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Abstract

Let F be a family of zero-free meromorphic functions in a domain D, let h be a holomorphic function
in D, and let k be a positive integer. If the function f (k) − h has at most k distinct zeros (ignoring
multiplicity) in D for each f ∈ F , then F is normal in D.
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1. Introduction

Let D be a domain in C and F be a family of meromorphic functions in D. We say that
F is normal in D (in the sense of Montel) if each sequence { fn} in F has a subsequence
{ fn j} that converges locally uniformly on D, with respect to the spherical metric, to a
meromorphic function or ∞ (see Hayman [4], Schiff [9], or Yang [11]). To avoid
any confusion, we point out that the spherical metric is applied to the values of the
function, not to the points in D.

In 1959, Hayman [3] proved the following result.

T 1. Let f be a nonconstant meromorphic function in C and k be a positive
integer. Then at least one of the functions f and f (k) − 1 has a zero. Moreover, if f
is transcendental, then at least one of the functions f and f (k) − 1 has infinitely many
zeros.

The normality corresponding to Theorem 1 was conjectured by Hayman [5] and
confirmed by Gu [2].
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T 2. Let k be a positive integer and let F be a family of zero-free meromorphic
functions in a domain D. If, for each f ∈ F , the function f (k) − 1 has no zeros in D,
then F is normal in D.

In 1986, Yang [10] extended Theorem 2 as follows.

T 3. Let F be a family of meromorphic functions defined in a domain D and
h be a holomorphic function in D that is not identically zero. If, for each f ∈ F , the
functions f and f (k) − h have no zeros in D, then F is normal in D.

Recently, Chang [1] improved Theorem 2 and proved the following result.

T 4. Let k be a positive integer and F be a family of zero-free meromorphic
functions in a domain D such that, for each f ∈ F , the function f (k) − 1 has at most k
distinct zeros (ignoring multiplicity) in D. Then F is normal in D.

Chang also gave an example to show that the condition that f (k) − 1 has at most k
distinct zeros is best possible.

It is natural to ask whether Theorem 3 remains valid if we replace the hypothesis
that f (k) − h has no zeros with the hypothesis that f (k) − h has at most k distinct zeros.
In this paper, we use the methods of Chang [1] and of Pang et al. [7] to give an
affirmative answer to the question. Here is our main result.

T 5. Let F be a family of zero-free meromorphic functions in a domain D, let
h be a holomorphic function in D that is not identically zero, and let k be a positive
integer. If the function f (k) − h has at most k distinct zeros (ignoring multiplicity) in D
for each f ∈ F , then F is normal in D.

E 6. Suppose that F = { fn(z) = 1/(nz) : n = 1, 2, 3, . . .}, that D = {z : |z| < 1},
and that h(z) = 1/zk+1, where k is a positive integer. Then, for any fn ∈ F , the function
f (k)
n − h has only one zero in D, but F is not normal in D. This shows that Theorem 5

is not valid if the function h is allowed to be meromorphic.

E 7. Suppose that F = { fn(z) = 1/(nz) : n ≥ k!2(k+1) + 1}, that D = {z : |z| < 1},
and that h(z) = 1/(z − 1)k+1, where k is a positive integer. Then, for any fn ∈ F , the
function f (k)

n − h has k + 1 distinct zeros in D, but F is not normal in D. This shows
that the condition in Theorem 5 that f (k) − h has at most k distinct zeros (ignoring
multiplicity) in D is best possible.

2. Some lemmas

For the proof of Theorem 5, we require the following results.

L 8 [8, 12]. Let α ∈ R satisfy −1 < α <∞ and let F be a family of zero-free
meromorphic functions in a domain D. If F is not normal at z0 ∈ D, then there exist
points z j ∈ D tending to z0, functions f j ∈ F , positive numbers ρ j tending to 0, and a
nonconstant zero-free meromorphic function g of order at most two such that

gn(ξ) = ρ−αj f j(z j + ρ jξ)→ g(ξ)

locally uniformly in ξ in C, with respect to the spherical metric.
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L 9 [7]. Let f be a transcendental meromorphic function of finite order, a be a
polynomial that is not identically zero, and k be a positive integer. If the function f
has no zeros, then the function f (k) − a has infinitely many zeros.

