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FRACTIONAL FOCK–SOBOLEV SPACES

HONG RAE CHO and SOOHYUN PARK

Abstract. Let s ∈ R and 0 < p6∞. The fractional Fock–Sobolev spaces F s,p
R

are introduced through the fractional radial derivatives Rs/2. We describe

explicitly the reproducing kernels for the fractional Fock–Sobolev spaces F s,2
R

and then get the pointwise size estimate of the reproducing kernels. By using the

estimate, we prove that the fractional Fock–Sobolev spaces F s,p
R are identified

with the weighted Fock spaces F p
s that do not involve derivatives. So, the study

on the Fock–Sobolev spaces is reduced to that on the weighted Fock spaces.

§1. Introduction

Let Cn be the complex n-space and dV be the ordinary volume measure

on Cn. If z = (z1, . . . , zn) and w = (w1, . . . , wn) are points in Cn, we write

z · w =
n∑
j=1

zjwj , |z|= (z · z)1/2.

For any 0< p6∞ we let LpG denote the space of Lebesgue measurable

functions f on Cn such that the function f(z)e−(1/2)|z|
2

is in Lp(Cn, dV ).

When 0< p <∞, it is clear that

LpG = Lp(Cn, e−(p/2)|z|
2
dV (z)).

We define

‖f‖p =

[(
p

2π

)n ∫
Cn

|f(z)e−(1/2)|z|
2 |p dV (z)

]1/p
.

For p=∞ the norm in L∞G is defined by

‖f‖∞ = esssup{|f(z)|e−(1/2)|z|2 : z ∈ Cn}.
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80 H. R. CHO AND S. PARK

Let F p denote the space of entire functions in LpG. Then F 2 is a closed

subspace of the Hilbert space L2
G (see [15]) with inner product

〈f, g〉=
1

πn

∫
Cn

f(z)g(z)e−|z|
2
dV (z).

To give a motivation for our study of Fock–Sobolev spaces, recall that the

annihilation operator Aj and the creation operator A∗j from the quantum

theory are defined by the commutation relation [Aj , A
∗
k] = δjkI, where I is

the identity operator. A natural representation of these operators is achieved

on the Fock space F 2, namely,

Ajf(z) =
∂

∂zj
f(z), A∗jf(z) = zjf(z), 1 6 j 6 n, f ∈ F 2.

Both Aj and A∗j , as defined above, are densely defined linear operators on F 2

(unbounded though) and satisfy the commutation relation [Aj , A
∗
k] = δjkI.

Therefore, it is important to study the operator of multiplication by zj and

the operator of differentiation on the Fock space F 2.

We define the radial derivative R by

R :=
n∑
j=1

(AjA
∗
j +A∗jAj)

and the Fock–Sobolev space F s,pR of fractional order s for which Rs/2f is

given by an F p function. Then F s,2R is a Hilbert space with inner product

〈f, g〉
F s,2

R
=

1

πn

∫
Cn

Rs/2f(z)Rs/2g(z)e−|z|
2
dV (z)

for f, g ∈ F s,2R . Each point evaluation is a bounded linear functional on F s,2R .

So, to each z ∈ Cn there corresponds the reproducing kernel Ks
z such that

f(z) = 〈f, Ks
z〉F s,2

R

for f ∈ F s,2R . Let Ks(z, w) :=Ks
w(z). Defining Λ(z, w) by

Λ(z, w) = e(1/2)|z|
2+(1/2)|w|2−(1/8)|z−w|2 ,

we have the following estimates of the reproducing kernel Ks(z, w) for F s,2R .
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FRACTIONAL FOCK–SOBOLEV SPACES 81

Theorem 1.1. Let s ∈ R. Then

Ks(z, w) = R−sz (ez·w)

and there are positive constants C = C(s)> 0 such that

|Ks(z, w)|6 C ×
{

(1 + |z||w|)−sΛ(z, w) if s > 0,
(1 + |z · w|)−sΛ(z, w) if s6 0,

for z, w ∈ Cn.

