B is parametrised by the sequences rn and pn. It combines elements of Bernoulli and
spatial random graphs. Observe that the shortcut distribution is the same in Models A and B.
Thus, the main difference between the models is that the number of nearest neighbours is
random in Model B but deterministically bounded below in Model A. We shall see that this
greatly improves connectivity in Model A.

We consider a sequence of random graphs indexed by n. We denote by Cn the event that
the nth random graph is connected. We denote by Dn the diameter of the graph, namely, the
maximum over all node pairs of the length of the shortest path between them, in terms of the
number of edges. We take Dn = ∞ if the graph is not connected.

Theorem 1. Suppose that the sequences mn and pn are such that
mn

n
→ 0 as n → ∞, and

(mn + 1)npn > 2(1 + δ) log
n

mn + 1

(1)

for some δ > 0 and all sufficiently large n. Then, for the random graph described in Model A,
above, with parameters mn and pn, we have

lim
n→∞ P(Cn) = 1, lim

n→∞ P

(
Dn ≤ 7

(
log

n

mn + 1
+ 1

))
= 1. (2)

Conversely, if
mn

n
→ 0 as n → ∞, and

(mn + 1)npn < (1 − δ)

(
mn + 1

mn + 2

)2

log
n

mn + 1

(3)

for some δ > 0 and infinitely many n, then there is a sequence of node locations such that
lim infn→∞ P(Cn) = 0.

Remarks. 1. If mn = 0 then Model A reduces to the classical Bernoulli model of Erdős and
Rényi. In this case our upper bound on the required node degree is conservative by a factor
of 2, and the lower bound by a factor of 4.
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2. If mn → ∞ as n → ∞ then the upper and lower bounds essentially differ by a factor of 2.

3. Note that mn is the number of neighbours a node has in terms of the spatial graph, and
(n − 1)pn is the number of neighbours it has via shortcuts. Thus, the conditions of Theorem 1
state that the product of these quantities must be roughly equal to log n in order to ensure
connectivity. For example, it suffices if mn = (1 + δ)

√
2 log n and npn = (1 + δ)

√
2 log n.

Theorem 2. Suppose that the sequences rn and pn are such that

πr2
n + npn = log n + cn and lim

n→∞ cn = c. (4)

Then, the number of isolated nodes in the random graph generated by Model B with para-
meters rn and pn converges in distribution to a Poisson random variable with mean e−c. More-
over, if limn→∞ cn = −∞ then the random graph generated by Model B is disconnected w.h.p.

Remarks. 1. Observe that πr2
n + npn is the mean node degree, so Theorem 2 states that the

graph is disconnected if the mean node degree is much smaller than log n, as is the case for
both Bernoulli and spatial random graphs. Thus, in Model B there is no synergy between the
nearest neighbour and shortcut links, at least as far as connectivity is concerned.

2. We recover the necessary condition for connectivity in spatial random graphs by setting
pn = 0, and in Bernoulli random graphs by setting rn = 0.

3. The second claim of Theorem 2, which states that the random graph is disconnected w.h.p.
if cn → −∞, can be proved directly using the second moment method. Specifically, if
W denotes the number of isolated nodes in this random graph, we can use the inequality
P(W = 0) ≤ var(W)/(E W)2, which follows from Chebyshev’s inequality, to show that
P(W = 0) → 0. (The variance of W can be bounded by bounding the probability that pairs
of nodes are isolated.) It then follows that there is at least one isolated node and, hence,
the graph is disconnected w.h.p. Instead, we shall obtain the result as a corollary of the first
claim, which provides more detailed information regarding the number of isolated nodes. In
particular, it shows that if cn → c then the probability of being connected is asymptotically
bounded by exp(−e−c).

3. Proofs

Proof of Theorem 1. Observe that under Model A, each node belongs to a connected com-
ponent with at least mn +1 nodes, since it is connected to mn nearest neighbours. The intuition
behind the proof is that, for the graph to fail to be connected, there must be an isolated component
of at least this size. The proof will proceed by reducing the small-world graph to a Bernoulli
graph between clusters of size approximately mn.