L 10 [1]. Let f be a nonconstant zero-free rational function and k be a
positive integer. Then the function f (k) − 1 has at least k + 1 distinct zeros (ignoring
multiplicity) in C.

Using the method of Chang [1], we obtain the following lemma.

L 11. Let f be a nonconstant zero-free rational function, a be a polynomial that
is not identically zero, and k be a positive integer. Then the function f (k) − a has at
least k + 1 distinct zeros (ignoring multiplicity) in C.

P. If deg a = 0, then a is constant, and the result follows from Lemma 10.
Now we suppose that deg a > 0. Since f is a nonconstant zero-free rational

function, f is not a polynomial, and hence has at least one finite pole. Further, by
calculation, the function f (k) − a has at least one zero in C. Thus, we can write

a(z) = A
m∏

i=1

(z + vi)mi , (1)

f (z) =
C1∏n

i=1(z + zi)ni
, (2)

f (k)(z) = a(z) +
C2

∏s
i=1(z + wi)li∏n

i=1(z + zi)ni+k
, (3)

where A, C1, and C2 are nonzero constants, m, n, s, li, mi, and ni are positive integers,
the vi (when 1 ≤ i ≤ m) are distinct complex numbers, and the wi (when 1 ≤ i ≤ s) and
zi (when 1 ≤ i ≤ n) are distinct complex numbers.

Set M =
∑m

i=1 mi and N =
∑n

i=1 ni. Then deg a = M ≥ 1. By induction, we deduce
from (2) that

f (k)(z) =
Pk(z)∏n

i=1(z + zi)ni+k
, (4)

where Pk is a polynomial of degree (n − 1)k. Thus, by (1), (3), and (4),

A
m∏

i=1

(z + vi)mi

n∏
i=1

(z + zi)ni+k + C2

s∏
i=1

(z + wi)li = Pk(z). (5)

It follows that
s∑

i=1

li =

n∑
i=1

(ni + k) +

m∑
i=1

mi = nk + N + M

and C2 = −A. Thus, by (5),

m∏
i=1

(1 + vit)mi

n∏
i=1

(1 + zit)ni+k −

s∏
i=1

(1 + wit)li = tk+N+MQ(t),
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where Q(t) = t(n−1)kPk(1/t)/A. Then Q is a polynomial of degree less than (n − 1)k,
and it follows that∏m

i=1(1 + vit)mi
∏n

i=1(1 + zit)ni+k∏s
i=1(1 + wit)li

= 1 +
tk+N+MQ(t)∏s
i=1(1 + wit)li

. (6)

Note that, for t near 0,

tk+N+MQ(t)∏s
i=1(1 + wit)li

= tk+N+M(a0 + a1t + · · · ), (7)

where a0 , 0. Logarithmic differentiation of both sides of (6) and (7) shows that

m∑
i=1

mivi

1 + vit
+

n∑
i=1

(ni + k)zi

1 + zit
−

s∑
i=1

liwi

1 + wit
= O(tk+N+M−1) as t→ 0. (8)

Set
S 1 = {v1, v2, . . . , vm} ∩ {z1, z2, . . . , zn}

and
S 2 = {v1, v2, . . . , vm} ∩ {w1, w2, . . . , ws}.

We consider four cases.

Case 1: S 1 = S 2 = ∅. Let zn+i = vi when 1 ≤ i ≤ m and

Ni =

ni + k when 1 ≤ i ≤ n,

mi−n when n + 1 ≤ i ≤ n + m.

In this case, (8) may be rewritten:

n+m∑
i=1

Nizi

1 + zit
−

s∑
i=1

liwi

1 + wit
= O(tk+N+M−1) as t→ 0. (9)

Comparing the coefficients of t j when j = 0, 1, . . . , k + N + M − 2 in (9), we deduce
that

n+m∑
i=1

Niz
j
i −

s∑
i=1

liw
j
i = 0 ∀ j ∈ {1, 2, . . . , k + N + M − 1}. (10)

Let zn+m+i = wi when 1 ≤ i ≤ s. Noting that
∑n+m

i=1 Ni −
∑s

i=1 li = 0 and using (10), we
deduce that the system of linear equations

n+m+s∑
i=1

z j
i xi = 0, (11)

where 0 ≤ j ≤ k + N + M − 1, has a nonzero solution

(x1, . . . , xn+m, xn+m+1, . . . , xn+m+s) = (N1, . . . , Nn+m, −l1, . . . , −ls).
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If k + N + M ≥ n + m + s, then the determinant det(z j
i )(n+m+s)×(n+m+s) of the coefficients

of the system of equations (11), where 0 ≤ j ≤ n + m + s − 1, is equal to zero, by
Cramer’s rule (see for instance [6]). However, the zi are distinct complex numbers
when 1 ≤ i ≤ n + m + s, and the determinant is a Vandermonde determinant, so cannot
be 0 (see [6]), which is a contradiction.

