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Abstract

In this paper we prove algebraic generalizations of some results of C. J. K. Batty and A. B.
Thaheem, concerned with the identity a + a~* =/? + /?" ' where a and /? are automorphisms
of a C*-algebra. The main result asserts that if automorphisms a , /? of a semiprime ring R
satisfy a + a~l = /? + /?" ' then there exist invariant ideals Ux, U2 and t/3 of R such that
{/. n Uj = 0 , i 4- j > Vl ffi U2 © l/3 is an essential ideal, a = /? on U{ , a = p~ on U2 , and

a = /} = a~ on t/j . Furthermore, if the annihilates of any ideal in R is a direct summand
(in particular, if R is a von Neumann algebra), then Ul ffi U2 © U3 = R .
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Introduction

Over the last ten years a lot of work has been done on the operator equation

where a and /? are *-automorphisms of a von Neumann algebra. We refer
to some recent papers [1, 5] for a detailed discussion on this equation and a
more comprehensive bibliography.

It seems that the culminating results in the series of papers concerning the
equation (*) can be found in the paper [1] of Batty, where the treatment of
this problem was extended from von Neumann algebras to C*-algebras. The
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main result in [1] gives a condition which is both necessary and sufficient for
solution of the equation in C* -algebras, and which produces as corollaries
the necessary conditions which we will establish purely algebraically.

Our work had been motivated by the following two results of Batty
[1; Corollary 3.2, Corollary 3.5]:

THEOREM A. Suppose that ^-automorphisms a and fi of a C*-algebra
R satisfy (*). Then there exist ideals I , , I2 and I3 of R, each invariant
under a, fi, a~l and P~X, such that I, n I2 l~l I3 = 0, I3 C I, + I2 and, for
every x in R, fi(x) - a(x) e I , , fi(x) - a~l(x) e I2, P2{x) - a2{x) e I3,
02(x)-a-2(x)el3.

The next theorem was also proved by Thaheem in [4, 5].

THEOREM B. Suppose that ^-automorphisms a and /? of a von Neumann
algebra R satisfy (*). Then R= Ux®U1®U-i, where U{, U2 and C/3 are
von Neumann subalgebras of R, invariant under a and /?, such that a = /?
on Ul, a = p~l on U2, and a2 = 02 = a~2 on U}.

In this paper we will generalize both Theorems A and B. Our methods are
much more elementary than those employed by the other authors. Roughly
speaking, we will show that the presence of analysis in the study of equation
(*) is sometimes superfluous. We will see that Theorem A remains true if R
is an arbitrary semiprime ring, and that Theorem B holds if R is a semiprime
ring in which the annihilator of any ideal is a direct summand. Moreover, if
we no longer insist that U{ © U2® Ui is R but rather just a "large piece" of R
(more precisely, an essential ideal), then Theorem B holds in any semiprime
ring R.

In particular, our results imply that the assumption that a and /? preserve
adjoints, which is required in Theorems A and B, can be removed.

We remark that the study of equation (*) is much simpler if one assumes
that a and /? commute. It turns out that in this case the presence of the ideal
U3 in Theorem B is not necessary (see, for example, [3, 6]). An algebraic
generalization of this result is presented in our forthcoming paper [2].

Preliminaries

We recall a few definitions and easy results. Let R be a ring. Then R
is said to be prime if aRb = 0 implies a = 0 or b = 0. A von Neumann
algebra is prime if and only if it is a factor (that is, its center consists of
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scalar multiples of the identity). If aRa = 0 implies a = 0, then R is
called semiprime. Every C*-algebra R is semiprime (for 0 ^ aa* a e aRa
if a ± 0) .

REMARK A. Let R be semiprime. Suppose that a, b e R satisfy aRb =
0. Then we also have {bRa)R(bRa) = 0 , abRab = 0, baRba = 0, and
therefore bRa = 0, ab = 0, ba = 0 by the semiprimeness of R . Observe
that the left and the right annihilators of an ideal U of R coincide. It will
be denoted by Ann(C7). Note that U n Ann(U) = 0, and that U e Ann(U)
is an essential ideal.

