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Abstract

Well-bounded operators are those which possess a bounded functional calculus for the absolutely
continuous functions on some compact interval. Depending on the weak compactness of this
functional calculus, one obtains one of two types of spectral theorem for these operators. A
method is given which enables one to obtain both spectral theorems by simply changing the
topology used. Even for the case of well-bounded operators of type (B), the proof given is more
elementary than that previously in the literature.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 47 B 40, secondary 46 A
50, 46 H 30, 47 A 60.

1. Introduction

It is now 30 years since Smart introduced the class of well-bounded opera-
tors to provide a spectral theory for operators whose eigenvalue expansions
may only converge conditionally. The original papers of Smart and Ringrose
[11, 8] considered operators on a reflexive Banach space which possessed a
functional calculus smaller than that for self-adjoint operators on a Hilbert
space; namely ones with a functional calculus for the absolutely continuous
functions on some compact interval of the real line. That is, they studied
operators T for which there exist constants a, b, K € R such that

b !
Ip(T)] < K{lp(a)l + / p (t)|dt}
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for all polynomials p. Operators which satisfied this condition were called
well-bounded. They showed that such a functional calculus gave rise to a type
of spectral resolution of the identity for the operator which we now call a
spectral family. Later, Ringrose [9] studied operators with this type of func-
tional calculus on general Banach spaces. The situation here is rather less
satisfactory as, although one obtains some type of spectral resolution (known
in this case as a decomposition of the identity), it consists of projections
which act on the dual of the Banach space and in general it is not uniquely
determined by the well-bounded operator. Furthermore, the exact conditions
for a family of projections to be a decomposition of the identity are some-
what cumbersome. An alternative approach to that of Smart and Ringrose
was introduced by Sills [10] who used a technique that involved first extend-
ing the AC functional calculus to the second dual, a space which contains
idempotent elements.

In 1971 Berkson and Dowson [3] considered classes of well-bounded op-
erators whose decomposition of the identity {E(4)} consists of projections
which are the adjoints of projections {F(A)} on the original Banach space.
Those well-bounded operators for which the family {F(4)} has certain con-
tinuity properties were said to be of type (B), and it is these operators which
have become most important in applications of the theory. The well-bounded
operators of type (B) were later characterised as being those for which the
functional calculus for T is “weakly compact” (see [3, Theorem 4.2; 12}).
This means that, for all x in the Banach space X, the map AC — X,
S~ f(T)x is compact in the weak topology; or equivalently, that the alge-
bra homomorphism f — f(T) is compact in the weak operator topology.
Subsequently, the possession of a weakly compact 4AC functional calculus
has often been taken as the definition of well-bounded operators of type (B).
In recent years several proofs of the spectral theorem for these operators
have been given which show that the possession of such a weakly compact
functional calculus allows one to define a unique spectral family {E(4)} on
X for which T = fjea AdE(A). A consequence of this theorem is that one
can extend the AC functional calculus for T to one for all functions g of
bounded variation by g(T) = fje g(A)dE(A). A good survey of the more
recent work in this area may be found in [2].

The aim of this paper is to give new proofs of the spectral theorems for
both well-bounded operators of type (B) and general well-bounded operators,
proofs which stress the role of the different types of compactness one has in
the two cases. We believe that these proofs are somewhat simpler than those
in the literature, at least to the extent that our methods employ a unified
approach to the two situations and do so without requiring large amounts of
mathematical machinery.
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The methods in this paper have their origins in the proofs of the spectral
theorem for well-bounded operators of type (B) (in particular those of Berk-
son and Gillespie [4, 2]). By considering suitable algebra homomorphisms
with certain compactness properties, these methods will allow us to construct
either a spectral family or a decomposition of the identity as appropriate.