It will turn out that polynomially growing/decaying weights quite natu-

rally come into play in the study of our fractional Fock–Sobolev spaces. So,

we first introduce such weighted Fock spaces. Given s real we introduce the

following norm on F ps when 0< p <∞:

‖f‖p
F p
s

= ωn,s,p

∫
Cn

|(1 + |z|)sf(z)e−(1/2)|z|
2 |p dV (w),

where ωn,s,p is a normalizing constant so that the constant function 1 has

norm 1 in F ps . When p=∞, we define

‖f‖F∞s = ωs sup
z∈Cn

[(1 + |z|)s|f(z)|e−(1/2)|z|2 ],

where ωs is a normalizing constant so that the constant function 1 has

norm 1 in F∞s . Let LpG,s denote the space of Lebesgue measurable functions

f on Cn such that the function (1 + |z|)sf(z) is in LpG. Then F ps is a closed

subspace of LpG,s.

It follows that the fractional Fock–Sobolev spaces are realized as the

weighted Fock spaces that do not involve derivatives as following Theo-

rem 1.2. So, the study on the Fock–Sobolev spaces is reduced to that on

the weighted Fock spaces. It is very convenient to study function theoretic

and operator theoretic properties on the weighted Fock spaces instead of

the Fock–Sobolev spaces (see [3, 7, 9–11, 13]).

Theorem 1.2. Suppose 0< p6∞ and s is a real number. Then F s,pR =

F ps with equivalent norms.

Constants. In this paper we use the same letter C to denote various positive

constants which may vary at each occurrence but do not depend on the

essential parameters. Variables indicating the dependency of constants C

will be often specified in parenthesis. For nonnegative quantities X and Y

the notation X . Y or Y &X means X 6 CY for some inessential constant

C. Similarly, we write X ≈ Y if both X . Y and Y .X hold.
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82 H. R. CHO AND S. PARK

§2. Fractional radial derivatives

We note that

R =
n∑
j=1

(AjA
∗
j +A∗jAj) = 2

n∑
j=1

zj
∂

∂zj
+ n.

It is easy to see that R is unbounded, positive, self-adjoint, and invertible

on F 2. In fact, R−1 is a compact operator.

Example 2.1. Let

f(z) =
∞∑
k=0

zk1
(k + 1)

√
k!
.

Then f ∈ F 2, but Rf /∈ F 2.

For f ∈ F 2 let

f(z) =
∑
α∈Nn

0

cαeα(z)

be the orthonormal decomposition of f , where eα(z) = zα/‖zα‖2. Associated

with the operator R is a semigroup {Bt}t>0 defined by the expansion

Btf(z) =
∑
α∈Nn

0

e−(2|α|+n)tcαeα(z).

We can check that u(z, t) :=Btf(z) is the solution of the heat-type equation:{
(∂t + R)u= 0 on Cn × (0,∞),

u(·, 0) = f on Cn.

It is easy to see that

‖Btf‖22 6 e−2nt‖f‖22.

Thus Bt is contractive. Moreover, we can see that −R is the infinitesimal

generator of {Bt}t>0. That is,

Bt = e−tR .

See [5] for more properties concerning the heat semigroup as well as the

spectral property of the operator R.

Since R has discrete spectrum {2|α|+ n : α ∈ Nn0}, by using the spectral

theorem, we define the fractional radial derivative Rs for s ∈ R as following:

https://doi.org/10.1017/nmj.2018.11 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.11


FRACTIONAL FOCK–SOBOLEV SPACES 83

Definition 2.2. Let s ∈ R. For f ∈ F 2 let

f(z) =
∑
α∈Nn

0

cαeα(z)

be the orthonormal decomposition of f . By the spectral theorem, Rs is

given by

Rsf(z) =
∑
α∈Nn

0

(2|α|+ n)scαeα(z), f ∈ Dom(Rs).

