ON CERTAIN PAIRS OF AUTOMORPHISMS OF RINGS

MATEJ BREŠAR

(Received 2 July 1990)

Communicated by C. Sutherland

Abstract

In this paper we prove algebraic generalizations of some results of C. J. K. Batty and A. B. Thaheem, concerned with the identity $\alpha+\alpha^{-1}=\beta+\beta^{-1}$ where α and β are automorphisms of a C^{*}-algebra. The main result asserts that if automorphisms α, β of a semiprime ring R satisfy $\alpha+\alpha^{-1}=\beta+\beta^{-1}$ then there exist invariant ideals U_{1}, U_{2} and U_{3} of R such that $U_{i} \cap U_{j}=0, i \neq j, U_{1} \oplus U_{2} \oplus U_{3}$ is an essential ideal, $\alpha=\beta$ on $U_{1}, \alpha=\beta^{-1}$ on U_{2}, and $\alpha^{2}=\beta^{2}=\alpha^{-2}$ on U_{3}. Furthermore, if the annihilator of any ideal in R is a direct summand (in particular, if R is a von Neumann algebra), then $U_{1} \oplus U_{2} \oplus U_{3}=R$. 1991 Mathematics subject classification (Amer. Math. Soc.): primary 16 W 20; secondary 46 L 40. Keywords and phrases: automorphism, semiprime ring, prime ring, C^{*}-algebra, von Neumann algebra, ideal.

Introduction

Over the last ten years a lot of work has been done on the operator equation

$$
\begin{equation*}
\alpha+\alpha^{-1}=\beta+\beta^{-1} \tag{*}
\end{equation*}
$$

where α and β are $*$-automorphisms of a von Neumann algebra. We refer to some recent papers [1,5] for a detailed discussion on this equation and a more comprehensive bibliography.

It seems that the culminating results in the series of papers concerning the equation (*) can be found in the paper [1] of Batty, where the treatment of this problem was extended from von Neumann algebras to C^{*}-algebras. The
main result in [1] gives a condition which is both necessary and sufficient for solution of the equation in C^{*}-algebras, and which produces as corollaries the necessary conditions which we will establish purely algebraically.

Our work had been motivated by the following two results of Batty [1; Corollary 3.2, Corollary 3.5]:

Theorem A. Suppose that *-automorphisms α and β of a C^{*}-algebra R satisfy (*). Then there exist ideals $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} of R, each invariant under $\alpha, \beta, \alpha^{-1}$ and β^{-1}, such that $\mathrm{I}_{1} \cap \mathrm{I}_{2} \cap \mathrm{I}_{3}=0, \mathrm{I}_{3} \subseteq \mathrm{I}_{1}+\mathrm{I}_{2}$ and, for every x in $R, \beta(x)-\alpha(x) \in \mathrm{I}_{1}, \beta(x)-\alpha^{-1}(x) \in \mathrm{I}_{2}, \beta^{2}(x)-\alpha^{2}(x) \in \mathrm{I}_{3}$, $\beta^{2}(x)-\alpha^{-2}(x) \in \mathrm{I}_{3}$.

The next theorem was also proved by Thaheem in $[4,5]$.
Theorem B. Suppose that $*$-automorphisms α and β of a von Neumann algebra R satisfy (*). Then $R=U_{1} \oplus U_{2} \oplus U_{3}$, where U_{1}, U_{2} and U_{3} are von Neumann subalgebras of R, invariant under α and β, such that $\alpha=\beta$ on $U_{1}, \alpha=\beta^{-1}$ on U_{2}, and $\alpha^{2}=\beta^{2}=\alpha^{-2}$ on U_{3}.

In this paper we will generalize both Theorems A and B. Our methods are much more elementary than those employed by the other authors. Roughly speaking, we will show that the presence of analysis in the study of equation $(*)$ is sometimes superfluous. We will see that Theorem A remains true if R is an arbitrary semiprime ring, and that Theorem B holds if R is a semiprime ring in which the annihilator of any ideal is a direct summand. Moreover, if we no longer insist that $U_{1} \oplus U_{2} \oplus U_{3}$ is R but rather just a "large piece" of R (more precisely, an essential ideal), then Theorem B holds in any semiprime ring R.