We shall also comment on the definition of decomposition of the identity
which was introduced by Ringrose and the integration theory that such a
decomposition of the identity permits. It is not hard to check that one of
Ringrose’s conditions is redundant in the sense that it is not needed to ensure
that the equation

b
(Tx,x‘):b(x,x')—/ x, EQ)x"Vdi, (xeX, x" e€X"),

defines a well-bounded operator. The extra condition, a weak type of right
continuity, does however allow one to ensure uniqueness of the decomposi-
tion of the identity in certain situations, such as when the Banach space is
reflexive. Without such a condition even the identity operator fails to have
a unique decomposition of the identity. We propose here an alternative con-
tinuity condition which is perhaps more natural in the present setting and
which allows one to retain the uniqueness theorems in these important cases.

2. Preliminaries

We shall present here a brief outline of some of the details of the weak
topologies and integration theories that we shall need. The main point in this
paper is that the difference between well-bounded operators of type (B) and
general well-bounded operators lies in the type of compactness that one has
for the functional calculus.

Throughout X and Y will denote complex Banach spaces. Real spaces
can be covered by changing C to R in appropriate places in the proofs. The
dual of X will be denoted by X", the algebra of all bounded operators on
X by B(X) and the set of projections (or idempotent operators) on X by
Proj(X). The Banach algebra of all absolutely continuous functions on the
interval [a, b] C R will be denoted by ACla, b] (or just AC). This forms
a subalgebra of the algebra BV[a, b] of all functions of bounded variation
on [a, b] equipped with the norm

IfIBV = |f(b)| + [‘a’a{]f-

The most usual weak topology on B(X) is the weak operator topology,
which is generated by the linear functionals ¢(A) = (4x, x™) for x € X
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and x* € X". It is well-known that if X is reflexive then the closed unit
ball of B(X) is compact in the weak operator topology, and so any Banach
algebra homomorphism mapping in B(X) is compact in this topology. On
the space B(X") one can also consider the weak- * operator topology which
is the locally convex topology generated by the functionals ¢(4) = (x, Ax")
for x € X and x* € X*. The following lemma can be proved by adapting
your favourite proof that for any Hilbert space /# the unit ball of B(#) is
weak operator topology compact.

LEMMA 2.1. Let X be any Banach space. Then the closed unit ball of
B(X") is compact in the weak- * operator topology.

We shall need the following corollary of a theorem of Barry in order to
show that certain nets of operators converge in the strong operator topology
on B(X). Anet {T,} ., of operators on X is said to be naturally ordered
if T, TB = Tp T =T, whenever g >a.

LEMMA 2.2. Let {T,} ., bea naturally ordered net of operators on X and
suppose that there exists a weak operator topology compact subset S C B(X)
such that T, € S for all « € A. Then {T,} ., converges in the strong
operator topology.

PROOF. Suppose that x € X and a € A. Then as S is weak operator
topology compact, there exists a subnet {Ty}rer of {T } ., With weak op-
erator limit T say. Thus, for all x* € X", (T,x, x*y = (Tx, x*), and so,
by the properties of subnets, Tx lies in the weak closure of {Tﬂx: B >a}.
In other words

Tx €[\ wk-cl{Tyx: f > a}.
a

A theorem of Barry [1] shows that the non-emptiness of this set is a sufficient
condition for the net {7} ., to converge in the strong operator topology.
We shall show that when the AC functional calculus for T is weak oper-
ator topology compact, then 7' will possess a type of diagonalization called
a spectral family.
DEFINITION 2.3. A spectral family of projections on a Banach space X is
a projection-valued function E: R — Proj(X) such that

(i) FE isright continuous in the strong operator topology and has a strong
left hand limit at each point in R;
(ii) E is uniformly bounded, that is there exists K < oo such that
IEQA)| < K forall A€ R;
(ii) E(A)E(n) = E(W)E(A) = E(min{A, u}) forall A, peR;
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(iv) E(A) — 0 (respectively E(A) — I) in the strong operator topology
as A — —oo (respectively 4 — oo).
If EA)=0 forall A<aeR and E(A) =1 forall A >b € R, then we say
that E is concentrated on [a, b}.