Definition 2.3. Let s be a real number. The Fock–Sobolev space F s,pR

of fractional order s is the space of all entire functions for which Rs/2f is

given by an F p function. The Fock–Sobolev norm of f of fractional order s

is defined accordingly,

‖f‖F s,p
R

= ‖Rs/2f‖p.
By using the semigroup, we have the integral representations for the

fractional radial derivatives as following. See [2] for analogues in the context

of other type of Sobolev spaces.

Proposition 2.4. Let f ∈ F 2 and z ∈ Cn. Then the following identities

hold:

(i) For 0< s < 1 we have

Rsf(z) =
1

Γ(−s)

∫ ∞
0

[e−tRf(z)− f(z)]

ts
dt

t
,

where Γ(−s) is the gamma function to negative numbers defined by

Γ(−s) =
Γ(−s+ n)

(−s)(−s+ 1) · · · (−s+ n− 1)

choosing n such that −s+ n is positive.

(ii) For s > 0 we have

R−sf(z) =
1

Γ(s)

∫ ∞
0

tse−tRf(z)
dt

t
.

Proof. We prove (i); the proof for (ii) is simpler.

In [4, Proposition 2.2], we calculated the size of Taylor coefficients as

following:

(2.1)

∣∣∣∣∂αf(0)

α!

∣∣∣∣. e|α|/2
( n∏
j=1

α
−αj/2
j

)
‖f‖F 2

for a given multi-index α where α
−αj/2
j is understood to be 1 when αj = 0.
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For f ∈ F 2 let

f(z) =
∑
α∈Nn

0

cαeα(z),

be the orthonormal decomposition of f , where cα = ∂αf(0)/
√
α! and eα(z) =

zα/
√
α!. Note that

(2.2)

∫ ∞
0

(e−t − 1)
dt

t1+s
= Γ(−s).

By (2.1) and (2.2), it follows that∑
α

|cα||eα(z)|
∫ ∞
0
|e−(2|α|+n)t − 1| dt

t1+s

=
∑
α

|cα||eα(z)| (2|α|+ n)s|Γ(−s)|

.
∑
α

e|α|/2
( n∏
j=1

α
−αj/2
j

)
(2|α|+ n)s|zα|.

We note that the power series on the right side of the inequality above is

convergent for every z ∈ Cn. By the dominated convergence theorem, we

have

Γ(−s)Rsf(z) =
∑
α

cαeα(z) (2|α|+ n)sΓ(−s)

=
∑
α

cαeα(z)

∫ ∞
0

(e−(2|α|+n)t − 1)
dt

t1+s

=

∫ ∞
0

∑
α

cαeα(z)(e−(2|α|+n)t − 1)
dt

t1+s

=

∫ ∞
0

[e−tRf(z)− f(z)]

ts
dt

t
.

Remark 2.5. We refer to [4] for another fractional derivatives. In [4],

the following derivative Dsf is given by

Dsf(z) =
∑
α∈Nn

0

Γ(n+ s+ |α|)
Γ(n+ |α|)

cαeα(z), f ∈ Dom(Ds).

We remark that our definition of Rsf is slightly different from Dsf , but they

are asymptotically the same in the sense that Γ(n+ s+ |α|)/Γ(n+ |α|)≈
(2|α|+ n)s as |α| →∞ by Stirling’s formula.
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§3. Estimates of the reproducing kernel for F s,2R

In what follows we use the conventional multi-index notation. Thus for

an n-tuple α= (α1, . . . , αn) of nonnegative integers we write

|α|= α1 + · · ·+ αn, α! = α1! · · · αn!, ∂α = ∂α1
1 · · · ∂

αn
n ,

where ∂j denotes partial differentiation with respect to the jth component.

If z = (z1, . . . , zn), then zα = zα1
1 · · · zαn

n .

First we get pointwise size estimates for the fractional radial derivatives

of the Fock kernel as following.

Theorem 3.1. Given s real, there are positive constants C = C(s)> 0

such that

|Rs
z(e

z·w)|6 C ×
{

(1 + |z · w|)sΛ(z, w) if s> 0,
(1 + |z||w|)sΛ(z, w) if s < 0,

for z, w ∈ Cn.

