
Canad. Math. Bull. Vol. 38 (4), 1995 pp. 390-395 

A NOTE ON GEOMETRIC FACTORIALITY 

S. M. BHATWADEKAR AND K. P. RUSSELL 

ABSTRACT. Let A: be a perfect field such that k is solvable over k. We show that 
a smooth, affine, factorial surface birationally dominated by affine 2-space A^ is ge
ometrically factorial and hence isomorphic to A|. The result is useful in the study of 
subalgebras of polynomial algebras. The condition of solvability would be unnecessary 
if a question we pose on integral representations of finite groups has a positive answer. 

1. Introduction. Let A: be a field and A a regular factorial, affine A:-algebra. Suppose 
A C k[Z, T], the polynomial algebra in two variables over k. If A: is algebraically closed 
and k(Z, T) is a separable extension of the quotient field K of A, then by a famous result 
of Fujita and Miyanishi-Sugie, A is itself a polynomial algebra over k ([F] and [M-S], 
see also [R-l] for the case when char A: > 0). This result fails when k is not algebraically 
closed (see [B-D], Example 4.4 and 4.1 below). On the other hand, in counterexamples 
known to us, [&(Z, T) : K] > 1 and moreover, for perfect k, Russell ([R-2], Theorem 1.3) 
has shown that when k[Z, T] is a simple (as ring) birational extension of A9 then again A 
is a polynomial algebra over k. We therefore raise 

QUESTION 1. Let A: be a perfect field and A a regular, affine factorial, birational sub-
algebra of k[Z, T\. Is A a polynomial algebra over k? 

We were motivated to study this question by considering regular, factorial affine k-
algebras B such that 

k[X] <zBck[X,Z,T]. 

It is then natural to ask whether B is a polynomial algebra and, if yes, whether X is 
a variable in B. This obviously is true if dim B — 1, and has been shown to hold if 
dim£ = 2 by Russell and Sathaye ([R-S]). If dimB = 3, it is not difficult to give 
counterexamples to the first part of the question (see [B-D], Example 4.4 and 4.2 below), 
even if A: is algebraically closed. A first step in studying this situation will be to consider 
the ring extensions 

k(X) C B ® k(X) C k(X)[Z, T\. 
k[X] 

In case the extension k[X,Z,T\jB is birational, an affirmative answer to Question 1 
would imply that B is "genetically" polynomial over k[X\ if char A: = 0, a result of 
interest even if we assume to begin with that B is polynomial over k. 
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The key to answering Question 1 is to ascertain that factoriality of A is preserved 
when the base field k is extended to L, where L/k is a finite Galois extension. We show 
this (see Proposition 3.4) in case L/k is solvable with the help of a result on integral 
representations (Proposition 2.2). If the condition of solvability could be removed there, 
Question 1 would be answered positively in general. 

2. A result from the representation theory. Let G be a finite group and M a finite 
Z[G]-module. For any subgroup// C G, we put Inv//(M) = {m G M \ hm = mNh G / / } . 
M is said to be & permutation module for G if M is free over Z with a basis S permuted 
by G. We then call S & permutable basis for M. M is said to be transitive if G is transitive 
on S. It is clear that any permutation module for G is a direct sum of transitive ones, 
corresponding to the decomposition of S into G-orbits. 

LEMMA 2.1. Let G be a finite group and let M be a transitive permutation left 
Z[G]-module. Let H be a normal subgroup ofG. Then Inv// is a transitive permutation 
Z[G/H]-module. 

PROOF. Let S be a transitively permutable basis of M and let S\,..., St be the all 
distinct //-orbits of S. Then since H is normal in G and S is a transitively permutable 
basis (for G) it follows that any two distinct //-orbits have the same number of elements 
and given two orbits 5,-, Sj there exists g G G such that g • St = Sj. 

Let ujt = T,vest v G M, 1 < i < t. Then Inv//(M) = ©J=1 Zut and given uh ujj there 
exists g G G such that g • ujt = uj. 

Thus Inv//(A/) is a transitive permutation Z[G///]-module. 

PROPOSITION 2.2. Let G be a finite solvable group. Let F be a permutation Z[G]-
module and let M and N be Z[G]-submodules of F such that F = M@N. Furthermore, 
assume M is also a permutation Z[G]-module. Then Invc(iV) = 0 => N = 0. 