Hence, we conclude that k + N + M < n + m + s. It follows from this and the two
inequalities N =

∑n
i=1 ni ≥ n and M =

∑m
i=1 mi ≥ m that s ≥ k + 1.

Case 2: S 1 , ∅ and S 2 = ∅. Without loss of generality, we may and shall assume that
S 1 = {v1, v2, . . . , vM1}. Thus, vi = zi when 1 ≤ i ≤ M1. Let M3 = m − M1. We consider
two subcases.

Subcase 2.1: M3 ≥ 1. Set zn+i = vM1+i when 1 ≤ i ≤ M3. If M1 < n, then set

Ni =


ni + mi + k when 1 ≤ i ≤ M1,

ni + k when M1 + 1 ≤ i ≤ n,

mM1−n+i when n + 1 ≤ i ≤ n + M3.

If M1 = n, then set

Ni =

ni + mi + k when 1 ≤ i ≤ M1 = n,

mM1−n+i when n + 1 ≤ i ≤ n + M3.

Subcase 2.2: M3 = 0. If M1 < n, then set

Ni =

ni + mi + k when 1 ≤ i ≤ M1,

ni + k when M1 + 1 ≤ i ≤ n.

If M1 = n, then set
Ni = ni + mi + k when ≤ i ≤ M1 = n.

In both subcases, (8) may be rewritten:

n+M3∑
i=1

Nizi

1 + zit
−

s∑
i=1

liwi

1 + wit
= O(tk+N+M−1) as t→ 0,

where 0 ≤ M3 ≤ m − 1. Using the argument of Case 1, we deduce that s ≥ k + 1.

Case 3: S 1 = ∅ and S 2 , ∅. Without loss of generality, we may and shall assume that
S 2 = {v1, v2, . . . , vM2}. Thus, vi = wi when 1 ≤ i ≤ M2. Let M4 = m − M2. We consider
two subcases.

Case 3.1: M4 ≥ 1. Set ws+i = vM2+i, 1 ≤ i ≤ M4. If M2 < s, then set

Li =


li − mi when 1 ≤ i ≤ M2,

li when M2 + 1 ≤ i ≤ s,

−mM2−s+i when s + 1 ≤ i ≤ s + M4.
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If M2 = s, set

Li =

li − mi when 1 ≤ i ≤ M2 = s,

−mM2−s+i when s + 1 ≤ i ≤ s + M4.

Case 3.2: M4 = 0. If M2 < s, then set

Li =

li − mi when 1 ≤ i ≤ M2,

li when M2 + 1 ≤ i ≤ s.

If M2 = s, then set
Li = li − mi when 1 ≤ i ≤ M2 = s.

In both subcases, (8) may be rewritten:

n∑
i=1

nizi

1 + zit
−

s+M4∑
i=1

Liwi

1 + wit
= O(tk+N+M−1) as t→ 0,

where 0 ≤ M4 ≤ m − 1. Using the argument of Case 1, we deduce that s ≥ k + 1.

Case 4: S 1 , ∅ and S 2 , ∅. Without loss of generality, we may and shall assume
that S 1 = {v1, v2, . . . , vM1}, S 2 = {w1, w2, . . . , wM2}, and vi = zi when 1 ≤ i ≤ M1 and
wi = vM1+i when 1 ≤ i ≤ M2. Set M5 = m − M2 − M1. We consider two subcases.

Case 4.1: M5 ≥ 1. Set zn+i = vM1+M2+i, 1 ≤ i ≤ M5. If M1 < n, then set

Ni =


ni + mi + k when 1 ≤ i ≤ M1,

ni + k when M1 + 1 ≤ i ≤ n,

mM1+M2−n+i when n + 1 ≤ i ≤ n + M5.