Proof. Since

|ez·w| = eRe(z·w) = e(1/2)|z|
2+(1/2)|w|2−(1/2)|z−w|2

6 e(1/2)|z|
2+(1/2)|w|2−(1/8)|z−w|2 = Λ(z, w),

the cases s= 0, 1 are trivial.

Let 0< s < 1. By (i) of Proposition 2.4, we have

Rs(ez·w) =
1

Γ(−s)

∫ ∞
0

(e−tRez·w − ez·w)
dt

t1+s
.

Now

e−tR(ez·w) =
∑
α

zαwα

α!
e−(2|α|+n)t

= exp(e−2tz · w)e−nt.

Thus

(3.1) Rs(ez·w) =
1

Γ(−s)

∫ ∞
0

[exp(e−2tz · w)e−nt − ez·w]
dt

t1+s
.

We write the integral on the right-hand side of (3.1) as the sum of two pieces

I1 and I2 defined by

I1 =

∫ 1

0
[exp(e−2tz · w)e−nt − ez·w]

dt

t1+s
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and

I2 =

∫ ∞
1

[exp(e−2tz · w)e−nt − ez·w]
dt

t1+s
.

Given z, w ∈ Cn, put x= Re(z · w) for short. Then

|I2| .
∫ ∞
1

[exp(e−2tx)e−nt + ex]
dt

t1+s

.

{
1 if x6 1,
ex if x > 1.

Also,

|I1| . ex
∫ 1

0
|exp(−(1− e−2t)z · w − nt)− 1| dt

t1+s

= ex
∫ 1

0
|E1(−(1− e−2t)z · w − nt)| dt

t1+s
.

Here Es(x) is the truncated exponential function (see Definition A.1 in

Appendix A). Note that (see (A1))

E1(λ)

λ
=

∫ 1

0
eρλ dρ for λ ∈ C.

Then
|E1(−(1− e−2t)z · w − nt)|
|(1− e−2t)z · w + nt|

6
∫ 1

0
e−ρ{(1−e

−2t)x+nt} dρ.

Hence we have∫ 1

0
|E1(−(1− e−2t)z · w − nt)| dt

t1+s

6
∫ 1

0
|(1− e−2t)z · w + nt|

∫ 1

0
e−ρ{(1−e

−2t)x+nt} dρ
dt

t1+s

=

∫ 1

0

∣∣∣∣1− e−2tt
z · w + n

∣∣∣∣ ∫ 1

0
e−ρ{(1−e

−2t)x+nt} dρ
dt

ts
.

Since

|1− e−2t| ≈ t for 0< t < 1,

there exist c > 0 such that∫ 1

0
|E1(−(1− e−2t)z · w − nt)| dt

t1+s
. |z · w|

∫ 1

0

∫ 1

0
e−cρtx dρ

dt

ts
.
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If x6 1, then ∫ 1

0

∫ 1

0
e−cρtx dρ

dt

ts
. 1.

So, in case x6 1, we have

|Rs(ez·w)| . 1 + |z · w|

. (1 + |z · w|)se(1/2)|z||w| (1 + |z · w|)1−s

e(1/2)|z||w|

. (1 + |z · w|)se(1/2)|z||w|

. (1 + |z · w|)se(1/2)|z|2+(1/2)|w|2−(1/8)|z−w|2 .(3.2)

Here we used the following inequality

e(1/2)|z||w| = e(3/4)|z||w|−(1/4)|z||w| 6 e(3/8)|z|
2+(3/8)|w|2+(1/4)Re(z·w)

= e(1/2)|z|
2+(1/2)|w|2−(1/8)|z−w|2 .

If x > 1, by Fubini’s theorem, it follows that∫ 1

0

∫ 1

0
e−cρtx dρ

dt

ts
=

∫ 1

0

∫ 1

0
e−cρtxt−s dt dρ

. xs−1Γ(1− s)
∫ 1

0
ρs−1 dρ

. xs−1.

Hence, in case x > 1, we have

|Rs(ez·w)|. ex|z · w|xs−1.