PROOF. Let H be a normal subgroup of G. Since every permutation Z[G]-module 
is a direct sum of transitive permutation modules, it follows from Lemma 2.1 that Inv//(F) 
and Inv//(M) are permutation Z[G///]-modules. Moreover, Inv//(F) = Inv//(A/) © 
InvH(N) and InvG^//(lnv//(Ar)) = InvG(A0- Therefore, as F and M are obviously per
mutation Z[//]-modules, it is enough to prove the result when G is simple. But as G is 
solvable, this means that it is enough to prove the result when G is a cyclic group of 
prime order. 

So we assume \G\ = p, p a prime integer. Let g be a generator of G and let / be the 
ideal of Z[G] (note that Z[G] is commutative) generated by the element g — 1. 

Let F = ©?=1 Fi be a direct sum decomposition of F into transitive permutation Z[G]-
submodules of F. Since G is-cyclic of order/?, up to isomorphism Z[G] has only two 
transitive permutation modules viz. Z[G] (as a module) and Z (with the trivial G-module 
structure). Therefore it follows that InvG(F/) « F///F, = Z and hence InvG(F) « F/IF. 
Similarly lnvc(M) ^ M/IM. 
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Now F = M e Nand InvG(A0 = 0. So we see that N / IN = 0, i.e. IN = N. Since / is 
the principal ideal of Z[G] generated^— 1, we get (g— \)N = Nand hence (g— 1 fN = N. 
But g is an element of G of order p. Therefore (g — 1 y N = N implies that pN — N. 

As N is a submodule of F and F is a free abelian group (since F is a permutation 
Z[G]-module),/?N = N implies N = 0. 

REMARK 2.3. Let F = 0?=1 F/5 where F i , . . . , Fs are transitive permutation modules 
of rank r\,...,rs. Then s = rank(lnvG(F)) and H°(G,F) ~ (&s

l=] Z/r/Z, where rt = 
|G|/r,. (Here H°(G,Af) = InvG(M)/ Trace(M); see [L]). Moreover, //°(G, AO = 0 in the 
situation of Proposition 2.2. So Proposition 2.2 holds for arbitrary finite G in case F, or 
M, is transitive. It is therefore reasonable to ask 

QUESTION 2. Does Proposition 2.2 remain true without the assumption that G is 
solvable? 

3. Factorial surfaces dominated by A2. 

LEMMA 3.1. Let k be afield and let L/k be a finite separable extension. Let X be 
a smooth, quasi-projective scheme over k. Let x G X be a closed point of X and let 
IT:X —> X be the blowing up ofX with the center x (this will be referred to as monoidal 
transformation). Then the canonical map: TTL'.XL —> Xi (obtained by base change) is the 
blowing up ofXi with centrep~x(x) wherep\Xi —> Xis the canonical morphism. 

PROOF. Without loss of generality, we can assume that X is affine, say X = Spec(,4). 
Let m be the maximal ideal of A corresponding to the closed point x. Let B = A ®k L 
and let / = mB. Then, since L is separable over k, I is the defining ideal of the closed 
subset p~x{x) of Spec(£). Now the result follows from the definition of blowing up and 
the following isomorphisms of L-algebras: 

B&WI2--- &(Aem®m2--)(g)B = (Aemem2--)(g)L. 
A k 

LEMMA 3.2. Let k be a field and let L/k be a finite Galois extension with Galois 
group G. Let X be a smooth, geometrically integral, quasi-projective scheme over k. 
Then Xi is smooth and integral. The group G acts on the class group Q\(Xi) inducing a 
(left) T\G\module structure. Moreover rank(Cl(X)) — ranklnv^fCl^)) . 

PROOF. It is obvious that Xi is smooth, integral and G acts (in a canonical manner) 
onCl(XL). 

Let p:Xi —-> Xbe the canonical morphism. Let C be an irreducible closed subset of 
Xof codimension one and let C\,..., C'n be the irreducible components ofp~x{C). Then 
the codimensionof C- inXL is 1 for 1 < i <n and/?*(Q = TPi=\ C- (asL/kis separable), 
where/?*: C\(X) —^ C\(XL) is the group homomorphism induced by p. It is easy to see 
that/?*(Cl(JO)cInvc(Cl(AZ)). 