Given a graph G, we divide the nodes into disjoint groups as follows.

1. For each node x, let Cx consist of x and its mn nearest neighbours. We call Cx the disc
centred at x. Initially, the discs Cx are coloured black.

2. Considering the n black discs in (any) sequence, colour each disc red if it does not
intersect a disc already coloured red. If a disc Cx becomes coloured red, we shall refer
to it as the red disc centred at x.
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3. Pick the red discs in any sequence. Say the red disc centred at x is chosen. Consider
the nodes in all black discs overlapping it, if any. Group these nodes into disjoint sets of
size mn + 1 and a residual set with mn or fewer nodes. Call each group of size mn + 1 a
green disc, and absorb the mn or fewer residual nodes into the red disc. With some abuse
of terminology, we shall refer to the (possibly) enlarged red disc and related green discs
as all being centred at x.

The procedure terminates with nodes being grouped into disjoint discs Ak, k = 1, 2, . . . , Kn,
each of which is coloured either red or green. All green discs are of size mn + 1 and all red
discs are of size between mn + 1 and 2mn + 1.

Observe that any two nodes u and v in the red disc centred at x either come from the black
disc that was centred at x or they come from black discs that were centred at y and z and
overlapped the black disc centred at x. (Possibly, y = z or y = x or z = x.) In the former
case the graph distance (i.e. the number of edges along a shortest path) between nodes u and v

in G is at most equal to 2; in the latter case it is at most equal to 6 (since, if the discs centred at
x and y intersect, there is a node a which is a neighbour of both x and y; thus, there is a path
u → y → a → x → b → z → v for some nodes a and b). Either way, all nodes in the same
red disc belong to the same connected component in G, considering only nearest-neighbour
edges.

Likewise, any two nodes u and v belonging to the same green disc centred at x come from
black discs centred at y and z (possibly, y = z), which overlapped the black disc centred at x.
Hence, these nodes belong to the same connected component in G and are at most a graph
distance 6 apart (there is a path u → y → a → x → b → z → v for some nodes a and b).

In order to show that G is connected, it now suffices to show that the red and green discs
form a connected graph when considering only shortcut edges. We shall do this by defining
a Bernoulli graph G̃, as follows. Recall that each red disc has between mn + 1 and 2mn + 1
nodes. We first construct a subgraph G1 of G by deleting all but mn + 1 nodes in each red disc.
(It does not matter which mn + 1 nodes are retained, so long as the choice is independent of
the presence of edges in G. We can think of the edges of G1 as being realised after the nodes
are chosen.) In G1 each disc, red or green, has exactly mn + 1 nodes, and if G1 is connected
then clearly so is G. Next, construct G̃ by replacing each disc Ak in G1 by a single node k, and
putting an edge between nodes j and k if there is at least one shortcut edge between a node in
Aj and a node in Ak , in G1. Clearly, G1 is connected if G̃ is connected. But G̃ is a Bernoulli
random graph on Kn nodes, with edge probability

p̃n = 1 − (1 − pn)
(mn+1)2

≥ 1 − exp(−(mn + 1)2pn)

≥ 1 − exp

(
−2(1 + δ)

mn + 1

n
log

n

mn + 1

)
, (5)

where the last inequality follows if (1) is assumed to hold. Moreover, Kn, the number of nodes
in G̃, lies between n/(2mn + 1) and n/(mn + 1). Hence, it follows, from (5), that

p̃n ≥ 1 − exp

(
− (1 + δ) log Kn

Kn

)
. (6)

Now, Kn → ∞ as n → ∞ by the assumption that mn/n → 0. Hence, from (6) we obtain

p̃n ≥ (1 + δ′) log Kn

Kn
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for any δ′ ∈ (0, δ) and all sufficiently large n. But p̃n is the edge probability in G̃, which is a
Bernoulli random graph on Kn nodes. Hence, by the results of Erdős and Rényi [5], P(Cn) → 1
as n → ∞. This establishes the first claim in (2).

Moreover, from Theorem 10.17 of [3] it follows that the Bernoulli random graph G̃ on Kn

vertices satisfies

P

(
diameter(G̃) ≤ log Kn + 6

log log Kn

+ 4

)
→ 1 as Kn → ∞.