For the case x= Re(z · w)> 1, we write Re(z · w) = |z||w| cos θ, where θ is

the angle between z and w identified as real vectors in R2n, and δ = cos−1(14).

If |θ|6 δ, then

x= Re(z · w)≈ |z · w| ≈ |z||w|.

Hence we have

(3.3) ex|z · w|xs−1 . e(1/2)|z|
2+(1/2)|w|2−(1/8)|z−w|2 |z · w|s.

If δ < θ < π/2, then

x= Re(z · w) = |z||w| cos θ < 1
4 |z||w|.
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88 H. R. CHO AND S. PARK

Hence

ex|z · w|xs−1 6 e(1/2)|z||w||z · w|s |z · w|1−s

x1−se(1/4)|z·w|

. e(1/2)|z|
2+(1/2)|w|2−(1/8)|z−w|2 |z · w|s.(3.4)

This, together with (3.2), yields the asserted estimate for 0< s < 1.

Now, assume s > 1. Let m be the greatest nonnegative integer less than

s. Then

Rs(ez·w) = Rs−mRm(ez·w)

=
1

Γ(m− s)

∫ ∞
0

[Rm exp
(
e−2tz · w

)
e−nt −Rmez·w]

dt

t1+s−m
.

Note that

Rm(ez·w) =

m∑
j=0

`j(z · w)jez·w

and

Rm exp(e−2tz · w) =

m∑
j=0

`j(e
−2tz · w)j exp(e−2tz · w),

for some nonnegative integers `j . Thus

Rs(ez·w)

=
1

Γ(m− s)

m∑
j=0

`j(z · w)j
∫ ∞
0

[exp(e−2tz · w)e−(2j+n)t − ez·w]
dt

t1+s−m
.

We write the integral on the right-hand side of the above equation as the

sum of two pieces J1 and J2 defined by

J1 =

∫ 1

0
[exp(e−2tz · w)e−(2j+n)t − ez·w]

dt

t1+s−m

and

J2 =

∫ ∞
1

[exp(e−2tz · w)e−(2j+n)t − ez·w]
dt

t1+s−m
.

Then

|J2|.
∫ ∞
1

[exp(e−2tx)e−(2j+n)t + ex]
dt

t1+s−m
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and

|J1| . ex
∫ 1

0
|E1(−(1− e−2t)z · w − (2j + n)t)| dt

t1+s−m

. ex|z · w|
∫ 1

0

∫ 1

0
e−cρtx dρ

dt

ts−m
.

These yield the asserted estimate for s > 1.

Now for s > 0, by (ii) of Proposition 2.4, we have

R−s(ez·w) =
1

Γ(s)

∫ ∞
0

e−tR(ez·w)
dt

t1−s

=
1

Γ(s)

∫ ∞
0

exp(e−2tz · w)e−nt
dt

t1−s
.

Hence

|R−s(ez·w)|6 1

Γ(s)

∫ ∞
0

exp(e−2tx)e−nt
dt

t1−s
.

If x= Re(z · w) 6 1, then

|R−s(ez·w)|. 1

Γ(s)

∫ ∞
0

e−nt
dt

t1−s
=

1

ns
.

Now we assume that x= Re(z · w)> 1. Then

|R−s(ez·w)| 6 1

Γ(s)

∞∑
k=0

∫ ∞
0

(e−2tx)k

k!
e−nt

dt

t1−s

=
∞∑
k=0

xk

k!

1

Γ(s)

∫ ∞
0

e−(2k+n)t
dt

t1−s

=

∞∑
k=0

xk

(2k + n)sk!
.

By Stirling’s formula, it follows that

k!(2k + n)s ≈ Γ(k + 1 + s) for large k.