We will be especially concerned with semiprime rings R in which the anni-
hilator of any ideal is a direct summand; that is, Ann(f/)©Ann(Ann([/)) — R
for any ideal U of R. Note that every von Neumann algebra has this prop-
erty; namely, the annihilator of any ideal is of the form pR for some central
projection p in R. More generally, the same is true for AW*-algebras.

REMARK B. Let a be an automorphism of a ring R. Suppose that the
ideal I of R is invariant under a and a~l, that is, a maps I onto itself.
One can easily verify that in this case the two-sided annihilator Ann(I) of I
is also invariant under a and a~l.

The results

We begin our investigation of the equation (*) by considering a somewhat
more general situation where automorphisms a, ft and y satisfy a + y =

LEMMA 1. Let a, /?, y be automorphisms of a ring R. Ifa + y = fi
then
(1) (a - l){x)R((fi + l)(a - ^))(w)R(a - 0)(z) = 0,
(2) ( a - l ) ( x ) R ( { 0 + l){a - l ) ) ( w ) R ( a - ft)(z) = 0 for all x , w , z e R .

PROOF. From a - /? = 1 - y it follows that

{a-P)(x)a(y) + fi{x)(a-fi)(y)
= (a - P)(xy) = (I - y)(xy)

Thus (a - fi)(x)(a - 1)00 + (P- 7)(x)(a - fi)[y) = 0. That is,

(3) {a-P){x)(a-l)(y) + (a-l){x)(a-P)(y) = 0 for all x, y G R
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since P -y = a- 1 by assumption. Replacing y by yz in (3) we obtain

(a - P)(x)(a - \){y)a(z) + (a - P)(x)y(a - l)(z)
+ (a - l)(x)(a - /?)(>>)a(z) + (a - l)(x)p(y)(a - p)(z) = 0.

By (3) this relation reduces to

(4) (a-p)(x)y(a-l)(z)

+ (a- l)(x)P(y)(a - p)(z) = 0 for all x, y, z 6 R.

Replacing y by y(a - ft){w)u in (4) we get

{a-p){x)y{a-f}){w)u(a-\){z)

= -(a - \){x)P{y)(p{a - P))(w)P(u)(a - P)(z).

But on the other hand, using (4) twice we obtain

(a-P)(x)y{(a-P)(w)u(a-l)(z)}

= -{(a - P)(x)y(a - l)(w)}P(u)(a - p)(z)

= (a- l)(x)P(y)(a - p)(w)P(u)(a - p){z).

Comparing the last two relations we obtain (1). In a similar fashion, by
substituting y(a - l)(w)u for y in (4), one shows that (2) holds.

COROLLARY 1. Suppose that automorphisms a, p, y of a prime ring R
satisfy a + y = p + 1. If a ^ P and a ^ 1 then a = Py, y = Pa., and

2

PROOF. From (1) it follows immediately that P(a - P) - - ( a - P). By
assumption, a -P = 1 - y, therefore this relation yields P -a = P(\-y) =
P - py which means that a = Py. Similarly, by (2) we have P(a - 1) =
- ( a - 1); since 1 - a = y - P it follows that y = Pa. According to both
identities, a — Py and y = Pa, we are forced to conclude that P = 1.

REMARK 1. The next simple example illustrates Corollary 1 (compare with
[1; Proposition 2.1]). Let R be an algebra with unit element e, and let b
in R be such that b2 — e. Define the inner automorphism p by P(x) =
bxb. Let X be any scalar different from 1 and - 1 and define the inner
automorphism y by y{x) = (1 -X2)~x(e •¥Xb)x(e -Xb). Note that Py + y =
P + l.

As a special case of Corollary 1 we obtain an extension of [1; Corollary
3.3].
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COROLLARY 2. Suppose that automorphisms a and fiofa prime ring R
satisfy a + a~x = p + p~x. If a # p and a^ p~l then a2 = p2 = a"2.