Spectral families possess a well-developed integration theory. Suppose that
{E(A)},cg 1s a spectral family concentrated on the compact interval J =
[a, b]. Let & denote the directed set of all partitions of [a, b] (partially
ordered by inclusion). If g € BV[a, b], the algebra of functions of bounded
variation on [a, b], then the sums

F(g, N =g@E@)+ Y gd)EWMA)—E@,_,))
A€A

converge as the partition A € £ gets finer. This limit is denoted by
fJ69 g(A)dE(A). The map g fJea g(A)dE(A) is a continuous Banach al-
gebra homomorphism from BVi{a, b] to B(X) (and this homomorphism
turns out to be compact). The details of this theory may be found in [6] or
[5].

General well-bounded operators have an integration theory with respect to
a family of projections known as a decomposition of the identity.

DEFINITION 2.4. A decomposition of the identity (for X) is a family of
projections {E(4)},. C Proj(X™) such that

(i) E is concentrated on some compact interval J = [a, )] CR;

(ii) E(A)E(u) = E(u)E(A) = E(min{A, u}) forall A, ueR;

(iii) E is uniformly bounded;

(iv) for all x € X and x* € X", the function A — (x, E(A)x") is
Lebesgue measurable;

(v) forall x € X, the map y : X" — L%[a, b], x™ — (x, E(-)x") is
continuous when X' and L*[a, b] are given their weak-* topolo-
gies as duals of X and Ll[a, b] respectively;

(vi) for all s € R, if the map A — E(A) has right weak-* operator
topology limit at s, then this limit is E(s).

Our definition is slightly different from that originally introduced by Ringrose
[9]. He used the following right continuity condition instead of the above
condition (vi).

(vi) forall xe X, x* € X" and s € [a, b), if the map

t
- / (x, E(A)x") dA
a
is right differentiable at s, then the value of its right derivative at

that point is (x, E(s)x").
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It is easy to see that condition (vi)’ is a stronger condition: suppose that
{E(A)} satisfies conditions (i)-(v) and condition (vi)', and that E(A) has a
weak- * operator topology limit E as A — s*. Fix x € X and x* € X~.
Then (x, (E(1)—E)x*) — 0 as 4 — s . A calculation along the lines of the
fundamental theorem of calculus shows that the map ¢ +~
i) a' (x, (E(A)— E)x™)dA is right differentiable at s with right derivative zero.
It follows from (vi) that the value of this right derivative is (x, (E(s) —
E)x"). Hence E(s) = E as required. Condition (vi) and Lemma; 2.2 imply
that a decomposition of the identity on a reflexive space is always formed
from the adjoints of a spectral family.

Given a decomposition of the identity, one may define an operator on X
by

(Tx, x™) = b(x, x") /b(x, EQx"dA,  (xeX,x e€X").

An induction proof shows that such an operator is necessarily well-bounded.
Details of this integration theory and the functional calculus (for 7*) which
it produces are given in Section 4.

3. The spectral theorem

Suppose that [a, b] is a compact interval of the real line and that y:
AC[a, b} — B(Y) is an algebra homomorphism taking values in the bounded
operators on a Banach space Y. For A €[a, b) and d € (0, b—A), let 915
be the set of all real-valued functions f € AC[a, b] such that f =1 on
[a,2], f=0o0n [A+6,b] and f is decreasing on [4,4 +J]. Let g, ;
denote the element of & .s Which is linear on [4, A+ J]. Heuristically
the idea is to produce projections in B(Y) using the “nearly idempotent”
functions g, , in AC(J).