In particular, our results imply that the assumption that α and β preserve adjoints, which is required in Theorems A and B, can be removed.

We remark that the study of equation $(*)$ is much simpler if one assumes that α and β commute. It turns out that in this case the presence of the ideal U_{3} in Theorem B is not necessary (see, for example, [3, 6]). An algebraic generalization of this result is presented in our forthcoming paper [2].

Preliminaries

We recall a few definitions and easy results. Let R be a ring. Then R is said to be prime if $a R b=0$ implies $a=0$ or $b=0$. A von Neumann algebra is prime if and only if it is a factor (that is, its center consists of
scalar multiples of the identity). If $a R a=0$ implies $a=0$, then R is called semiprime. Every C^{*}-algebra R is semiprime (for $0 \neq a a^{*} a \in a R a$ if $a \neq 0$).

Remark A. Let R be semiprime. Suppose that $a, b \in R$ satisfy $a R b=$ 0 . Then we also have $(b R a) R(b R a)=0, a b R a b=0, b a R b a=0$, and therefore $b R a=0, a b=0, b a=0$ by the semiprimeness of R. Observe that the left and the right annihilators of an ideal U of R coincide. It will be denoted by $\operatorname{Ann}(U)$. Note that $U \cap \operatorname{Ann}(U)=0$, and that $U \oplus \operatorname{Ann}(U)$ is an essential ideal.

We will be especially concerned with semiprime rings R in which the annihilator of any ideal is a direct summand; that is, $\operatorname{Ann}(U) \oplus \operatorname{Ann}(\operatorname{Ann}(U))=R$ for any ideal U of R. Note that every von Neumann algebra has this property; namely, the annihilator of any ideal is of the form $p R$ for some central projection p in R. More generally, the same is true for AW^{*}-algebras.

Remark B. Let α be an automorphism of a ring R. Suppose that the ideal I of R is invariant under α and α^{-1}, that is, α maps I onto itself. One can easily verify that in this case the two-sided annihilator Ann(I) of I is also invariant under α and α^{-1}.

The results

We begin our investigation of the equation (*) by considering a somewhat more general situation where automorphisms α, β and γ satisfy $\alpha+\gamma=$ $\beta+1$.

Lemma 1. Let α, β, γ be automorphisms of a ring R. If $\alpha+\gamma=\beta+1$ then
(1) $(\alpha-1)(x) R((\beta+1)(\alpha-\beta))(w) R(\alpha-\beta)(z)=0$,
(2) $(\alpha-1)(x) R((\beta+1)(\alpha-1))(w) R(\alpha-\beta)(z)=0$ for all $x, w, z \in R$.

Proof. From $\alpha-\beta=1-\gamma$ it follows that

$$
\begin{aligned}
(\alpha- & \beta)(x) \alpha(y)+\beta(x)(\alpha-\beta)(y) \\
& =(\alpha-\beta)(x y)=(1-\gamma)(x y) \\
& =(1-\gamma)(x) y+\gamma(x)(1-\gamma)(y) \\
& =(\alpha-\beta)(x) y+\gamma(x)(\alpha-\beta)(y)
\end{aligned}
$$

Thus $(\alpha-\beta)(x)(\alpha-1)(y)+(\beta-\gamma)(x)(\alpha-\beta)(y)=0$. That is,

$$
\begin{equation*}
(\alpha-\beta)(x)(\alpha-1)(y)+(\alpha-1)(x)(\alpha-\beta)(y)=0 \quad \text { for all } x, y \in R \tag{3}
\end{equation*}
$$

since $\beta-\gamma=\alpha-1$ by assumption. Replacing y by $y z$ in (3) we obtain

$$
\begin{aligned}
& (\alpha-\beta)(x)(\alpha-1)(y) \alpha(z)+(\alpha-\beta)(x) y(\alpha-1)(z) \\
& \quad+(\alpha-1)(x)(\alpha-\beta)(y) \alpha(z)+(\alpha-1)(x) \beta(y)(\alpha-\beta)(z)=0
\end{aligned}
$$