If M1 = n, then set

Ni =

ni + mi + k when 1 ≤ i ≤ M1 = n,

mM1+M2−n+i when n + 1 ≤ i ≤ n + M5.

If M2 < s, then set

Li =

li − mM1+i when 1 ≤ i ≤ M2,

li when M2 + 1 ≤ i ≤ s.

If M2 = s, then set
Li = li − mM1+i when 1 ≤ i ≤ M2 = s.

Case 4.2: M5 = 0. If M1 < n, then set

Ni =

ni + mi + k when 1 ≤ i ≤ M1,

ni + k when M1 + 1 ≤ i ≤ n.
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If M1 = n, then set

Ni = ni + mi + k when 1 ≤ i ≤ M1 = n.

And, if M2 < s, set

Li =

li − mM1+i when 1 ≤ i ≤ M2,

li when M2 + 1 ≤ i ≤ s.

If M2 = s, then set
Li = li − mM1+i when 1 ≤ i ≤ M2 = s.

In both subcases, (8) may be rewritten:

n+M5∑
i=1

Nizi

1 + zit
−

s∑
i=1

Liwi

1 + wit
= O(tk+N+M−1) as t→ 0,

where 0 ≤ M5 ≤ m − 2. Using the argument of Case 1, we deduce that s ≥ k + 1.
This completes the proof of Lemma 11. �

3. Proof of Theorem 5

First we show that F is normal on the set D′, defined to be {z ∈ D : h(z) , 0}.
Suppose that F is not normal at z0 ∈ D′. We may assume that D is the disc ∆(0, 1)
with center 0 and radius 1, and that h(z0) = 1. By Lemma 8, there exist points z j ∈ D
tending to z0, functions f j ∈ F , positive numbers ρ j tending to 0, and a nonconstant
zero-free meromorphic function g of order at most two such that

gn(ξ) =
fn(zn + ρnξ)

ρk
n

→ g(ξ),

locally uniformly in ξ in C with respect to the spherical metric.
We claim that the function g(k) − 1 has at most k distinct zeros. With a view to a

contradiction, suppose that g(k) − 1 has k + 1 distinct zeros ξ j when 1 ≤ j ≤ k + 1. By
Lemma 8, g(k) is not identically 1. By Hurwitz’s theorem and because

g(k)
n (ξ) − h(zn + ρnξ) = f (k)

n (zn + ρnξ) − h(zn + ρnξ)→ g(k)(ξ) − 1

as n→∞, there exist points ξn, j when j = 1, 2, . . . , k + 1 such that ξn, j→ ξ j and

f (k)
n (zn + ρnξn, j) = h(zn + ρnξn, j).

However, f (k)
n (z) = h(z) has at most k distinct roots in D, and zn + ρnξn, j→ z0, which is

a contradiction, and proves our claim.
By Lemma 9, g is a rational function. But this contradicts Lemma 10, which shows

that F is normal in D′.
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We now prove that F is normal at points z where h(z) = 0. By making standard
normalizations, we may assume that

h(z) = zm + am+1zm+1 + · · · = zmb(z) ∀z ∈ ∆,

where m ≥ 1, b(0) = 1, and h(z) , 0 when 0 < |z| < 1. Let

F1 :=
{
F : F(z) =

f (z)
zm

, f ∈ F
}
.

For all f ∈ F , the function f has no zeros; hence, for all F ∈ F1, the function F has
no zeros, and 0 is a pole of F with multiplicity at least m. We shall prove that F1 is
normal at 0. Suppose otherwise: then, by Lemma 8, there exist points z j ∈ ∆ tending
to 0, functions F j ∈ F , positive numbers ρ j tending to 0, and a nonconstant zero-free
meromorphic function g of order at most two such that

gn(ξ) =
Fn(zn + ρnξ)

ρk
n

→ g(ξ),

locally uniformly on C with respect to the spherical metric. We distinguish two cases,
following Pang et al. [7].