Since/? is a finite morphism andX, Xi are smooth, there exists a group homomorphism 
/?*:Cl(Ax) —• C\(X) such that/?*/?* = multiplication by the integer \G\. This gives the 
equality 

rankCl(Z) = rank(/?* C\(X)). 
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Let Tr: C\(XL) —-> C\(XL) be the trace homomorphism defined by Tr(c) = T,gecg • c. 
Then it is easy to see that Im(Tr) C InvG(Cl(XL)) and for v G InvG(Cl(JfL)), Tr(v) = 
\G\v. Therefore we get the equality 

rank(lm(Tr)) = rank(lnvcCl(Ai)). 

Since p* C\(X) C InvG Cl(Ai), to prove the result it is enough to show the inclusion 
Im(Tr) C p* C\(X). 

Let C be an irreducible closed subset of Xi of codimension 1. Let H = {g \ 
g G G,g(Cf) = C} be the stabilizer of C and let p(C) = C. Then we have Tr(C') = 
\H\p*(Q. Thus we have Im(Tr) C p* C\(X) C lnwG(d(XL)). Therefore, by both of the 
equalities above, we have 

rank(Cl(.Y)) = rankInvG(Cl(XL)). 

LEMMA 3.3. Let k be afield and let Xbea smooth, integral, quasi-projective scheme 
over k. Let V be an affine open subscheme of Xsuch that C\(V) — 0 and k* = the group 
of units in T(V), the ring of regular functions on V. Let C\,...9Cn be the irreducible 
components of the closed set X — V. Then the codimension of Ci in X is I for 1 < i < n 
and C\(X) is a free abelian group with basis {C\, C2,. . . , C„}. 

PROOF. Since X is quasi-projective, integral and V is affine, it is clear that the codi
mension of Ci in X is 1 for 1 < i < n. 

Since C\(V) = 0, Cl(X) is generated by C\,..., Cn. So it is enough to show that they 
are linearly independent. 

Suppose 0 = Y?i=\ niCi in Cl(Jf), where the «/ are integers. This means that there exists 
a non zero element/ of k(X) (the function field ofX) such that (f) = £"=1 «/C/, where/ 
is the principal divisor defined b y / on X. Since C/ H V = 0 for 1 < i < n,f and 1 / / are 
regular on V and therefore/ G k* by assumption. But then (/) = 0. Therefore nt = 0 for 
1 f? i < n and we are through. 

PROPOSITION 3.4. Let kbea perfect field and A a regular, factorial, birational sub-
algebra ofk[Z, T\. LetL/k be a finite Galois extension. If the Galois group G — G{L/k) 
is solvable, then A^^L is factorial. 

PROOF. Let X = Spec(yi) and A| = Spec£[Z, T\. Since A is a birational subring 
of k[Z, T], we obtain a birational morphism/: A| —* X. Then by Lemma 3.1 (and well 
known results on "Resolution of Singularities of Surfaces") it is clear that there exists a 
sequence of monoidal transformations 

Xn — • Xn-\ — > • • • — > X\ — > X 

and a morphism g: /^ —> Xn such that g is an open immersion and TT\ O n2 o • • • nn og = f. 
Put Y = Xn and ir = ir\ o K2 o • • • 7rw. Then 7r O g — / and hence we get a commutative 

triangle 
A| - * , YL 
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with the following properties: 
(1) gL is an open immersion andg/,(A2) = VL where g{k2

k) — V. 
Let/?: YL—>Y denote the canonical map. 
(2) Let C be an irreducible closed subset of Yi of codimension 1. Then C is an 

irreducible component of Yi — VL if and only if p(C) is an irreducible component 
of 7 - V. 

(3) Let E' be an irreducible closed subset of YL of codimension 1. Then 7TL(E') = is 
a (closed) point if and only if (TT op){E') = is a (closed) point. 

It is easy to establish properties (1), (2) and (3) (with the help of Lemma 3.1) and 
these will not be proved. 

Let S be the set of all irreducible components of YL — VL. Then since Vi ~ A2, by 
Lemma 3.3, C\(YL) is a free abelian group with S as a basis. Moreover by property (2) it 
follows that C\(YL) is a permutation Z[G]-module with S as a permutable basis. 