Hence, by Corollary A.4, we have

|R−s(ez·w)| .
∞∑
k=0

xk+s

Γ(k + 1 + s)
x−s

= Es(x)x−s

≈ exx−s, x > 1.(3.5)
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For the case x= Re(z · w)> 1, we write Re(z · w) = |z||w| cos θ, where θ

is the angle between z and w identified as real vectors in R2n, and δ =

cos−1(14). It is easily seen from (3.5) that the required estimate holds when

|θ|6 δ, because x≈ |z||w| for such z and w. So, assume δ < θ < π/2. Note

x < 1
4 |z||w| for such z and w. We thus have by our choice of δ

ex

xs
6
e(1/4)|z||w|

xs

6 e(1/4)|z||w|

=
e(1/2)|z||w|

(|z||w|)s
(|z||w|)s

e(1/4)|z||w|

.
e(1/2)|z||w|

(|z||w|)s
, x > 1.(3.6)

This, together with (3.5), yields the asserted estimate for x > 1. This

completes the proof.

It is the well-known formula [1] that

Ks(z, w) :=Ks
w(z) =

∑
α

φα(z)φα(w)

where {φα} is any orthonormal basis for F s,2R .

Lemma 3.2. Let s be real and α be a multi-index of nonnegative integers.

Then

‖zα‖2
F s,2

R

= (2|α|+ n)sα!.

Proof. Since Rs/2zα = (2|α|+ n)s/2zα, we have

‖zα‖2
F s,2

R

= ‖Rs/2zα‖22 = (2|α|+ n)s‖zα‖22 = (2|α|+ n)sα!.

Theorem 3.3. Let s ∈ R. Then

Ks(z, w) = R−sz (ez·w)

and there are positive constants C = C(s)> 0 such that

|Ks(z, w)|6 C ×
{

(1 + |z||w|)−sΛ(z, w) if s > 0,
(1 + |z · w|)−sΛ(z, w) if s6 0,

for z, w ∈ Cn.
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Proof. By Lemma 3.2, we get

Ks(z, w) =
∑
α∈Nn

0

zαwα

‖zα‖2
F s,2

R

=
∑
α

zαwα

(2|α|+ n)sα!

= R−sz (ez·w).

Hence the size estimates of Ks(z, w) follow from Theorem 3.1.

§4. Auxiliary integral estimates

It follows that the fractional Fock–Sobolev spaces are realized as the

weighted Fock spaces that do not involve derivatives. To prove the results

we introduce an auxiliary integral estimate for Λ defined by

Λ(z, w) = e(1/2)|z|
2+(1/2)|w|2−(1/8)|z−w|2 .

To handle the case 1 6 p <∞ and for other purposes later, we introduce

an integral operator induced by Λ. Given s real, we consider an integral

operator Ls defined by

Lsψ(z) :=

∫
Cn

ψ(w)

(
1 + |z|
1 + |w|

)s
Λ(z, w)e−|w|

2
dV (w), z ∈ Cn

for ψ which makes the above integral well-defined.

Lemma 4.1. [4] Given s real, the operator Ls is bounded on LpG for any

1 6 p6∞.

The following Jensen-type inequality is needed to handle the case

0< p6 1.

Lemma 4.2. [4] Given 0< p6 1, a > 0 and s real, there is a constant

C = C(p, a, s)> 0 such that

(4.1){∫
Cn

|(1 + |z|)sf(z)e−a|z|
2 | dV (z)

}p
6 C

∫
Cn

|(1 + |z|)sf(z)e−a|z|
2 |p dV (z)

for f ∈H(Cn).

Lemma 4.3. [4] Let 0< p <∞ and α be an arbitrary real number. Then

there is C = C(p, α)> 0 such that∫
Cn

(1 + |w|)αΛ(z, w)pe−(p/2)|w|
2
dV (w) 6 C(1 + |z|)αe(p/2)|z|2 .
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§5. Fourier type characterization

Cho and Zhu [6] studied Fock–Sobolev spaces of positive integer order. For

any positive integer m and 0< p6∞ we consider the space Fm,p consisting

of entire functions f on Cn such that∑
|α|6m

‖∂αf‖p <∞,

where ‖ ‖p is the norm in F p. See [8, 12] for other similar Sobolev spaces.

