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Summary

In this paper priority queues with K classes of customers with a pre-
emptive repeat and a preemptive resume policy are considered. Customers
arrive in independent Poisson processes, are served, within classes, in order
of arrival, and have general requirements for service. Transforms of station-
ary waiting time and queue size distributions and busy period distributions
are obtained for individual classes and for the system; the moments of the
distributions are considered.

1. Introduction

Let us consider a preemptive priority queueing system where there are
K classes 1,2,. . ., K of customers arriving at a counter with a single server.
Within each class there is a first-come first-served queue discipline, and
between classes there is a relative priority of service such that a class i
customer is served in preference to a class / customer whenever i < /.
When a class / customer is being served and a class t ( < /) customer arrives,
then service of the class / customer ceases immediately in favour of the class i
customer, and it resumes only when the queueing system is next cleared of
all customers of all classes 1, 2, • • • , / - — 1 . When a preempted customer
returns to actual service we consider two possible cases; a preemptive
resume policy allows the customer to re-enter service at the point where it
was preempted; a preemptive repeat policy means that the customer has to
begin service again. When K — 2 class 1 customers are called priority and
class 2 non-priority customers.

We assume that class * (1 ^ i ^ K) customers arrive independently in
a Poisson process with parameter Xit and independently of customers in
other classes. Class i customers occupy the server for a time, which is total
time for a resume policy and uninterrupted time for a repeat policy,
which has a distribution function (d.f.) F{(x) (0 •£ x < oo) with Laplace-
Stieltjes transform (L.T.) y>t(d) = ^e-e'dF,(x)(e ^ 0) and finite mean
Pi = — Vi'(0) < QO. We suppose also that ^>,(0) exists and is finite for all
real 0 5; —Rt, where R( is a real non-negative constant; when i?,- > 0 this
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is equivalent to the d.f. Ft(x) having an analytic characteristic function. As a
special case we consider a constant service time of bi where Ft(x) = 1 for
x 2=; b{ and F^x) = 0 for x < bt.

The preemptive resume priority system has been considered by several
authors such as Miller [6], and some of our results for this case overlap with
those of [6]. Although the results obtained for the preemptive resume system
are more complete than for the preemptive repeat system, we shall consider
the latter in greater detail, as fewer results have previously been obtained
for this system.

We are concerned with the stationary waiting time and queue size
distributions and busy period distributions, where they exist, for the queue-
ing system as a whole and for individual classes of customers. We shall
consider the case K = 2, and then extend the results for K Sg 2, but first
we shall give the general formulae to be used for this purpose.

2. General formulae

We require a number of results of models which are generalisations
of the MjGjX single server queueing system with a negative exponential
inter-arrival time distribution and a general service time distribution.
Firstly let us consider K classes of customers arriving independently in
Poisson processes with parameters Aj(l 5S i :£ K), and being served in order
of arrival, i.e. no priority, with service times having d.f.'s C,(x) (0 ;S x < oo)

with L.T.'s f,(0) and means | , = —1'(0) < oo. For 2f=i^fi < 1 t h e L T -
QK (6) of the stationary waiting time distribution and the probability generat-
ing function (p.g.f.) qn{z) of the stationary queue size distribution may be
obtained, by the same method as for a single class of customers [7], as

(2.2) qK{z) =

where VK = Aa+A2+ • • • +^K- The mean waiting time is

(2.3) IK = - &(0) = | A(£'(0) 12 (l - f tf\.

The L.T. q>K{0) of the busy period distribution is the unique solution, with
lime_ai<pK(6) — 0, of the functional equation

(2.4) VK{8) = J-11 2 *MvK+0-vK<pK(6)).
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Another generalisation is where customers, arriving in a Poisson process
with parameter A, who arrive to find the server idle wait a time whose
d.f. V(x)(0 ^x < oo) has L.T. a(0) with mean v = — a'(0) < oo before
commencing service, which has a d.f. A(x) with L.T. a(6) and mean 5. —
—a'(0) < oo, and which is the same for all customers. Finch [2] has shown
that the L.T. Q(0) of the stationary waiting time distribution, which exists
for ka < I, is given by

(2.5)

with the mean waiting time being

(2.6) D = - £ ' ( 0 ) = ( 1 ~ A a ^

A similar case is where customers joining non-empty and empty queues
have different service time d.f.'s A(x) and B(x) (0 g x < oo) with L.T.'s
<x(0) and P(B) with finite means 5 = — oc'(O) and ^ = — f3'(0) respectively.
The L.T. 0(9) of the stationary waiting time distribution and the p.g.f. r(z)
of the stationary queue size distribution, which exist for ~/.5c < 1, have been
obtained [9] as