PROOF. We have a.p + a~l0 = p2 + 1; now apply Corollary 1.

LEMMA 2. If automorphisms a and P of a semiprime ring R satisfy
a + a~x = P + P~x, then

(5) (a-p-X)(x)R(a2-p2)(y) = 0 forallx,yeR,

(6) (a - P)(x)R(a2 - p~2)(y) = 0 for all x, y e R.

PROOF. We have aP + a~xp = p2 + 1. Therefore Lemma 1 implies that

(aP - l)(x)R((p2 + l)(aP - p2))(w)R(aP - p2)(z) = 0

for all x, w, z e R. Since P is onto we then also have

(7) {a-P~X){x)R((p2 + l)(a-p))(w)R(a-P)(z) = 0 for all x, w , z e R.

We have
7 7 — 1 —1 T i •> -> |

p ict — p\ -\- [a — p) = p [p — OL J ~r (ex — p) =
 OL — p ot ^ (ot — p joe ,

therefore it follows from (7) that
(8) (a-p-X)(x)R(a2-p2)(y)R(a-p)(z) = 0 for all x, y, z G R.

The range of a — p is contained in the range of a — /?; indeed, we have
a2 - P2 = a(a + a~l) - P(P + p~l) = (a- P)(a + a~X). Hence (8) yields

(a - p-X)(x)R(a2 - p2)(y)R(a2 - p2)(z) = 0 for all x, y, z e R.

But then (5) holds by the semiprimeness of R. Noting that a2 + aT2 -
p2 + p~2, and then using the analogous approach as in the proof of (5), one
proves (6).

LEMMA 3. If automorphisms a and P of a semiprime ring R satisfy
a + a~x = P + p~x, then a commutes with p2 and P commutes with
a .

PROOF. Let us show that a commutes with P . The initial hypothesis
yields

By (6) it follows that

(a(a - P))(x)a(R)(a(a2 - p~2)){y) - 0 for all x, y € R.

https://doi.org/10.1017/S1446788700036958 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036958


34 Matej Bresar [6]

In view of (9) this relation implies that

(a - P)(x)R{a3 - afi~2)(y) = 0 for all x, y e R.

Substituting a(y) for y in (6) we obtain

(a - p)(x)R{a3 - P~2a){y) = 0 for all x, y e R.

Comparing the last two relations we get

(10) (a - p){x)R{aP~2 - P~2a){y) = 0 for all x, y e R.

Multiply the identity a + a~l = P + /?" ' from the left by P and from
the right by a ; then we get Pa2 - p2a = a- /?. Since a- /? = /?"' - a~l ,
and since p2 = a2 + a~2 - p~2, it follows that P~l + a3 - Pa2 = P~2a.
Consequently

a p - 2 - p - 2 a = ( a 2 2

Therefore (10) implies that

2 2 p - 2 - P~2a)(y) = 0

for every y € R. But then aP~2 = p~2a since R is semiprime. Thus
a and p2 commute. For the sake of symmetry we omit the proof of the
commutativity of a2 and P .

COROLLARY 3. Let R be a semiprime ring with unit element and contain-
ing the element 1/2. If inner automorphisms a, p of R satisfy a + a~l -
P + P~ , then they commute.

PROOF. Let a, b € R be such that a(x) = axa~l and P(x) — bxb~l . By
assumption, axa~x + a~lxa = bxb~x + b~lxb for all x e R. In particular,
2a = bab~l +b~xab . Multiplying from the right by b we obtain

(11) 2ab = ba + b~l ab2.

7 9 7

By Lemma 3, a and P commute. Hence ab — cb a for some c in the
center of R. By (11) we then have lab = (1 + c)ba. Since R contains the
element 1/2 it follows that ab = c{ba, where cx is an invertible element in
the center of R. But then a and P commute.