Since Kn ≤ n/(mn + 1), and Kn → ∞ as n → ∞, it follows that

P

(
diameter(G̃) ≤ log

n

mn + 1

)
→ 1 as n → ∞.

Recall that each node in G̃ corresponds to a connected cluster in G, and that the diameter of
this cluster is at most equal to 6. Thus, diameter(G) ≤ 7 diameter(G̃) + 6, and the second
claim in (2) follows.

Conversely, consider a sequence nk, k ∈ N, such that (3) is satisfied along the sequence nk ,
mnk

, pnk
for some δ > 0. First, we argue that nk nodes can be partitioned into sets of size

either m̃nk
+ 1 or m̃nk

+ 2, where the m̃nk
are such that (m̃nk

+ 1)/(mnk
+ 1) → 1 as k → ∞.

To see this, write
nk = q(mnk

+ 1) + r, (7)

where 0 ≤ r ≤ mnk
, and q and r are integers. Now define s = 	r/q
 to be the integer part of

r/q, and let b = r − qs and a = q − b. Then a and b are integers, 0 ≤ b < q and a > 0.
Moreover, r = qs + b = as + b(s + 1). Hence, we can rewrite (7) as

nk = a(mnk
+ s + 1) + b(mnk

+ s + 2),

where a + b = q. Defining m̃nk
= mnk

+ s, we see that nk nodes can be partitioned into q sets,
each of size m̃nk

+ 1 or m̃nk
+ 2.

Moreover, observe, from (7), that

q ≥ nk

mnk
+ 1

− 1, and so s ≤ mnk
(mnk

+ 1)

nk − mnk
− 1

.

Hence, by (3), s/(mnk
+ 1) tends to 0 as k tends to ∞; consequently, (m̃nk

+ 1)/(mnk
+ 1)

tends to 1, as claimed above.
We now consider the following deterministic sequence of node configurations. The config-

uration on nk nodes consists of clusters of size m̃nk
+ 1 or m̃nk

+ 2, where m̃nk
is defined as

above. The nodes within each cluster are within Euclidean distance εnk
of each other, and any

two nodes in distinct clusters are more than εnk
apart, for some positive constant εnk

. It is clear
that such a εnk

and node configuration can be found.
Denote the clusters by A1, A2, . . . , Aqk

. There are clearly no nearest neighbour edges
between clusters, only shortcuts. Let G1 denote the graph on qk nodes obtained by replacing
each cluster Ai by a single node i, and putting an edge between nodes i and j only if there is
a shortcut in G between clusters Ai and Aj . Clearly, G is connected only if G1 is connected
(though the converse may not be true as the clusters Ai may not be connected). Now, conditional
on the cluster sizes, there is a shortcut (at least one) between clusters Ai and Aj with probability

1 − (1 − pnk
)|Ai ||Aj | ≤ p̃nk

:= 1 − (1 − pnk
)(m̃nk

+2)2
. (8)
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The presence of shortcuts between clusters are not independent events because the existence
of one shortcut biases the conditional distribution of the size of the cluster and, thereby, the
probability of other shortcuts from that cluster. Hence, G1 is not a Bernoulli random graph.
However, this problem is easily circumvented, as follows.

First, we augment each cluster of size m̃nk
+1 in G by adding a pseudonode which is within

a distance εnk
of all nodes in this cluster. Shortcuts are present between pseudonodes and other

nodes with the same probability pnk
as for ordinary nodes, independent of the presence of other

shortcuts. Call the augmented graph G̃. Now construct G̃1 from G̃ analogous to how G1 was
constructed from G: replace each cluster Ai by a single node i, and put an edge between i

and j in G̃1 only if there is a shortcut between the (augmented) clusters Ai and Aj in G̃. It
is clear from this construction that G̃1 is a Bernoulli random graph on qk nodes with edge
probability p̃nk

given by (8). Moreover, G1 is a subgraph of G̃1. Now G is connected only if
G1 is connected, which in turn requires that G̃1 be connected. We shall now use the result of
Erdős and Rényi [5] to show that, w.h.p., G̃ fails to be connected.