Case 1: (zn/ρn) has a convergent subsequence. We still denote the subsequence by
(zn/ρn) and its limit by α. Let g̃(ξ) = g(ξ − α). Then

Fn(ρnξ)

ρk
n

=
Fn(zn + ρn(ξ − zn/ρn))

ρk
n

→ g(ξ − α) = g̃(ξ),

the convergence being locally uniform in ξ in C with respect to the spherical metric,
hence uniform on compact subsets of C disjoint from the poles of g̃. Clearly, g̃ has no
zeros, and the pole of g̃ at 0 has order at least m. Now define Gn(ξ) = fn(ρnξ)/ρk+m

n and
G(ξ) = ξmg̃(ξ). Then

Gn(ξ) =
(ρnξ)mFn(ρnξ)

ρk+m
n

→ ξmg̃(ξ) = G(ξ),

uniformly on compact subsets of C disjoint from the poles of g̃. Since g̃ has a pole of
order at least m at 0, it follows that G(0) , 0; since g̃ has no zeros, it follows that G has
no zeros. Further,

lim
n→∞

h(ρnξ)
ρm

n
= ξm,

uniformly on compact subsets of C. So,

G(k)
n (ξ) −

h(ρnξ)

ρk
n

=
f (k)
n (ρnξ) − h(ρnξ)

ρm
n

→G(k)(ξ) − ξm.

Since f (k)
n − h has at most k distinct zeros in the ball ∆(z0, δ) with center z0 and radius δ,

as discussed above, the equation G(k)(ξ) = ξm has at most k distinct roots in C.
However, by Lemma 9, G is a rational function, which contradicts Lemma 11.
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Case 2. (zn/ρn) has a subsequence tending to ∞. We still denote the subsequence by
(zn/ρn). By simple calculation,

F(k)(z) =
f (k)(z)

zm
−

k∑
l=1

Cl
k
(zm)(l) f (k−l)(z)

zm

=
f (k)(z)

zm
−

k∑
l=1

Cl f (k−l)(z)
1
zl
,

(12)

where

Cl =

Cl
km(m − 1) · · · (m − l + 1) when l ≤ m,

0 when l > m.

From (12) and the identity ρl
ng(k−l)

n (ξ) = F(k−l)
n (zn + ρnξ), we obtain

g(k)
n (ξ) = F(k)

n (zn + ρnξ)

=
f (k)
n (zn + ρnξ)
(zn + ρnξ)m

−

k∑
l=1

ClF
(k−l)
n (zn + ρnξ)

1
(zn + ρnξ)l

=
f (k)
n (zn + ρnξ)
(zn + ρnξ)m

−

k∑
l=1

Clg
(k−l)
n (ξ)

1
(zn/ρn + ξ)l

.

Hence,

f (k)
n (zn + ρnξ)
h(zn + ρnξ)

=

[
g(k)

n (ξ) +

k∑
l=1

g(k−l)
n (ξ)

Cl

(zn/ρn + ξ)l

] 1
b(zn + ρnξ)

.

Now limn→∞ b(zn + ρnξ) = 1 and limn→∞ 1/(zn/ρn + ξ) = 0. So,

f (k)
n (zn + ρnξ) − h(zn + ρnξ)

h(zn + ρnξ)
→ g(k)(ξ) − 1,

uniformly on compact subsets of C disjoint from the poles of g.
Since F has no zeros and f (k) − h has at most k distinct zeros, as discussed in Case 1,

we see that g has no zeros and g(k) − 1 has at most k distinct zeros. However, by
Lemma 9, g is a rational function, and this contradicts Lemma 10.

We have thus proved that F1 is normal at 0. It remains to prove that F is normal
at 0. Since F1 is normal at 0 and F(0) =∞ for each F ∈ F1, there exists δ > 0 such that
|F(z)| ≥ 1 for all F ∈ F1 and all z ∈ ∆(0, δ). If f ∈ F , then f has no zeros in ∆(0, δ), so
1/ f is analytic in ∆(0, δ). Therefore,∣∣∣∣∣ 1

f (z)

∣∣∣∣∣ =

∣∣∣∣∣ 1
F(z)

1
zm

∣∣∣∣∣ ≤ 2m

δm
∀z ∈ ∆

(
0,

1
2
δ
)

for all f ∈ F . By the maximum principle and Montel’s theorem, F is normal at 0, and
thus F is normal in D. This completes the proof of Theorem 5.
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R 12. In the proof of Theorem 5, we just use a very special case of Lemma 11,
namely, when a(z) = zm.
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