By (3) this relation reduces to

$$
\begin{align*}
& (\alpha-\beta)(x) y(\alpha-1)(z) \tag{4}\\
& \quad+(\alpha-1)(x) \beta(y)(\alpha-\beta)(z)=0 \quad \text { for all } x, y, z \in R
\end{align*}
$$

Replacing y by $y(\alpha-\beta)(w) u$ in (4) we get

$$
\begin{aligned}
& (\alpha-\beta)(x) y(\alpha-\beta)(w) u(\alpha-1)(z) \\
& \quad=-(\alpha-1)(x) \beta(y)(\beta(\alpha-\beta))(w) \beta(u)(\alpha-\beta)(z)
\end{aligned}
$$

But on the other hand, using (4) twice we obtain

$$
\begin{aligned}
& (\alpha-\beta)(x) y\{(\alpha-\beta)(w) u(\alpha-1)(z)\} \\
& \quad=-\{(\alpha-\beta)(x) y(\alpha-1)(w)\} \beta(u)(\alpha-\beta)(z) \\
& \quad=(\alpha-1)(x) \beta(y)(\alpha-\beta)(w) \beta(u)(\alpha-\beta)(z)
\end{aligned}
$$

Comparing the last two relations we obtain (1). In a similar fashion, by substituting $y(\alpha-1)(w) u$ for y in (4), one shows that (2) holds.

Corollary 1. Suppose that automorphisms α, β, γ of a prime ring R satisfy $\alpha+\gamma=\beta+1$. If $\alpha \neq \beta$ and $\alpha \neq 1$ then $\alpha=\beta \gamma, \gamma=\beta \alpha$, and $\beta^{2}=1$.

Proof. From (1) it follows immediately that $\beta(\alpha-\beta)=-(\alpha-\beta)$. By assumption, $\alpha-\beta=1-\gamma$, therefore this relation yields $\beta-\alpha=\beta(1-\gamma)=$ $\beta-\beta \gamma$ which means that $\alpha=\beta \gamma$. Similarly, by (2) we have $\beta(\alpha-1)=$ $-(\alpha-1)$; since $1-\alpha=\gamma-\beta$ it follows that $\gamma=\beta \alpha$. According to both identities, $\alpha=\beta \gamma$ and $\gamma=\beta \alpha$, we are forced to conclude that $\beta^{2}=1$.

Remark 1. The next simple example illustrates Corollary 1 (compare with [1; Proposition 2.1]). Let R be an algebra with unit element e, and let b in R be such that $b^{2}=e$. Define the inner automorphism β by $\beta(x)=$ $b x b$. Let λ be any scalar different from 1 and -1 and define the inner automorphism γ by $\gamma(x)=\left(1-\lambda^{2}\right)^{-1}(e+\lambda b) x(e-\lambda b)$. Note that $\beta \gamma+\gamma=$ $\beta+1$.

As a special case of Corollary 1 we obtain an extension of [1; Corollary 3.3].

Corollary 2. Suppose that automorphisms α and β of a prime ring R satisfy $\alpha+\alpha^{-1}=\beta+\beta^{-1}$. If $\alpha \neq \beta$ and $\alpha \neq \beta^{-1}$ then $\alpha^{2}=\beta^{2}=\alpha^{-2}$.

Proof. We have $\alpha \beta+\alpha^{-1} \beta=\beta^{2}+1$; now apply Corollary 1 .
Lemma 2. If automorphisms α and β of a semiprime ring R satisfy $\alpha+\alpha^{-1}=\beta+\beta^{-1}$, then

$$
\begin{array}{cl}
\left(\alpha-\beta^{-1}\right)(x) R\left(\alpha^{2}-\beta^{2}\right)(y)=0 & \text { for all } x, y \in R, \\
(\alpha-\beta)(x) R\left(\alpha^{2}-\beta^{-2}\right)(y)=0 & \text { for all } x, y \in R . \tag{6}
\end{array}
$$