Observe that pnk
→ 0 as k → ∞ by the assumption that mnk

and pnk
satisfy (3), i.e. that

nk(mnk
+ 1)pnk

< log nk . Hence, for any ε > 0, we find, for all sufficiently large k, that the
probability of a shortcut between two clusters is bounded by

p̃nk
≤ 1 − exp(−(1 + ε)(m̃nk

+ 2)2pnk
) ≤ (1 + ε)(m̃nk

+ 2)2pnk
.

Since the number of clusters qk lies in [nk/(m̃nk
+ 2), nk/(m̃nk

+ 1)], using (3), we obtain

qkp̃nk
≤ (1 + ε)

(m̃nk
+ 2)2

(m̃nk
+ 1)(mnk

+ 1)
(mnk

+ 1)nkpnk

≤ (1 + ε)(1 − δ)
(m̃nk

+ 2)2(mnk
+ 1)

(m̃nk
+ 1)(mnk

+ 2)2 log
nk

mnk
+ 1

. (9)

Now,

log
nk

mnk
+ 1

= log
nk

m̃nk
+ 2

+ log
m̃nk

+ 2

mnk
+ 1

≤ (1 + ε) log qk

for all sufficiently large k, because qk tends to ∞ whereas (m̃nk
+ 1)/(mnk

+ 1) tends to 1,
so that (m̃nk

+ 2)/(mnk
+ 1) remains bounded as k tends to ∞. Since ε > 0 can be chosen

arbitrarily small in (9) and (m̃nk
+ 1)/(mnk

+ 1) tends to 1, it follows that

qkp̃nk
≤ (1 − δ′) log qk

for any δ′ ∈ (0, δ) and all sufficiently large k. Moreover, qk → ∞ as k → ∞ by the assumption
that mn/n → 0. Hence, using the results in [5] on the connectivity of Bernoulli random graphs,
we find that P(G̃1 is connected) → 0 as k → ∞. But G is connected only if G̃1 is connected.
Therefore, P(Cnk

) → 0 as k → ∞. This completes the proof.

Proof of Theorem 2. Let W denote the number of isolated nodes in the graph generated by
Model B with parameters n, rn, and pn. We do not make the dependence of W on the parameters
explicit in the notation. Let Z denote a Poisson random variable with mean E W . We use the
Stein–Chen method to show that W is close to Z in total variation distance.

Let U1 have the distribution of the number of isolated nodes, and let 1 + V1 have the
distribution of the number of isolated nodes conditional on node 1 being isolated. We shall
construct U1 and V1 on the same probability space and show that E |U1 − V1| is small. Then,
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we shall use [8, Chapter II, Theorem 24.3] to deduce that the total variation distance between
W and Z is small.

The random variables U1 and V1 are constructed on the same probability space as follows.
First, nodes 1 through n are placed uniformly at random on the square [−√

n/2,
√

n/2]2, and
the nearest neighbour and shortcut links are generated according to Model B. Next, all nodes
located within a distance rn of node 1 (including node 1) are coloured red, while all other nodes
are coloured green. Now, for each red node other than node 1, we place an associated blue
node uniformly at random in the portion of the square [−√

n/2,
√

n/2]2 which excludes the
circle of radius rn centred at node 1. (With some abuse of notation, we will use the same node
label to refer to such associated nodes, distinguishing them by their colour.) The blue nodes
carry the same shortcuts as the red nodes with which they are associated. In other words, if
there is a shortcut between red nodes i and j (not equal to 1) then there is one between blue
nodes i and j , and likewise if there is a shortcut between red node i and green node j . Finally,
we put down nearest neighbour links between blue nodes and other blue or green nodes if they
are within a distance rn of each other. Now, we define U1 as the number of isolated nodes in
the subgraph induced by red and green nodes, and V1 as the number of isolated nodes in the
subgraph induced by blue and green nodes. It is obvious that U1 has the same distribution as
W , the number of isolated nodes. To see that 1 + V1 has the distribution of the number of
isolated nodes conditional on node 1 being isolated, observe that, conditional on this event, the
remaining nodes are uniformly distributed outside the circle of radius rn around node 1, and
that the shortcut distribution between these nodes is unchanged, while there are no shortcuts to
node 1. This is precisely the law of the subgraph on the blue and green nodes and, hence, the
number of isolated nodes in this subgraph has the same distribution as V1.