Let T be some topology on B(Y). Define

%, 5 =1Aw(f): f€F, ;} CBY),

Z= (%5
>0
&, = {S € B(Y): S is a t-cluster point of {¥(g; 5)};,0} C %,

For A<a,let #, =% = {0} and for 1> b, let %, =%, = {I}. The sets
{Z,},cx are called the K-sets for y (relative to 7). In general, some of the
K-sets for such an algebra homomorphism may be empty, but this cannot
happen if we have some compactness. In what follows, 7 will be either the
weak operator topology or the weak- * operator topology.
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LEMMA 3.1. Let Y be a complex Banach space, let T be a total linear
subspace of Y", and let © denote the weak topology on B(Y) given by the
linear functionals ¢(A) = (Ay,y") and y € Y and y* € I'. Suppose that
y: ACla, b] — B(Y) is a t-compact algebra homomorphism such that for
all f € ACla, b], w(f)'T cI. Then the K-sets for y relative to 1 satisfy
the following properties:

(i) @#6 CZ CProj(Y) forall AeR;
(ii) if A<u, E€Z and F € %, then EF = FE=E;

(iii) the sets %, are uniformly bounded; that is, there exists a constant K

such that |E|| < K for all E € ;g %,;;

(iv) for each A €la, b), all the elements of %, have the same range.

PROOF. Aseach .Z s is non-empty and norm bounded (Jf |5, <1 forall
fes, .5),and y is T-compact, it follows that each set .Z; ; is a non-empty,
7-compact subset of B(Y). Also, since J, < J, implies jlﬁ 5 C ﬁZA 5> the
sets {,ﬁj’ s}s>0 have the finite intersection property and so by compactness
%, is non-empty and 7-compact. Let

A, ={yeY:y(f)y=0 forall feu, (1-F ;)}.

We shall show that .#, is the range of every element of %7, . Suppose that
y€ A and E € %, . If we fix § > 0, then there exists a net {g,} ., in
&, s such that, forall y" eT

(Ey,y") = lim(y (g,)y, y = Hm((/ =y (L)), "),

where f,=1-g €1~ ;. Thus (Ey,y") =(y, y"). It follows (since T
is total) that Ey =y andso y € RanE. Thus .#, C RanE.

Suppose now that Ey = x and that for some 6 >0, f el —Z,J. To
show that x € #, we must show that y(f)x = 0. Fix ¢ > 0. Then,
as f is a continuous increasing function, there exists d, > 0 such that
0< f(r) <e/2 for t€[A,A+4)]. Thus, as E € %,50 , there exists a net
{8,}aeq In .Z’(,o such that E = t-lim , y(g,). Forall a € 4,

b b
18, 0py = / (fg,)] = / '8+ fg

A+d, , A+0, , A+dy e [* ,
< [l [ gns [+ [ 16
A i A A
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i = [P f = f(A+6,) <e/2. Thus, forall y* €T,
Kw(H)x, y) = (w(f)Ey, y) =KEy, w(f)'y")
= Jlim(u(e, )y w()'y")| (since w()y" €T)

= |tim(y (r2,). y*>| < sup Iy (/&) Il 1Y
a acAd

< Iyliy i vlle.

Since T is total and ¢ is arbitrary, y(f)x =0 and so RanE C .#4,. This
completes the proof that for E € Z,, .#, = RanE. Note that the first part
of this proof shows that Ey =y forall y e RanE, so E € Proj(Y).
Suppose now that a < A < u < b, that E;, € .Z,, and that E,6 € ﬁ;
We shall show that E;E = E;. Let 0=u—4and p=>b-—pu. Then, as
E;€Z, CXZ 5, there ex1sts anet {g },., of functionsin & ; such that

EA =7 hmae 4 n//(g ). Similarly, there exists a net {hﬂ} peB of functions in
Z, , such that E, = t-limg g w(hy). Thus, for y €Y and y*erl,

(EEy,y') = Hm(y(g,)E,, ¥y )= H(E,y, y(g,) ¥)-
By the hypothesis, w(g )*y" €T forall a € 4, so
(E,E,y. v") = tim{ v,y wig)'y")
~ tim {tim(w(,1p)v. »")}
~ tim {im(w (e, 5"
as gahﬂ=ga forall a€ 4 and B € B. Thus

(ELE,y, V") =(Ew,¥")

andso E.E = E, . An almost identical proof shows that E ”E . =E,.
To see that the sets are uniformly bounded, it suffices to note that for
A€la,b) and 6 € (0,b-14),

5 C - w(f): 1/ gy < 1} € {U € BY): U < I}

This is because the unit ball in B(Y) is closed in the © topology.

