Posters

Astronomers enjoying the AIP Virtual Reality Project - $\rm http://vr.aip.de$

The CORAVEL Radial Velocity Data Base

Stéphane Udry¹, Maxime Marmier¹, Michel Mayor¹, Johannes Andersen^{2,3} and Birgitta Nordström^{2,3}

¹Observatoire de Genéve, 51 Ch. des Maillettes, CH-1290 Sauverny, Switzerland ²Dark Cosmology Centre, The Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. ³Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark. E-mail: Stephane.Udry, Maxime.Marmier, Michel.Mayor@unige.ch; ja, birgitta@nbi.ku.dk

Abstract. From 1977 to 1999, thousands of accurate radial velocities in both hemispheres were made on a large variety of programmes with the two CORAVEL scanners. The data base of $\sim 350\,000$ individual observations will now be made available to complement the Gaia data.

Keywords. techniques: radial velocities, stars: kinematics, Galaxy: kinematics and dynamics

1. Introduction

The classic technique to measure stellar radial velocities line by line on a spectrogram was long known to be very inefficient. Griffin (1967) then built a dedicated crosscorrelation spectrometer and demonstrated in practice the great gains in efficiency and precision of this method. Michel Mayor immediately realised its potential for his own fields – the evolution of the Galactic disk and the properties of Solar-type binaries.

2. The CORAVELs

Mayor introduced five related technical innovations: (1): An échelle grating enables an increase in spectral resolution, efficiency, and thus more precise velocities; (2): a cross-dispersed échelle format allows not only to focus a larger wavelength range on the single detector – a low-noise photomultiplier – but a given velocity produces the same linear shift in all orders; (3): a (hardware) mask of the same format matching ~ 1500 selected spectral lines in Arcturus should be etched in a metal film on glass; (4): the resulting compact instrument should fit a modest-size telescope (~ 1 m), and (5): would use modern pulse-counting techniques and on-line computer control.

Realised in collaboration between the observatories of Marseille and Genève (Baranne, Mayor & Poncet 1979), the instrument was named CORAVEL and was built from 1977 in two copies. Both hemispheres between could then be covered by the Swiss 1-m telescope at Observatoire de Haute-Provence and the Danish 1.5-m on La Silla, in cooperation with ESO. Typical velocities errors were ~ 0.3 km s⁻¹, ample for Galactic research and sufficient for studies of most Solar-type binary stars.

3. Dynamical Evolution of the Galaxy

The principal study based on CORAVEL radial velocities was the Geneva-Copenhagen Survey of the Solar Neighbourhood (Nordström *et al.* 2004, Holmberg, Nordström & Andersen 2009 – GCS I-III). The GCS presented isochrone ages, chemical compositions,

Figure 1. Observed age-velocity relation (a) and three model simulations (b-d), illustrating different potential heating mechanisms (from GCS III; further detail in the paper).

distances, velocity vectors, and Galactic orbits for $\sim 15\,000$ Solar-type stars in the Solar neighbourhood – fundamental data for testing all models of Galactic evolution.

4. Velocity zero-point

Careful attention was paid to establishing the velocity zero-point to ~ 0.1 km s⁻¹. This was finally accomplished through the use of a modern fibre-fed, bench mounted and temperature-controlled échelle spectrograph with a low-noise CCD detector (Udry, Mayor & Queloz 1999). Because the two velocity systems will thus be consistent, combining the CORAVEL and Gaia data will provide a baseline of ~ 40 years for radial-velocity coverage of many long-period, low-amplitude variable targets. Making the CORAVEL data base available will thus provide public access to a treasure trove of earlier radial velocities, including many previously unpublished observations.

Acknowledgements

Many service observations were obtained by colleagues from our institutes. The CORAVEL projects were supported by national funds and by ESO.

References

Baranne, A., Mayor, M., & Poncet, J.-L. 1979, Vistas Astron., 23, 279
Griffin, R. F. 1967, ApJ, 148, 465
Holmberg, J., Nordström, B., & Andersen, J. 2009, A&A, 501, 941 (GCS III)
Nordström, B. et al. 2004, A&A, 418, 989 (GCS I)
Udry, S., Mayor, M., & Queloz, D. 1999, ASPC, 185, 367