Let U1 and V1 denote the set of isolated nodes in the red-green and blue-green subgraphs,
respectively. Let R, B, and G respectively denote the set of red, blue, and green nodes, with
respective cardinalities R, B, and G. In particular, R = B ∪ {1}, and R and G partition the
node set. Now,

E W = E U1 =
n∑

i=1

P(i ∈ U1) = n

(
1 − πr2

n

n

)n−1

(1 − pn)
n−1 ∼ exp(−cn), (10)

where the last equivalence follows from (4). Moreover,

E[|U1 − V1|] ≤
n∑

i=2

P(i ∈ U1, i /∈ V1) +
n∑

i=2

P(i /∈ U1, i ∈ V1). (11)

If i is one of the green nodes then, conditional on the event {i ∈ U1}, the event {i /∈
V1} can only occur if one of the blue nodes happens to fall within a distance rn of i; this
happens independently for each blue node, with probability at most πr2

n/(n−πr2
n). Moreover,

conditional on {i ∈ U1}, the number of blue nodes is binomially distributed with parameters
n−2 and πr2

n/(n−πr2
n) if nodes 1 and i are more than a distance 2rn apart; if they are less than

2rn apart, the number of blue nodes is stochastically dominated by such a binomial random
variable. Hence,

P(i /∈ V1 | i ∈ U1 ∩ G) ≤ 1 −
(

1 − π2r4
n

(n − πr2
n)2

)n−2

≤ (log n + cn)
2

n
(1 + o(1)). (12)

We have used (4) to obtain the last inequality. Conversely, if i �= 1 is one of the red nodes then
the event {i ∈ U1} cannot occur (as all the red nodes are neighbours of node 1, by definition).
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Thus, for i �= 1, we have

P(i ∈ U1, i /∈ V1) = P(i ∈ U1 ∩ G) P(i /∈ V1 | i ∈ U1 ∩ G)

≤ P(i ∈ U1) P(i /∈ V1 | i ∈ U1 ∩ G)

≤ (log n + cn)
2

n2 exp(−cn)(1 + o(1)), (13)

where the last inequality is obtained using (10) and (12).
Next, if i is a green node and i ∈ V1, then a necessary condition for the event i /∈ U1 to

occur is that node i either has a shortcut to node 1, or node i is at a distance between rn and
2rn from node 1 (so that it has a neighbour in the red-green subgraph, which is absent in the
blue-green subgraph). Thus, for each green node i, we have

P(i /∈ U1, i ∈ V1 ∩ G) ≤ P({i ∈ V1 ∩ G} ∩ A) + P({i ∈ V1 ∩ G} ∩ B), (14)

where A is the event that there is a shortcut between node i and node 1 and B is the event that
node i is at a distance between rn and 2rn from node 1.

Any node i �= 1 is isolated in the blue-green subgraph if it has no shortcuts to other blue
or green nodes, and if there is no other node within a distance rn of it. Now, node i is located
at least a distance rn away from node 1. Hence, at least half of the circle of radius rn centred
around it lies outside the circle of radius rn centred around node 1, from which all nodes are
moved out. Hence, the probability that a given node j lies within a distance rn of node i is at
least πr2

n/2(n − πr2
n). Thus, we see that

P(i ∈ V1 | A) = P(i ∈ V1) ≤ (1 − pn)
n−2

(
1 − πr2

n

2(n − πr2
n)

)n−2

. (15)

Hence,
P({i ∈ V1 ∩ G} ∩ A) ≤ P(A) P(i ∈ V1 | A)

≤ pn(1 − pn)
n−2

(
1 − πr2

n

2(n − πr2
n)

)n−2

≤ pn exp(−cn/2)√
n

[1 + o(1)]

≤ exp

(−cn

2

)
n−3/2 log n[1 + o(1)]. (16)