(2 7) 0(0) = q
V ' ; K ' (i

(2.8) (l

The stationary queue size distribution in the previous case is given by (2.S)
with /3(0) = a(0)3(0). The mean waiting time is

(2.9) 0 = -0'(O) ^ ^ ^ ^ ^ ^ ( ^ H ^ ^ i 0 1

The L.T. 6(0) of the busy period distribution is given by

(2.10) 6(0) = (t(>)(0)).

where TJ(O) is the unique solution with »/(0) = 0 of the functional equation

(2.11) ,,{0)

3. Waiting time distributions for K == 2

We consider the following stationary waiting time distributions for
both preemptive repeat and resume policies: for non-priority customers,
waiting time is defined as the length of time a non-priority customer spends
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from the time of arrival to the time (i) he reaches the counter for the first
time and (ii) he reaches the head of the non-priority queue; for the priority
non-priority system, waiting time is the time a customer takes from arrival
to reaching the counter for the first time. Once a customer has commenced
service for the first time, he is no longer waiting, even if he has been pre-empt-
ed, but is considered to be "in service". Case (i) is the usual problem con-
sidered; however, it is no more difficult to also include the second case,
which has some applications. A similar model is used by Yeo and Weesakul
[8] for a traffic problem of the delay to vehicles at an intersection.

A slightly more general model, which may be considered by the same
method as used here, is to suppose that instead of there being priority custom-
ers there are interruptions to the system. These interruptions have a dura-
tion which has a general d.f. G^x), not necessarily that of a busy period,
and the distribution of time between interruptions is negative exponential.

Priority customers have a general service time distribution with L.T.
ViiO). The distribution of priority customers is independent of non-priority
customers, and is given by the M/G/l queueing system; the transforms
£2i(Q), 1i(z) and 9^(0) of the stationary waiting time, stationary queue size
and busy period distributions are given by (2.1), (2.2) and (2.4) with
/. = / . j , K = 1, and £x(0) = Vl(0).

We now consider the preemptive repeat priority queueing system with
non-priority customers requiring uninterrupted occupation of the server
for a fixed time b{> 0) before being able to depart. If there is a priority
customer arriving at time zero we require the L.T. %i(0, b) of the d.f.
K^x, b) of the time until the first gap of at least b, including b, appears in the
priority stream; this is the continuous analogue of a generalisation of the
success run problem of Feller [1] (p. 299), and we obtain (or by renewal
theory)

C" ixer^idyi f°° dG2(z2-y2)
(3.1) J^° J"~V*

_|_ . . .111

When a non-priority customer reaches the counter for the first time he
has a service time of length b if no priority customers arrive in this period;
otherwise he waits until the server is free of priority customers for at least b
before he departs from the system. The L.T. a2(0, b) = ffe-exdA2{x, b)
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of the length of time a non-priority customer spends from his arrival at the
counter to his departure is

a,(0, b) = e~<W+ f* Le-^dy f°° e~e'dKx(z-y, b)
(3,2) Jv=0 Jz~v

A non-priority customer may arrive to find the queue free of other
non-priority customers, but not of priority customers, so that he must wait
until the priority stream is cleared before he commences service. This
waiting time is zero if there are no priority customers in the queue, and
lasts until the end of the priority busy period if there is at least one priority
customer in the queue when he arrives. This depends on the length of time
since the departure of the last non-priority customer. From the point of
view of non-priority customers the server appears to be alternately present,
for a length of time which has a negative exponential distribution with mean
A^1, and absent, for a length of time which as the busy period d.f. Gx(x) of
priority customers. During the first of the present-absent periods of the server
since the departure of the last non-priority customer, the L.T. 132(S, b)
of the wait of the next non-priority customer is

A(0, b) = pt(B) = f00 X^e-^-^dv

(3.3)

We have ^(0) = 1— gt = l—X1v^1(p1(Xi),g1 being the probability of no
non-priority customers arriving during a server present-absent period. If the
first non-priority customer arrives during a later server present-absent
period, then the distribution of his wait is of the same form, so that the
L.T. 32(0) of the distribution of the wait of a non-priority customer before
reaching the counter is

For the type (ii) of waiting time we have defined the service time
distribution c. non-priority customers joining a non-empty queue is readily

. seen to have the L.T a2(0, b) given by (3.2). For a non-priority customer
joining a Haeue free of other non-priority customers his service time distri-
bution, v/th L.T. /?2(0, b) = feoe-^dB^x, b), is the convolution of the
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distribution of his wait to reach the counter and of the distribution of the
time he spends from reaching the counter to departing from the system; thus

(3.5) 0t{8, b) = 0,(9, b)B2(0).