Cho and Zhu [6] proved a useful Fourier type characterization of the Fock–

Sobolev space of integer order as following.

Theorem 5.1. [6] Suppose 0< p6∞, m is a nonnegative integer, and

f is an entire function on Cn. Then f ∈ Fm,p if and only if the function

zαf(z) is in F p for all multi-indices α with |α|=m. Moreover, ‖f‖Fm,p is

comparable to the norm of the function |z|mf(z) in LpG.

The purpose of the current paper is to extend the notion of the Fock–

Sobolev spaces to the case of fractional orders allowed to be any real number.

Theorem 5.2. Let s ∈ R and 0< p6∞. There is a constant C =

C(s, p)> 0 such that

‖f‖F s,p
R

6 C‖f‖F p
s
.

Proof. We now consider the cases 0< p < 1 and 1 6 p6∞ separately.

Assume 1 6 p6∞. If the function (1 + |w|)sf(w) is in LpG, then

f(z) =
1

πn

∫
Cn

ez·wf(w)e−|w|
2
dV (w), z ∈ Cn.

Thus we obtain

(5.1) Rs/2f(z) =
1

πn

∫
Cn

Rs/2(ez·w)f(w)e−|w|
2
dV (w).

The convergence of the integrals above follows from pointwise estimates for

functions in Fock spaces. Hence it follows that

|Rs/2f(z)| 6 1

πn

∫
Cn

|Rs/2(ez·w)||f(w)|e−|w|2 dV (w)

.
∫
Cn

|f(w)|(1 + |w|)s
(

1 + |z|
1 + |w|

)s/2
Λ(z, w)e−|w|

2
dV (w)

= Ls((1 + |w|)s|f |)(z).

https://doi.org/10.1017/nmj.2018.11 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.11


FRACTIONAL FOCK–SOBOLEV SPACES 93

By Lemma 4.1, we have

‖Rs/2f‖pp . ‖(1 + |z|)sf‖Lp
G
.

Now let 0< p < 1. Then, by Lemma 4.2 and Theorem 3.1,

|Rs/2f(z)|p .
∫
Cn

|Rs/2(ez·w)|p|f(w)|pe−p|w|2 dV (w)

.
∫
Cn

|f(w)|p(1 + |w|)sp/2(1 + |z|)sp/2Λ(z, w)pe−p|w|
2
dV (w)

or ∫
Cn

|Rs/2f(z)|pe−(p/2)|z|2 dV (z)

.
∫
Cn

|f(w)|p(1 + |w|)sp/2e−p|w|2 dV (w)

×
∫
Cn

(1 + |z|)sp/2Λ(z, w)pe−(p/2)|z|
2
dV (z).

Now, by Lemma 4.3, it follows that∫
Cn

(1 + |z|)sp/2Λ(z, w)pe−(p/2)|z|
2
dV (z) . (1 + |w|)sp/2e(p/2)|w|2 .

Hence∫
Cn

|Rs/2f(z)|pe−(p/2)|z|2 dV (z)

.
∫
Cn

|f(w)|p(1 + |w|)spe−(p/2)|w|2 dV (w).

Theorem 5.3. Suppose 0< p6∞ and s is a real number. Then there

is a constant C = C(s, p)> 0 such that

‖f‖F p
s
6 C‖f‖F s,p

R

for all f ∈ F s,pR .

Proof. Let 1 6 p6∞. From the reproducing formula for Rs/2f we obtain

f(z) = R−s/2Rs/2f(z) =
1

πn

∫
Cn

Rs/2
w f(w)R−s/2z (ez·w)e−|w|

2
dV (w).
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This together with Theorem 3.1 shows that

(1 + |z|)s|f(z)| . (1 + |z|)s
∫
Cn

|Rs/2f(w)||R−s/2(ez·w)|e−|w|2 dV (w)

.
∫
Cn

|Rs/2f(w)|
(

1 + |z|
1 + |w|

)s/2
Λ(z, w)e−|w|

2
dV (w)

= Ls(|Rs/2f |)(z).