REMARK 2. The case where commuting automorphisms a, P of a semi-
prime ring R satisfy a + a"1 = P + P~l is considered in our paper [2]. In
particular, it was shown that if R is prime of characteristic not 2 then either
a = p or Q = j?"1 . Combining this with Corollary 3 we obtain the following
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result which generalizes [3; Corollary 2.1]: Let R be a prime ring with unit
element and containing the element 1/2. If inner automorphisms a, ft of
R satisfy a + a~l - /? + fi~l then either a = P or a = P~x .

We now come to the main result of this paper.

THEOREM 1. Let a and P be automorphisms of a semiprime ring R such
that a + oTx = p + p~x. Then there exists ideals Ul, U2 and U3 of R such
that

(i) Uin U. = 0, i ^ j , and UX®U2® U3 is an essential ideal of R. More-
over, if the annihilator of any ideal in R is a direct summand (in particular,
if R is a von Neumann algebra), then Ux © U2 © U3 = R,

(ii) Uj are invariant under a, /?, a~ and ft ,
(iii) a = P on Ux,
(iv) a = / T 1 on U2,
(v) a2 = V1 = a~2 on U3.

REMARK 3. In [5] Thaheem constructed an example of automorphisms a
and P satisfying a + aT1 = fi + fi~x on a von Neumann algebra R but there
is no decomposition of R for which a = /? on the one part and a — 0~
on the other part. Thus the presence of an ideal C/3 in Theorem 1 is really
necessary. In Thaheem's example the algebra R was not prime. We do not
know whether the equation a + a~ = P + fi~ has any nontrivial solutions
in prime rings (in the sense that a ^ P and a ^ / ?" ' ) . In order to find such
a solution one can assume that a2 — p2 — a~2 (Corollary 2) and that a, P
are not both inner (Remark 2).

PROOF OF THEOREM 1. Let UQ be an ideal of R generated by all
{a2 - p~2)(x), x e R. We set V = Ann(C/0) and C/, = Ann(F). By
Remark A we have U{ n V - 0 and Ul ® V is an essential ideal. From
Lemma 3 we see that the mapping a2 - P~2 commutes with a, P, a"1

and P~x. Simple calculations show that this implies that Uo is invariant
under a , /?, a"1 and P~l. But then, by Remark B, the same is true for
ideals V and Ul.

Take ut e Ux . Since U{ is invariant under a and P, (a- /?) (u , ) lies in
C7,. However, from Lemma 2 (and Remark A) it follows that the range of
a-P lies in Ann((70) = V. Since U{ n V = 0 we then have a(u{) = P{ux).
Thus we have proved (iii).

Let Vx be an ideal of R generated by all [p2 - P~2)(v), v e V. Of
course, Vx C V. We define U3 = Ann(F,) n V and U2 = Ann(C/3) n V.
Since U2 Q Ann(f/3), we have U2 n C/3 = 0. Next, since f/2 and U3 are
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contained in V, we also have U2 n Ul = 0 and U3 n Ul = 0. Let us show
that the ideal W = Ul © U2 © [73 is essential. We have to show that

Ann(^) = Ann(C/,) n Ann(£/2) n Ann(£/3)

is equal to zero. Since U2 = Ann(f/3) n F , we have

Ann(JF) n V = Ann(C/,) n Ann(U2) n U2 = 0.

Hence Ann(PF) C Ann(F). But on the other hand we have Ann(W) c
Ann([/,). Since Ann(V) n Ann([/,) = Ann(F ©£/,) = () (namely, the ideal
F © £/, is essential) it follows that Ann( W) = 0. That is, W is essential.

Assume that the annihilator of any ideal in R is a direct summand. Then
C/j © F = R. We want to show that t/2 © U3 = V. By assumption, Ann(Fj)
is a direct summand. Thus R = Ann(F,)©Z for some ideal Z of R. Since
F, C F , we have

Z = Ann(Ann(F,)) C Ann(Ann(F)) = Ann(t/,) = F.

Thus Z is contained in F . Pick v e V. There exist elements w € Ann(F,)
and z e Z such that w = it; + 2 . We claim that w e U3 and z e U2.
Since z e Z C F , we also have w € F . Thus «; e Ann(F,) n F = C/3. The
ideal U3 is contained in Ann(F,), therefore Z = Ann(Ann(Fj)) c Ann(£/3).
Hence z e Ann(C/3) n F = U2 . With this we have proved that Ui © U2 = V,
and, therefore, U{ © C/2 © U3 = R. The proof of (i) is thus complete.