Let us now suppose that non-priority customers require an uninterrupt-
ed service with d.f F2(x) having L.T. y>2(6). The L.T.'s of the distributions
of time in service are given by

o«2(0, x)dF2(x) =

(3.6)

where the inversion of the order of integration may be justified by Fubini's
theorem [5]. Integration of (3.2), (3.5) and (3.6) does not in general yield
explicit results, although the results may formally be given. For definitions
(i) and (ii) of waiting time the L.T.'s Q2(B) and 02(6) of the stationary waiting
time distributions for non-priority customers are given by substitution in
(2.5) and (2.7) respectively with Q{0) = Q2(0), ®{d) = O>2(0), X = X2,
3(0) = 32(0), a(0) = oc2(0), p{6) = /S2(0). The p.g.f. r2(z) of the stationary
queue size distribution, which is identical with both definitions, is given
by (2.8) with r{z) = r2(z). "We have assumed the existence of stationary
distributions for which the condition has been given in § 2 as k^a^ < 1,
where 52 = — <x2(0).

We can obtain the moments of the service time distributions by differ-
entiation as

(3.7) &2 = - JJ0 a'(0, x)dF2{x), fa = «,+»„

where a sufficient condition for these means to be finite is that R2 ^ Xt

as may be observed by differentiating (3.2) and (3.5); we obtain

(3.8)

Similarly higher order moments may be determined; the second moments,
which are finite if Rz ^ 2XX, are
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9 )

^'(0) =

#'(0) =

where %(—Ax) = lim0__Aî /i07>2(0). The mean stationary waiting times are
obtained by substitution of (3.8) and (3.9) in (2.6) and (2.9).

We define the delay as the total time a customer spends in the system;
its distribution is the convolution of the distribution of wait and the distri-
bution of service time. For non-priority items this is the same for both defini-
tions (i) and (ii) and its L.T. £>a(0) is given by

The mean delay is

(3.11) -D',(0) =
2(1—

For a preemptive resume priority queueing system the same method
as used above may be employed; however, the problem is simpler. If non-
priority customers occupy the server for a total time b, we obtain

, b) = e~<W> + P V- A l V l <^ J "

(3.12)

From these we readily obtain for a general d.f. F2(x) for the time a non-
priority customer occupies the server that
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a2(0) =

( 3 1 3 ) 3 2 ( 9 ) =

We substitute (3.13) in (2.5) and (2.7) to obtain the L.T.'s of the
stationary waiting time distributions; these exist for A1/*1+A2/«2 < 1. The
moments may be found by differentiation. The stationary queue size dis-
tribution for non-priority customers is given by (2.8). Miller [6] has ob-
tained a2(0) and Q2(6) ((3.26) and (3.23) with / = 2) by a slightly dif-
ferent method; he has also obtained (4.1) for a preemptive resume policy.

The L.T. of the distribution of the time required to service all the
customers in the queue at a particular time, neglecting further arrivals,
is given by (2.1) with f«(0) = y>t(B) (i = 1,2) and K = 2 (c.f. Miller [6],
(3.24)). This is identical with that for a (non-preemptive) postponable
priority policy for two classes of customers, as here the order of service is
irrelevant if further arrivals are not considered. For this reason the busy
period has the same distribution for the two cases, and so has the waiting
time distribution of non-priority (and in general for the lowest class K)
customers. However, the waiting time distribution for priority customers
is different (greater) for a postponable priority policy as priority customers
may be delayed by non-priority customers.

4. Busy period distributions for K = 2

If we define the L.T.'s a2(0) and f}2(0) of the service time distributions
by (3.6) for a preemptive repeat policy and by (3.13) for a preemptive
resume policy then the busy period distributions for these two problems
may be considered together.

A busy period which commences with a non-priority customer has L.T.
V**{0) = \ZQe-°*dG22{x) satisfying

922(0) =

where G$ (z) is the w-fold convolution of G22(z). The L.T. <p12(0) of the distri-
bution of the length of a busy period starting with a priority customer is

= P IP
£ 2) Jv=0 n^oJz^
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It is apparent from the definitions of <p&(6) and <pia(0) that the L.T.
q>*(6) = ^er-"*dG*(x) of the busy period distribution for the priority
non-priority system is given by

(4.3) <p*{6) = W * u ( f l ) + W ? « ( » ) .