It remains to show that @ # &, C %, . Fix A € [a, b). Note that the net
{w(g; 5)}s50 is eventually in each of the 7-compact sets .Z; ;. It must there-
fore have a t-cluster point and all such points must lie in the intersection,
%, , of these sets.
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Under the conditions of Lemma 3.1 then, the K-sets for y are always
nonempty. In general the nets {g; ;};,, need not have alimit point however,
so %Z, will contain more than one projection. However, if 7 is the weak
operator topology, then the K-sets each contain a unique projection.

LEMMA 3.2. Under the conditions of Lemma 3.1, if T = Y* (that is, ©
is the weak operator topology on B(Y)), then the K-sets %, for y are all
singleton sets.

Proor. That %, is a singleton if A < a orif 4> b is true by definition.
We shall show that if A € [a, b), and J € (0, b — 4) then 7, ; is commu-
tative. This will imply that %, is also commutative. Since two commuting
projections with the same range must be identical, Lemma 3.1 will imply that
each of the K-sets contains just one element.

Suppose that E, and E, areelementsof %, ;. Then E, = - hmmE L v(g, )
and E, = 1- llmpeB l//(h ) for some nets {g } ., and {hﬂ}ﬂeB in & ;
Thusif y €Y and y* eY

(E\Eyp, ) = lim(y(g,)Eyy, y') =m(E,y, w(g,) y)
= lim {},lg(w(h,g)y, w(g,) ¥y )} = lim {gg(w(gahﬂ)y, y )}
= lim {}glg};(w(h,,)w(ga)y, y )} = hm(E,p(g,)y,y)
= lim(y(g,)y, E;)") = (E\y, E}y")
= <E2E1y s y*) .
Thus E\E, = E,E, and so %, ; is commutative.

Actually, the same proof can be used to show a little more.

LEMMA 3.3. Let the K-sets for w be as in Lemma 3.1 and suppose that
A €R. Then ifthere exists E € %, suchthat E'T C T then Z, is asingleton.

LEMMA 3.4. Let y, t and the sets %, be as in Lemma 3.1. For all
A€la,b), let E(A) € €, bea t-cluster point of {y(8) 5)}s.0- Then for all
yeY and y* €T, and all s €|a,b),

(i) the map A — (E(A)y,y") is a bounded measurable function;
(ii) for all f € ACla, b],

b
W)y, v ) =fb)y,y") - / S'ONE@)y, y'yda
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(iii) if E(A) has right t-limit as A — s*, then this limit is E(s);
(iv) if the map t — f;(E(A)y, y*VdA is right differentiable at s, then the
value of this right derivative is (E(s)y, y*).

PrOOF. For all y € Y and y* € ", the mapping f — (w(f)y,y") isa
continuous linear functional on AC(J). Since AC(J) is linearly isometric
to L'(J) @ C, there must be some ¢, ,» €L*(J) and ¢, . € C such that

Wiy = [ W0, dt+e, 4 10)

forall f € AC(J). Taking f = 1 shows that ¢, . = (y,»"). Fix 1 ¢
[a, b). Since E(A) € &, , there exists a net {J,},., converging to zero such
that E(4) = t-lim,_ , ¢(g,; , ). It is easy to see that

. A1+4,
Wsy5)v, 5 =-1/3, [ 9, -0)dr.
v i

The Lebesgue differentiation theorem implies that the right hand side of
the above equation converges to —¢, .(4) almost everywhere as o, —

0. Thus for almost all A € [a,b), ¢, -(4) = —(E(4)y,y"). Since
0y is essentially bounded and measurable, it is clear that the map A —

(E(A)y, y") also has this property (and the uniform boundedness of the K-
sets for y guarantees that this map is actually bounded and not just essen-
tially bounded). We have then that

b
WY,y = FB)p, v - / £ ANE@)Y, y') dA

forall fe€ AC(J).