The last two inequalities follow from (4). Likewise, we have

P({i ∈ V1 ∩ G} ∩ B) ≤ P(B) P(i ∈ V1 | B)

≤ 3πr2
n

n − πr2
n

(1 − pn)
n−2

(
1 − πr2

n

2(n − πr2
n)

)n−2

≤ 3πr2
n

n

exp(−cn/2)√
n

[1 + o(1)]

≤ 3 exp

(−cn

2

)
n−3/2 log n[1 + o(1)]. (17)
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Combining (14), (16), and (17), we obtain

P(i /∈ U1, i ∈ V1 ∩ G) ≤ 4 exp

(−cn

2

)
n−3/2 log n[1 + o(1)]. (18)

Conversely, if i �= 1 is a red node then, automatically, i is not isolated (in the red-green
subgraph), so that

P(i /∈ U1, i ∈ V1 ∩ R) = P(i ∈ V1 ∩ R) = P(i ∈ R) P(i ∈ V1).

Using (15), we obtain

P(i /∈ U1, i ∈ V1 ∩ R) ≤ πr2
n

n

(
1 − πr2

n

2(n − πr2
n)

)n−2

(1 − pn)
n−2

≤ log n + cn

n2 exp(−cn)[1 + o(1)]. (19)

Combining (18) and (19), we obtain

P(i /∈ U1, i ∈ V1) ≤ 4 exp

(−cn

2

)
n−3/2 log n[1 + o(1)]. (20)

Finally, substituting (13) and (20) into (11) yields

E[|U1 − V1|] ≤ 4 log n√
n

exp

(−cn

2

)
[1 + o(1)]. (21)

Recall that the number of isolated nodes, W , is the sum of Bernoulli random variables
corresponding to the indicators that individual nodes are isolated, and that Z is a Poisson
random variable with the same mean as W . (The dependence of W and Z on n has been
suppressed in the notation.) Hence, by (10), (21), and [8, Chapter II, Theorem 24.3],

dTV(W, Z) ≤ 2(1 ∧ [E W ]−1) E W E[|U1 − V1|] ≤ 8 log(n) exp(−cn/2)√
n

[1 + o(1)], (22)

where dTV(W, Z) denotes the total variation distance between the random variables W and Z.
Suppose that cn → c and let Y denote a Poisson random variable with mean e−c. Since
E Z = E W ∼ exp(−cn), it is easy to see that dTV(Z, Y ) tends to 0. By the triangle inequality,
so does dTV(W, Y ). In other words, W converges in distribution to a Poisson random variable
with mean e−c as n tends to ∞. This establishes the first claim of the theorem.

To establish the second claim, first note that

P(W = 0) ≤ P(Z = 0) + dTV(W, Z) = e− E W + dTV(W, Z),

so that, by (10) and (22),

P(W = 0) ≤
(

exp(− exp(−cn)) + 8 log(n) exp(−cn/2)√
n

)
[1 + o(1)].

In particular, if cn is fixed at c then P(W = 0) → exp(−e−c). Now, if cn → −∞ then, for
arbitrarily large negative c, we have cn ≤ c for all large enough n. Moreover, if we augment the
nth graph with additional random shortcuts so that πrn + npn = log n + c, then this does not
reduce the number of isolated nodes. Hence, P(W = 0) ≤ 2 exp(−e−c) say, for all sufficiently
large n. Since −c can be chosen arbitrarily large, P(W = 0) → 0 as n → ∞. In other words,
there is at least one isolated node, and so the graph is disconnected, w.h.p. This completes the
proof.
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4. Conclusions and open problems

We obtained a sufficient condition for connectivity in ModelA and showed that this condition
was necessary for a worst-case node configuration. It would be interesting to know whether the
condition is tight (up to constants) for some random node configurations, such as the Poisson
point process on a square. We have obtained necessary conditions for connectivity in Model B.
While it is tempting to conjecture that there is a threshold for connectivity in this model at a
mean degree of log n, we do not have a proof of this result. Finally, the results here are obtained
for a uniform shortcut distribution. The extension to random connection models where the
probability of a shortcut between two nodes is some function of the Euclidean distance between
them is an open problem.
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