By Lemma 4.1, we have

‖(1 + |z|)sf‖Lp
G
. ‖Rs/2f‖p.

When 0< p < 1, it follows from Lemma 4.2 and Theorem 3.1 that

|f(z)|p .

∣∣∣∣∫
Cn

Rs/2f(w)R−s/2(ez·w)e−|w|
2
dV (w)

∣∣∣∣p
.
∫
Cn

|Rs/2f(w)R−s/2(ez·w)e−|w|
2 |p dV (w)

.
∫
Cn

|Rs/2f(w)|p e
(p/2)|z|2−(p/2)|w|2−(p/8)|z−w|2

(1 + |z|)sp/2(1 + |w|)sp/2
dV (w).

Fubini’s theorem shows that the integral

I =

∫
Cn

|(1 + |z|)sf(z)e−(1/2)|z|
2 |p dV (z)

satisfies the following estimates:

I .
∫
Cn

|Rs/2f(w)|pe−(p/2)|w|2 dV (w)

∫
Cn

(
1 + |z|
1 + |w|

)sp/2
e−(p/8)|z−w|

2
dV (z).

Note that ∫
Cn

(
1 + |z|
1 + |w|

)sp/2
e−(p/8)|z−w|

2
dV (z)

.
∫
Cn

(1 + |z − w|)sp/2e−(p/8)|z−w|2 dV (z)

. 1.

The proof is complete.

Theorem 1.2 follows from Theorems 5.2 and 5.3.
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Appendix. Truncated exponential functions

Let m be a positive integer. We consider the left truncated exponential

function of integer order m, Em(λ), defined by

Em(λ) = eλ − 1− λ− λ2

2!
− · · · − λm−1

(m− 1)!

=
∞∑
k=0

λk+m

Γ(k + 1 +m)
, λ ∈ C,

where Γ is the classical gamma function.

It is easy to check that

(A1)
Em(λ)

λm
=

1

(m− 1)!

∫ 1

0
(1− t)m−1etλ dt,

which immediately yields a useful inequality

(A2) |Em(λ)|6
(
|λ|

Re λ

)m
Em(Re λ), λ ∈ C.

Now we consider the truncated exponential function of fractional

order.

Definition A.1. Let s ∈ R. We define the generalized exponential

function of fractional order s, Es(x), by

Es(x) =

∞∑
k=0

xk+s

Γ(k + 1 + s)
, x ∈ R.

We have the following integral representation of Es(x):

Proposition A.2. Let s > 0. Then

Es(x) =
ex

Γ(s)

∫ x

0
ts−1e−t dt, x ∈ R.

Proof. Note that the following well-known property of gamma functions

Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
ta−1(1− t)b−1 dt when a, b > 0.
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Thus

∞∑
k=0

xk+s

Γ(k + 1 + s)
=
∞∑
k=0

xk+s

Γ(s)Γ(k + 1)

∫ 1

0
(1− t)s−1tk dt

=
xs

Γ(s)

∫ 1

0
(1− t)s−1etx dt

=
ex

Γ(s)

∫ x

0
ts−1e−t dt.

Proposition A.3. Let s=m+ r where m is a nonnegative integer and

0 6 r < 1. Then

E−s(x) =
ex

Γ(1− r)

∫ x

0
t−re−t dt+

m∑
k=0

xk−s

Γ(k + 1− s)
.

Proof. We have

∞∑
k=0

xk−s

Γ(k + 1− s)
=

∞∑
k=m+1

xk−s

Γ(k + 1− s)
+

m∑
k=0

xk−s

Γ(k + 1− s)

=

∞∑
k=0

xk+1−r

Γ(k + 2− r)
+

m∑
k=0

xk−s

Γ(k + 1− s)

=
ex

Γ(1− r)

∫ x

0
t−re−t dt+

m∑
k=0

xk−s

Γ(k + 1− s)
.

By Propositions A.2 and A.3, we have the following.

Corollary A.4. Let s ∈ R. Then

lim
x→∞

Es(x)

ex
= 1.
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