Let Tbe the set of all irreducible closed subsets E' of Yi such that iri(Ef) is a point. 
Then by property (3) it follows that G permutes the elements of T. Moreover, as Y is 
obtained from Xby a sequence of monoidal transformations, it follows by Lemma 3.1 
that the subgroup M of Cl( YL ) generated by the elements of T is a free abelian group with 
basis T. Thus M is a permutation Z[G]-module. Furthermore C\(YL) = CI(XL) 0 M as 
Z[G]-modules. 

Since A is factorial, C\(X) — 0. Hence by Lemma 3.2, as C\(Xi) is a free 
abelian group (being a direct summand of the permutation module 0(7/,)), we have 
InvG(Cl(Ai)) = 0. Therefore, as G is solvable, by Proposition 2.2 we have C\(XL) = 0, 
showing that A ®k L is factorial. 

Let A be as in Proposition 3.4. Then there exists a finite Galois extension L/k such 
that, in the notation of the proof of Proposition 3.4, all fundamental points of TTL are 
rational over L (equivalently, all exceptional curves in Yi are absolutely irreducible) and 
all irreducible components of YL — A2 are absolutely irreducible. Then Aut(k/L) acts 
trivially on Cl(F^). If G = G(L/k) is solvable, it therefore follows from Proposition 3.4 
that A (g>k k is factorial. We will say that/: A2 —> X is "split" by L/k. 

THEOREM 3.5. Let kbe a perfect field andf: A| —> Xa birational morphism, where 
X is a smooth, factorial, affine surface. Iff is "split " by a solvable Galois extension L/k, 
in particular ifGd\(k/k) is solvable, then X is isomorphic to /^2 over k. 

PROOF. X-k is smooth and, by Proposition 3.4 above, factorial. By [F] and [M-S], 
X-k = A2-. By the triviality of separable forms of \2

k ([K], Theorem 3), X ^ A2. 

4. Some examples. 
4.1. Let k = R and A = R[x,y, v] /xy - v2 - 1. Then A is factorial and A C R[Z, T] with 
JC = Z2 + 1,y = 1 + 2ZT+ (Z2 + l)r2 , v = Z + (Z2 + \)T (see [B-D] Example 4.4 for a 
more elaborate version). This extension is not birational and one of the starting points of 
our investigation was the question whether ,4 can be birationally embedded in R[Z, T\. 
By Theorem 3.5, this is not possible. (Note that A 0 R C is not factorial). 
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4.2 . Let A: be a field of characteristic 0, algebraically closed to fix the ideas. We are 
interested in affine, regular factorial A>algebras B such that 

k[X]cBck[X,Z,T] 

and the extension k[X, Z, T\/B is birational. As an example consider B = k[x, v, t, s] with 
st — xv = 1. Then B is as above withX = x, Z = ^,T = l-j-.B is not polynomial over 
k, but B ^k[x] k(x) is over k{x). Should Proposition 2.2 be true even for non-solvable G, 
we would know that this holds in general for B as above. Under the assumption that B is 
itself polynomial over k, we would have proved that X is "genetically" a variable in B. It 
is of course much conjectured, but not yet proved, that then X is in fact a variable in B. 

REFERENCES 

[B-D] S. M. Bhatwadekar and A. Dutta, On residual variables and stably polynomial algebras, Comm. Alge
bra, to appear. 

[F] T. Fujita, On Zarishi problem, Proc. Japan Acad. (A) 55(1979), 106-110. 
[L] S. Lang, Rapport sur le cohomologie des groupes, W. A. Benjamin, New York, Amsterdam, 1966. 
[K] T. Kambayashi, On the absence of non-trivial separable forms of the affine plane, J. Algebra 35(1975), 

449-456. 
[M-S] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 

20(1980), 11-^2. 
[R-l] K. P. Russell, On affine-ruled rational surfaces, Math. Ann. 255(1981), 287-302. 
[R-2] , Simple birational extensions of two dimensional rational domains, Compositio Math. 33( 1976), 

197-208. 
[R-S] K. P. Russell and A. Sathaye, On finding and cancelling variables in k[X, Y,Z], J. Algebra 57(1979), 

153-166. 

Tata Institute of Fundamental Research 

Bombay 
India 

Department of Mathematics and Statistics and CICMA 

McGill University 

Montreal, Quebec 

https://doi.org/10.4153/CMB-1995-057-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-057-0