Suppose now that E(A) has right t-limit £ at s. Fix ye Y and y* €T
and define h(1) = (E(A) — E)y, y"). Clearly h(4) — 0 as 4 — s*. For
0>0,let

ms = leé,sfm)hw and M, = Ae(il,lga)h(l)'

Since

1 S+
mt,gg/S h(A)dA < M,

and m; and M; both approach zero as 6 — 0%, the map

¢
£ / (E@)y, y")da
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is right differentiable at s with right derivative (Ey, y*). However, by the
definition of E(s), there is (as above), a net {J,},., converging to zero such
that

1 s+, . . .
5 [ By, Y di= (e, v, ) (EG), ¥
v vYys
and so E = E(s) as required.

The proof of property (iv) is similar.

These lemmas contain most of the proof of the spectral theorem for well-
bounded operators of type (B).

THEOREM 3.5. Suppose that T € B(X). Then T is well-bounded of type
(B) if and only if there exists a spectral family {E(4)},.g of projections on X
concentrated on some compact interval J C R such that

®
T= / AdE()).
J
If this is the case then the spectral family is uniquely determined.

ProokF. (Necessity) Suppose that T is well-bounded of type (B), that is
that T has a weakly compact AC(J) functional caiculus for some compact
interval J =[a, b)]C R. Let w: AC(J) — B(X) denote the algebra homo-
morphism y(f) = f(T). It is easy to check that if we take ¥ = X and
I' = X7, then y satisfies the conditions of Lemmas 3.1 and 3.2. These
lemmas imply then that the K-sets for ¥ each contain a unique projection
which we shall denote by E(A). We shall show that {E(1)}, ; is a spectral
family. Most of the required properties come immediately from Lemma 3.1.
It only remains to show that {E(1)} has a strong left limit and is strongly
right continuous everywhere. The existence of strong left and right limits
follows from Lemma 2.2. For 4 € [a, b), denote the strong right limit of
E(t) as t — A* by E(A"). It follows immediately that E(A*) is the weak
operator topology limit of E(f) as t —» A* . Combining Lemmas 3.2 and 3.4
shows that E(A*) = E(4).

The necessity proof will be completed by showing that T = f,e AdE(A).
Fix x € X and x" € X*. By Lemma 3.4

b
W(f)x, x) = f(B)(x, x") - / I ANER)x, x*) dA
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forall f e AC(J). Now

([ rae)=.<)

= hm {(f(b)E <2:(f(/1 )= f(A;_1))E(4;)x, x*>}
= f(b)(x, x") - ,{len; {Z(f(ij) = f(A;_)E@A))x, x*)}

* b [} A *
= f(b){x, x )—/ S OUER)x, x")dA.

wire, sy ={( [ raE)x.57)

Since x and x" are arbitrary, this equation, with f(1) = A, shows that
T=[PAdE().

The proofs of sufficiency and uniqueness are quite standard and we refer
the reader to [6] or [2].

Thus

We can now prove the spectral theorem for general well-bounded operators.

THEOREM 3.6. Suppose that T € B(X). Then T is well-bounded if and
only if there exists a decomposition of the identity for X , {E(A)},cg, concen-
trated on a compact interval J = [a, b] C R, such that

b
(Tx,x*)=b<x,x*)—/ (x, EQ)x") di
a
forall xe X and x" € X*.

PROOF. (Necessity) Suppose that 7 is well-bounded, that is, it has an
AC(J) functional calculus ¢: AC(J) — B(X), where J = [a, b] is a com-
pact interval of R. Define y: AC(J) = B(X") by w(f) =&(f)" = f(T)".