Proof. We have $\alpha \beta+\alpha^{-1} \beta=\beta^{2}+1$. Therefore Lemma 1 implies that

$$
(\alpha \beta-1)(x) R\left(\left(\beta^{2}+1\right)\left(\alpha \beta-\beta^{2}\right)\right)(w) R\left(\alpha \beta-\beta^{2}\right)(z)=0
$$

for all $x, w, z \in R$. Since β is onto we then also have
(7) $\left(\alpha-\beta^{-1}\right)(x) R\left(\left(\beta^{2}+1\right)(\alpha-\beta)\right)(w) R(\alpha-\beta)(z)=0 \quad$ for all $x, w, z \in R$.

We have
$\beta^{2}(\alpha-\beta)+(\alpha-\beta)=\beta^{2}\left(\beta^{-1}-\alpha^{-1}\right)+(\alpha-\beta)=\alpha-\beta^{2} \alpha^{-1}=\left(\alpha^{2}-\beta^{2}\right) \alpha^{-1}$, therefore it follows from (7) that

$$
\begin{equation*}
\left(\alpha-\beta^{-1}\right)(x) R\left(\alpha^{2}-\beta^{2}\right)(y) R(\alpha-\beta)(z)=0 \quad \text { for all } x, y, z \in R . \tag{8}
\end{equation*}
$$

The range of $\alpha^{2}-\beta^{2}$ is contained in the range of $\alpha-\beta$; indeed, we have $\alpha^{2}-\beta^{2}=\alpha\left(\alpha+\alpha^{-1}\right)-\beta\left(\beta+\beta^{-1}\right)=(\alpha-\beta)\left(\alpha+\alpha^{-1}\right)$. Hence (8) yields

$$
\left(\alpha-\beta^{-1}\right)(x) R\left(\alpha^{2}-\beta^{2}\right)(y) R\left(\alpha^{2}-\beta^{2}\right)(z)=0 \quad \text { for all } x, y, z \in R .
$$

But then (5) holds by the semiprimeness of R. Noting that $\alpha^{2}+\alpha^{-2}=$ $\beta^{2}+\beta^{-2}$, and then using the analogous approach as in the proof of (5), one proves (6).

Lemma 3. If automorphisms α and β of a semiprime ring R satisfy $\alpha+\alpha^{-1}=\beta+\beta^{-1}$, then α commutes with β^{2} and β commutes with α^{2}.

Proof. Let us show that α commutes with β^{2}. The initial hypothesis yields

$$
\begin{equation*}
\alpha(\alpha-\beta)=(\alpha-\beta) \beta^{-1} \tag{9}
\end{equation*}
$$

By (6) it follows that

$$
(\alpha(\alpha-\beta))(x) \alpha(R)\left(\alpha\left(\alpha^{2}-\beta^{-2}\right)\right)(y)=0 \quad \text { for all } x, y \in R .
$$

In view of (9) this relation implies that

$$
(\alpha-\beta)(x) R\left(\alpha^{3}-\alpha \beta^{-2}\right)(y)=0 \quad \text { for all } x, y \in R
$$

Substituting $\alpha(y)$ for y in (6) we obtain

$$
(\alpha-\beta)(x) R\left(\alpha^{3}-\beta^{-2} \alpha\right)(y)=0 \quad \text { for all } x, y \in R
$$

Comparing the last two relations we get

$$
\begin{equation*}
(\alpha-\beta)(x) R\left(\alpha \beta^{-2}-\beta^{-2} \alpha\right)(y)=0 \quad \text { for all } x, y \in R \tag{10}
\end{equation*}
$$

Multiply the identity $\alpha+\alpha^{-1}=\beta+\beta^{-1}$ from the left by β and from the right by α; then we get $\beta \alpha^{2}-\beta^{2} \alpha=\alpha-\beta$. Since $\alpha-\beta=\beta^{-1}-\alpha^{-1}$, and since $\beta^{2}=\alpha^{2}+\alpha^{-2}-\beta^{-2}$, it follows that $\beta^{-1}+\alpha^{3}-\beta \alpha^{2}=\beta^{-2} \alpha$. Consequently

$$
\alpha \beta^{-2}-\beta^{-2} \alpha=(\alpha-\beta)\left(\beta^{-2}-\alpha^{2}\right)
$$