Since a, ft, a~x and fi~l commute with /?2 - /?~2 (Lemma 3), and
since all these automorphisms leave F invariant, it follows easily that Vx is
also invariant under a, /?, a"1 and fi~l. Using Remark B we see the same
is true for the ideal U3 = Ann(F,) n F . Similarly we argue about the ideal
U2 . Thus (ii) is proved.

Let us prove (iv). Given v e V, we have a2(v) — p~ (v) e V since F
is invariant under a2 and p~2 . But on the other hand, (a2 - j2~2)(v) is
contained in Uo . Since Uon V — 0 it follows that a2(v) = P~2{v). Lemma
2 then yields

(a - p~l){x)R{p2 - 0~2)(v) = 0 for all x e R, v e V.

This means that the range of a — fi~ is contained in Ann(Fj). Since (a —
P~l)(u2) 6 U2 if u2e U2, and since U2 n Ann(F,) = U2 n Ann(Fj) n F =
C/2 n t/3 = 0, it follows that a(u2) = 0~l(u2).

It remains to prove (v). Pick M3 e U3. On the one hand we have
(P2 - /?~2)(w3) € f/3, and on the other hand, by the definition of F,,
(P2 - £~ 2 ) (M 3 ) e Vx . However, U3 n F, = F n Ann(F,) n F, = 0, and hence
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p2(u3) = p~2(u3) . We have proved that a2 = P~2 on V, and therefore also
on U3C V. With this (v) is proved.

In the case that the annihilator of any ideal of R is a direct summand,
we see from Theorem 1 that the range of a — P is contained in the ideal
I, = U2 © U3, the range of a - p~x is contained in I2 = Ul © U3, and the
union of the ranges of a2 - p2 and a2 - P~2 is contained in I3 — Ux © U2.
This result is in accordance with Theorem A. With the aid of Lemmas 2 and
3, even if we do not assume that the annihilator of any ideal of R is a direct
summand, it is not difficult to prove the following generalization of Theorem
A.

THEOREM 2. Let a and p be automorphisms of a semiprime ring R such
1,, I2 and I3that a + a x = 0 + P ' . Then there exists ideals I , , I2 and I3 of R, each

invariant under a, a x, /? and P ' , such that I, n I2 n I3 = 0, I3 c I, n I2

and, for each x in R,

P(x) - a(x) e l , , 0(x) - oTx (x) € I2,

P2(x)-a2(x)£l3, P2(x)-a~2(x)ely

PROOF. Let J be an ideal of R generated by all (a2 - P~2)(x), x e R,
and set I, = Ann(7). From Lemma 2 we see that (a - P){x) € I, for every
x e R. Since the mapping a2 - P~2 commutes with a, p , a~x and P~x

(Lemma 3) it follows that J is invariant under a, p, a~x and P~x . But
then Remark B tells us that the same is true for the ideal I , .

We introduce L to be an ideal of R generated by all (a2 - p2)(x), x e R,
and let I2 = Ann(L). Similarly as above one deduces that the range of

— 1

a — P is contained in I2 , and that L and I2 are invariant under a, P ,
a~x and P~x.

The union of the ranges of a — P and a — p is certainly contained
in the ideal l3 = J + L. Of course, I3 is also invariant under a, p , a~x

and P~x. Next,

I, DI2 n I3 = Ann(7) n Ann(L) n (J + L) = Ann(/ + L)n(J + L) = 0

by Remark A. From a2-p2 = a(a+a~x)-P(P+P~x) = {a-P)(P + p~x) we
see that the range of a2-p2 is contained in the range of a - / ? . Therefore, L
is contained in I , . Similarly we see that / is contained in I2 . Consequently
I3 is contained in I, + 1 2 . The proof of the theorem is complete.
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