Ifwetake Y = X" and '= X ¢ X** in Lemma 3.1, then 7 is the weak- *
operator topology on B(X"). The weak-* operator topology compactness
of the unit ball in B(X") ensures that the algebra homomorphism must be
1-compact. Also w(f)'T c T forall f € AC(J) since this is just saying
that &(f) € B(X) for all such f. Thus we may apply Lemmas 3.1 and
3.4 to produce a family of projections {E(4)},.5 C Proj(X *) which satisfies
conditions (i)-(iv) for a decomposition of the identity.

It thus remains to check that conditions (v) and (vi) hold. Given u €
LI(J), define f (1) = ff u(t)dt. Clearly f, € AC(J) and f;(l) = —u(4)
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(a.e.). Fix x € X and define 4, : L'(J) — X by A, (u) =¢&(f,)x. The
operator A is then clearly continuous and satisfies

b
(A, X"y = (EL)x, x™) = / u()(x, E()x")dA.

Thus A4): X* — L®(J) satisfies
b
(u, A"x") = / w()(x, EQ)x") di.
a

Consequently, A; is the map y_ in the definition of condition (v), and, as

it is the adjoint of a continuous linear map from LI(J ) into X, it has the
required continuity property.

That we can arrange for the family of projections {E(A)} to have the
limited right continuity property of condition (vi) (or indeed of condition
(vi)") follows from Lemma 3.4.

(Sufficiency) Again this is quite standard (see Section 4).

In non-reflexive spaces it is well-known that a well-bounded operator need
not have a unique decomposition of the identity. For such an example see [9,
Section 6]. This non-uniqueness means that the extended functional calculus
for T* which will be presented in Section 4 is not uniquely determined.

4. An extended functional calculus
for well-bounded operators

In this section we shall describe the functional calculus which is obtained
from a decomposition of the identity. Functions in B¥V[a, b] correspond
in a natural way to measures on [a, b]. A consequence of the Lebesgue
decomposition theorem [7, pp. 134, 182] is that such a measure u decom-
poses uniquely as 4 = v, +v, + v, where v, is absolutely continuous with
respect to Lebesgue measure, v, is purely atomic, and v, is the continuous
singular part of u. Let .#° denote the set of all left-continuous functions in
BV{a, b] for which the continuous singular part of the corresponding mea-
sure vanishes. Then each function in .#° may be written as the sum of an
absolutely continuous function plus a left-continuous “saltus” function. We
shall use the decomposition of the identity for T to develop a functional
calculus for 7" for the functions in .#".

Ringrose’s proof of the spectral theorem for general well-bounded oper-
ators proceeds by using the AC-functional calculus for T to produce this
extended functional calculus for 7*. This extended functional calculus is
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then used to define the decomposition of the identity for 7. It has not
been shown however how to define the .#” functional calculus which is nat-
urally associated with a decomposition of the identity. If one proceeds by
using the decomposition of the identity to define a well-bounded operator
T, Ringrose’s proof of the spectral theorem will produce an .#" functional
calculus for T* . However, this is not necessarily consistent with the original
decomposition of the identity since a choice of ultrafilters has to be made to
produce the extension. In other words, it could be that
Yoo (T # E@R).

The extended functional calculus for a particular well-bounded operator need
not be uniquely determined, whereas the functional calculus associated with
a decomposition of the identity is. Our aim here is to produce the extended
functional calculus directly from a given decomposition of the identity. To do
this we consider the absolutely continuous and singular parts of the functions
separately.

Suppose that {E(4)},.q € B(X *) is a decomposition of the identity, con-
centrated on some compact interval [a, b]. Conditions (iii), (iv) and (v) for
a decomposition of the identity ensure that there exists a unique operator
T € B(X) such that

<Tx,x‘)=b(x,x*)-/b<x,E(,1)x*)d/1, (xeX, x"eX").

This operator is known as the decomposable operator associated with T . A
proof may be found in {6, Theorem 15.6] or [9, Theorem 1]. That T is
well-bounded and that for f € AC[a, b]

b
(x, f(T)x") = f(b)x, x7) — / f'A)x, E()x") dA

is a standard induction argument using Fubini’s Theorem (see [9, Theorem
2]). The fact that T is well-bounded implies that this defines a Banach
algebra homomorphism ®: AC[a, b] — B(X"), ®(f) = f(T"). Next we
shall extend this to a larger class of functions which contains the characteristic
functions of intervals of the form («, f8].