Therefore (10) implies that

$$
\left(\alpha \beta^{-2}-\beta^{-2} \alpha\right)(y) R\left(\alpha \beta^{-2}-\beta^{-2} \alpha\right)(y)=0
$$

for every $y \in R$. But then $\alpha \beta^{-2}=\beta^{-2} \alpha$ since R is semiprime. Thus α and β^{2} commute. For the sake of symmetry we omit the proof of the commutativity of α^{2} and β.

Corollary 3. Let R be a semiprime ring with unit element and containing the element $1 / 2$. If inner automorphisms α, β of R satisfy $\alpha+\alpha^{-1}=$ $\beta+\beta^{-1}$, then they commute.

Proof. Let $a, b \in R$ be such that $\alpha(x)=a x a^{-1}$ and $\beta(x)=b x b^{-1}$. By assumption, $a x a^{-1}+a^{-1} x a=b x b^{-1}+b^{-1} x b$ for all $x \in R$. In particular, $2 a=b a b^{-1}+b^{-1} a b$. Multiplying from the right by b we obtain

$$
\begin{equation*}
2 a b=b a+b^{-1} a b^{2} \tag{11}
\end{equation*}
$$

By Lemma 3, α and β^{2} commute. Hence $a b^{2}=c b^{2} a$ for some c in the center of R. By (11) we then have $2 a b=(1+c) b a$. Since R contains the element $1 / 2$ it follows that $a b=c_{1} b a$, where c_{1} is an invertible element in the center of R. But then α and β commute.

Remark 2. The case where commuting automorphisms α, β of a semiprime ring R satisfy $\alpha+\alpha^{-1}=\beta+\beta^{-1}$ is considered in our paper [2]. In particular, it was shown that if R is prime of characteristic not 2 then either $\alpha=\beta$ or $\alpha=\beta^{-1}$. Combining this with Corollary 3 we obtain the following
result which generalizes [3; Corollary 2.1]: Let R be a prime ring with unit element and containing the element $1 / 2$. If inner automorphisms α, β of R satisfy $\alpha+\alpha^{-1}=\beta+\beta^{-1}$ then either $\alpha=\beta$ or $\alpha=\beta^{-1}$.

We now come to the main result of this paper.
Theorem 1. Let α and β be automorphisms of a semiprime ring R such that $\alpha+\alpha^{-1}=\beta+\beta^{-1}$. Then there exists ideals U_{1}, U_{2} and U_{3} of R such that
(i) $U_{i} \cap U_{j}=0, i \neq j$, and $U_{1} \oplus U_{2} \oplus U_{3}$ is an essential ideal of R. Moreover, if the annihilator of any ideal in R is a direct summand (in particular, if R is a von Neumann algebra), then $U_{1} \oplus U_{2} \oplus U_{3}=R$,
(ii) U_{i} are invariant under $\alpha, \beta, \alpha^{-1}$ and β^{-1},
(iii) $\alpha=\beta$ on U_{1},
(iv) $\alpha=\beta^{-1}$ on U_{2},
(v) $\alpha^{2}=\beta^{2}=\alpha^{-2}$ on U_{3}.

Remark 3. In [5] Thaheem constructed an example of automorphisms α and β satisfying $\alpha+\alpha^{-1}=\beta+\beta^{-1}$ on a von Neumann algebra R but there is no decomposition of R for which $\alpha=\beta$ on the one part and $\alpha=\beta^{-1}$ on the other part. Thus the presence of an ideal U_{3} in Theorem 1 is really necessary. In Thaheem's example the algebra R was not prime. We do not know whether the equation $\alpha+\alpha^{-1}=\beta+\beta^{-1}$ has any nontrivial solutions in prime rings (in the sense that $\alpha \neq \beta$ and $\alpha \neq \beta^{-1}$). In order to find such a solution one can assume that $\alpha^{2}=\beta^{2}=\alpha^{-2}$ (Corollary 2) and that α, β are not both inner (Remark 2).