The busy period distribution for non-priority customers has L.T. <52(0)
given by the relations (2.10) and (2.11) with X = Xt, a(0) = aa(0),
fi{0) = /?2(0), <5(0) = <52(0).

For a preemptive priority resume policy, and for a postponable
priority policy, the L.T. 9>J(0) of the busy period distribution for the
system satisfies (2.4) with <pz(d) = f*(d), f<(0) = rp^Q) (i = 1,2) and K = 2;
this is equivalent to (4.3).

The above properties of the busy period distributions are sufficient
to extend our results to K(2z 2) classes; however, for the non-priority
customers let us consider the more general problem of the joint d.f. Gn(n, t)
of the length t of a busy period and the number n of non-priority customers
served in this period. Using the method of Gaver [3] we can show that the
transform

, *) = 1 I z"e-etdGii(n, t) (0 < z £ 1, real 0 ^ 0 )

is given by

(4.4) yt(6, z) = zPifa+O-fa)

where x is the unique root for real 0 > 0 and 0 < z ^ 1 of the equation

x =

5. The general case K ^ 2

We now generalise the results of § 3 and § 4 to the case where there are
K 2; 2 priority classes of customers. Class i (1 5j * gS K — 1) customers have
a service requirement (uninterrupted and total for preemptive repeat and
resume policies respectively) d.f. 2% (a;) (0 ^ z < oo), while class K customers
have fixed service time requirement b. We extend the previous definitions
in a natural manner so that ajr(0, b) is the L.T. of the distribution of the
time a class K customer takes from arriving at the counter to his departure
from the system; <p,,(0) (1 <; * ^ / ^ K) is the L.T. of the busy period
distribution for the first / classes given that it commences with the arrival
of a class i customer at a free counter; and so on.

Since the method is only a simple extension of that for two classes,
we shall not give a detailed derivation of the service time distributions. For
a preemptive repeat policy we obtain
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[ - 0 + 2 *,{
(5.1) 3K(0, 6) s 3K(0) = J

PK(B, b) = aK(0, b)3K{6),

where

K-l K

and the cpiK_x(6) (1 ?£ * sS if—1) are obtained below in (5.4).
If class K customers require uninterrupted service which has d.f. FK(%)

(0 ^ a; < oo) we can integrate the expressions of (5.1) to yield

ax(0) =
(5.2) '

The L.T.'s i3x(9) and &K(0) of the stationary waiting time distributions
for class K customers with waiting time definitions (i) and (ii) are obtained
by substitution of (5.2) in the appropriate formulae of § 2 with Q(8) = OK(0),
#(0) = QK(6), X = kg, «(fl) = OLK{6), a(0) = *g(6), p{6) = pK{8). The mean
stationary waiting times may be obtained and are finite if R& 52 2vx_1 (and
Rj ^ 1VJ-\, j = 2, 3, • • •, K— 1). The stationary queue size distributions
may be obtained from (2.2) and (2.8). We have assumed the existence of
proper stationary distributions for which a necessary and sufficient condition
is AKaK < 1.

For a preemptive resume policy the results of the previous section may
be generalised to give

(5.3) 3K(0) =
*

The L.T.'s of the stationary waiting time and queue size distributions,
which exist for 2£.i*<i"< < 1, may be obtained from the formulae of § 2 with
A = XK, OC(0) = <XJJ(8), 3(0) = 3K(0), ,3(0) = 0K(O).
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For both a repeat and a resume policy the L.T.'s <piK(d) of the dis-
tribution of the length of a busy period starting with a class * customer
are

<PKK(0) =

(5.4)

so that the L.T. ¥%(&) of the busy period distribution for the system is

(5.5) 9>K(0) = 2 ^ , . X ( 0 ) .

For a preemptive resume policy <p%(0) is also given by

K

which is equivalent to (5.5); for this policy Miller has obtained <PKK(0)
and QK(0).

We see that from the solutions obtained for the service time and busy
period distributions, we can find the service time distributions of the /th
priority class in terms of the busy period distributions for the /-1th class.
We may then obtain the busy period distributions for the /th class from the
service time distributions for the /th class. Thus the service time, and hence
the waiting time distributions, and busy period distributions can be construct-
ed by iteration from one class to the next.

Since this paper was prepared Gaver [4] has published a paper in which
he obtains some of our results by a slightly different method, and includes
some results for the preemptive repeat priority system, e.g. (3.2) and (4.1).
Gaver [4] has considered as well a preemptive repeat different priority
system, which may also be solved by our method.
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