Proof of Theorem 1. Let U_{0} be an ideal of R generated by all $\left(\alpha^{2}-\beta^{-2}\right)(x), x \in R$. We set $V=\operatorname{Ann}\left(U_{0}\right)$ and $U_{1}=\operatorname{Ann}(V)$. By Remark A we have $U_{1} \cap V=0$ and $U_{1} \oplus V$ is an essential ideal. From Lemma 3 we see that the mapping $\alpha^{2}-\beta^{-2}$ commutes with $\alpha, \beta, \alpha^{-1}$ and β^{-1}. Simple calculations show that this implies that U_{0} is invariant under $\alpha, \beta, \alpha^{-1}$ and β^{-1}. But then, by Remark B , the same is true for ideals V and U_{1}.

Take $u_{1} \in U_{1}$. Since U_{1} is invariant under α and $\beta,(\alpha-\beta)\left(u_{1}\right)$ lies in U_{1}. However, from Lemma 2 (and Remark A) it follows that the range of $\alpha-\beta$ lies in $\operatorname{Ann}\left(U_{0}\right)=V$. Since $U_{1} \cap V=0$ we then have $\alpha\left(u_{1}\right)=\beta\left(u_{1}\right)$. Thus we have proved (iii).

Let V_{1} be an ideal of R generated by all $\left(\beta^{2}-\beta^{-2}\right)(v), v \in V$. Of course, $V_{1} \subseteq V$. We define $U_{3}=\operatorname{Ann}\left(V_{1}\right) \cap V$ and $U_{2}=\operatorname{Ann}\left(U_{3}\right) \cap V$. Since $U_{2} \subseteq \operatorname{Ann}\left(U_{3}\right)$, we have $U_{2} \cap U_{3}=0$. Next, since U_{2} and U_{3} are
contained in V, we also have $U_{2} \cap U_{1}=0$ and $U_{3} \cap U_{1}=0$. Let us show that the ideal $W=U_{1} \oplus U_{2} \oplus U_{3}$ is essential. We have to show that

$$
\operatorname{Ann}(W)=\operatorname{Ann}\left(U_{1}\right) \cap \operatorname{Ann}\left(U_{2}\right) \cap \operatorname{Ann}\left(U_{3}\right)
$$

is equal to zero. Since $U_{2}=\operatorname{Ann}\left(U_{3}\right) \cap V$, we have

$$
\operatorname{Ann}(W) \cap V=\operatorname{Ann}\left(U_{1}\right) \cap \operatorname{Ann}\left(U_{2}\right) \cap U_{2}=0
$$

Hence $\operatorname{Ann}(W) \subseteq \operatorname{Ann}(V)$. But on the other hand we have $\operatorname{Ann}(W) \subseteq$ $\operatorname{Ann}\left(U_{1}\right)$. Since $\operatorname{Ann}(V) \cap \operatorname{Ann}\left(U_{1}\right)=\operatorname{Ann}\left(V \oplus U_{1}\right)=0$ (namely, the ideal $V \oplus U_{1}$ is essential) it follows that $\operatorname{Ann}(W)=0$. That is, W is essential.

Assume that the annihilator of any ideal in R is a direct summand. Then $U_{1} \oplus V=R$. We want to show that $U_{2} \oplus U_{3}=V$. By assumption, Ann $\left(V_{1}\right)$ is a direct summand. Thus $R=\operatorname{Ann}\left(V_{1}\right) \oplus Z$ for some ideal Z of R. Since $V_{1} \subseteq V$, we have

$$
Z=\operatorname{Ann}\left(\operatorname{Ann}\left(V_{1}\right)\right) \subseteq \operatorname{Ann}(\operatorname{Ann}(V))=\operatorname{Ann}\left(U_{1}\right)=V
$$

Thus Z is contained in V. Pick $v \in V$. There exist elements $w \in \operatorname{Ann}\left(V_{1}\right)$ and $z \in Z$ such that $v=w+z$. We claim that $w \in U_{3}$ and $z \in U_{2}$. Since $z \in Z \subseteq V$, we also have $w \in V$. Thus $w \in \operatorname{Ann}\left(V_{1}\right) \cap V=U_{3}$. The ideal U_{3} is contained in $\operatorname{Ann}\left(V_{1}\right)$, therefore $Z=\operatorname{Ann}\left(\operatorname{Ann}\left(V_{1}\right)\right) \subseteq \operatorname{Ann}\left(U_{3}\right)$. Hence $z \in \operatorname{Ann}\left(U_{3}\right) \cap V=U_{2}$. With this we have proved that $U_{1} \oplus U_{2}=V$, and, therefore, $U_{1} \oplus U_{2} \oplus U_{3}=R$. The proof of (i) is thus complete.

Since $\alpha, \beta, \alpha^{-1}$ and β^{-1} commute with $\beta^{2}-\beta^{-2}$ (Lemma 3), and since all these automorphisms leave V invariant, it follows easily that V_{1} is also invariant under $\alpha, \beta, \alpha^{-1}$ and β^{-1}. Using Remark B we see the same is true for the ideal $U_{3}=\operatorname{Ann}\left(V_{1}\right) \cap V$. Similarly we argue about the ideal U_{2}. Thus (ii) is proved.

Let us prove (iv). Given $v \in V$, we have $\alpha^{2}(v)-\beta^{-2}(v) \in V$ since V is invariant under α^{2} and β^{-2}. But on the other hand, $\left(\alpha^{2}-\beta^{-2}\right)(v)$ is contained in U_{0}. Since $U_{0} \cap V=0$ it follows that $\alpha^{2}(v)=\beta^{-2}(v)$. Lemma 2 then yields

$$
\left(\alpha-\beta^{-1}\right)(x) R\left(\beta^{2}-\beta^{-2}\right)(v)=0 \quad \text { for all } x \in R, v \in V
$$

This means that the range of $\alpha-\beta^{-1}$ is contained in $\operatorname{Ann}\left(V_{1}\right)$. Since ($\alpha-$ $\left.\beta^{-1}\right)\left(u_{2}\right) \in U_{2}$ if $u_{2} \in U_{2}$, and since $U_{2} \cap \operatorname{Ann}\left(V_{1}\right)=U_{2} \cap \operatorname{Ann}\left(V_{1}\right) \cap V=$ $U_{2} \cap U_{3}=0$, it follows that $\alpha\left(u_{2}\right)=\beta^{-1}\left(u_{2}\right)$.

It remains to prove (v). Pick $u_{3} \in U_{3}$. On the one hand we have $\left(\beta^{2}-\beta^{-2}\right)\left(u_{3}\right) \in U_{3}$, and on the other hand, by the definition of V_{1}, $\left(\beta^{2}-\beta^{-2}\right)\left(u_{3}\right) \in V_{1}$. However, $U_{3} \cap V_{1}=V \cap \operatorname{Ann}\left(V_{1}\right) \cap V_{1}=0$, and hence
$\beta^{2}\left(u_{3}\right)=\beta^{-2}\left(u_{3}\right)$. We have proved that $\alpha^{2}=\beta^{-2}$ on V, and therefore also on $U_{3} \subseteq V$. With this (v) is proved.

In the case that the annihilator of any ideal of R is a direct summand, we see from Theorem 1 that the range of $\alpha-\beta$ is contained in the ideal $\mathrm{I}_{1}=U_{2} \oplus U_{3}$, the range of $\alpha-\beta^{-1}$ is contained in $\mathrm{I}_{2}=U_{1} \oplus U_{3}$, and the union of the ranges of $\alpha^{2}-\beta^{2}$ and $\alpha^{2}-\beta^{-2}$ is contained in $\mathrm{I}_{3}=U_{1} \oplus U_{2}$. This result is in accordance with Theorem A. With the aid of Lemmas 2 and 3 , even if we do not assume that the annihilator of any ideal of R is a direct summand, it is not difficult to prove the following generalization of Theorem A.

Theorem 2. Let α and β be automorphisms of a semiprime ring R such that $\alpha+\alpha^{-1}=\beta+\beta^{-1}$. Then there exists ideals $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} of R, each invariant under $\alpha, \alpha^{-1}, \beta$ and β^{-1}, such that $\mathrm{I}_{1} \cap \mathrm{I}_{2} \cap \mathrm{I}_{3}=0, \mathrm{I}_{3} \subseteq \mathrm{I}_{1} \cap \mathrm{I}_{2}$ and, for each x in R,

$$
\begin{array}{cc}
\beta(x)-\alpha(x) \in \mathrm{I}_{1}, & \beta(x)-\alpha^{-1}(x) \in \mathrm{I}_{2} \\
\beta^{2}(x)-\alpha^{2}(x) \in \mathrm{I}_{3}, & \beta^{2}(x)-\alpha^{-2}(x) \in \mathrm{I}_{3} .
\end{array}
$$

Proof. Let J be an ideal of R generated by all $\left(\alpha^{2}-\beta^{-2}\right)(x), x \in R$, and set $\mathrm{I}_{1}=\operatorname{Ann}(J)$. From Lemma 2 we see that $(\alpha-\beta)(x) \in \mathrm{I}_{1}$ for every $x \in R$. Since the mapping $\alpha^{2}-\beta^{-2}$ commutes with $\alpha, \beta, \alpha^{-1}$ and β^{-1} (Lemma 3) it follows that J is invariant under $\alpha, \beta, \alpha^{-1}$ and β^{-1}. But then Remark B tells us that the same is true for the ideal I_{1}.

We introduce L to be an ideal of R generated by all $\left(\alpha^{2}-\beta^{2}\right)(x), x \in R$, and let $\mathrm{I}_{2}=\operatorname{Ann}(L)$. Similarly as above one deduces that the range of $\alpha-\beta^{-1}$ is contained in I_{2}, and that L and I_{2} are invariant under α, β, α^{-1} and β^{-1}.

The union of the ranges of $\alpha^{2}-\beta^{-2}$ and $\alpha^{2}-\beta^{2}$ is certainly contained in the ideal $\mathrm{I}_{3}=J+L$. Of course, I_{3} is also invariant under $\alpha, \beta, \alpha^{-1}$ and β^{-1}. Next,

$$
\mathrm{I}_{1} \cap \mathrm{I}_{2} \cap \mathrm{I}_{3}=\operatorname{Ann}(J) \cap \operatorname{Ann}(L) \cap(J+L)=\operatorname{Ann}(J+L) \cap(J+L)=0
$$

by Remark A. From $\alpha^{2}-\beta^{2}=\alpha\left(\alpha+\alpha^{-1}\right)-\beta\left(\beta+\beta^{-1}\right)=(\alpha-\beta)\left(\beta+\beta^{-1}\right)$ we see that the range of $\alpha^{2}-\beta^{2}$ is contained in the range of $\alpha-\beta$. Therefore, L is contained in I_{1}. Similarly we see that J is contained in I_{2}. Consequently I_{3} is contained in $I_{1}+I_{2}$. The proof of the theorem is complete.

References

[1] C. J. K. Batty, 'On certain pairs of automorphisms of C^{*}-algebras', J. Austral. Math. Soc. (Series A) 46 (1989), 197-211.
[2] M. Brešar, 'On the compositions of (α, β)-derivations of rings, and applications to von Neumann algebras', preprint.
[3] A. B. Thaheem, 'On the operator equation $\alpha+\alpha^{-1}=\beta+\beta^{-1}$, Internat. J. Math. 8 Math. Sci. 9 (1986), 767-770.
[4] __, 'On certain decompositional properties of von Neumann algebras', Glasgow Math. J. 29 (1987), 177-179.
[5] __, 'On pairs of automorphisms of von Neumann algebras', Internat. J. Math. \&s Math. Sci. 12 (1989), 285-290.
[6] __ and M. Awami, 'A short proof of a decomposition theorem of a von Neumann algebra', Proc. Amer. Math. Soc. 92 (1984), 81-82.

University of Maribor

PF, Koroška 160
62000 Maribor
Slovenia