Let LCS, be the set of all left continuous step functions on [a, b] which
are zero at a. Every g € LCS, may be written either as

n
&= Zajx(zj_l Al
j=1

where {a =4;, 4,, ..., 4, = b} is some partition of [a, b], or as
g(t) = Z ﬂj s
lj<t
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where B, = a,, ,Bj =a, —aq; (1<£j<n)and B, = —a,. If we let

<I>(x(l‘ l “) = E(4;) — E(4;_,), then we can extend @ to all of LCS, by
j=1°7j

linearity:

D(g) = o (ER)—E@_) =D B(I-E@X))=-) BEX),
j=1 j=0 j=0
since 37_oB; = 0. Clearly then

IR < D IBIHIER)N < Mighgy
Jj=0

where M = sup{||E(4)||: A € R}. Since ® is thus bounded on LCS,, we
can extend it by continuity to the closure in BV[a, b] of LCS, which we
shall denote by LCS.
Suppose then that f € .# . Then f has a unique decomposition
f=1r 4t f:g >
where f, € AC and f; € LCS. Furthermore

|f||BV = 'fAIBV + Ifslm/-
For such f define
O(f) =D(f,) +P(fs)-
This produces a well-defined linear map from .#" to B(X"). Also
1NN < NP+ IPUDN < MU Mgy + MUSshpy < MU Ky

so @ is continuous.

The hardest part is to show that ®: .#" — B(X") is an algebra homomor-
phism. Suppose that f, g € AC® LCS,,. Then f and g can be written
as

n m
F=hH+Y 5  e=8+> 8>
i=1

j=1
where f, g, € AC, f, = &ix(”i_l’#i] andgj =aa a0 Then

o/ =@ ((f+321) (8+Xs))
= D(fy8)) + Y D(fog;) + D_D(fig) + DD D(fg))-
Jj i i
That ®(f,g,) = ®(f;)P(g,) is a consequence of the fact that @ is an algebra

homomorphism on AC[a, b]. It is also not hard to check that ®(fg,) =
®(f,)®P(g;) . The middle terms present more difficulties, however. Consider
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the term ®(f,g;). The splitting ﬁ)gj =h+k with h€ AC and k € LCS,

is given by
0, a<t squ,
h(t) = { o () = fofdy_))s A <t<A,
o (fod) = folA))s A <t<b,
and
0, ast< lj_l ,
k(t) = { o foR,_y), A <t<a,
a;(fold,_) - fH4)), A;<t<b.

Fix x € X and x* € X*. Then
{x, q)(fi)gj)x‘) = (x, (®(h) + D(k))x")

— h(b)(x, x") /b K ()(x, E(Q)x") dA

+{x, ajf;)(lj_l)(E('lj) - E(/lj-l))X*>
06, oy Uolhy_) — oA NE(B) — EG,)x")

lf ' *
= o) = o), 5y [ G, B d

v fo(A_ )% (BR) ~ E(4;_)x")
+ aj(f(‘)(lj_l) - f(‘)('{}))(-x s (I - E(ij))x“)

A [ *
= —q, £ T S, B d
— o, folAi_ )X, E(,_)x") + o, fy(A;)(x, E(4,)x7)
4 ' *
- ——aj/;—l £i@x, EQx")dA

+ o fy(A) 0, EAy_ )XY = o, fyd,_ )¢, E@A,_)x")
+a, fy(A) (0, EQ))x") — o, foA))(x, EGy_)x")

AJ' ’ *
= fy(B)x, (E(,lj)~E(/lj_,))x*)—aj/L £AA)(x, EQ)x")da

+aj(f£)('{j) - fo('{j_l))(x, E('{j_l))x*)
— o, (folb) ~ fad, )k, (B~ EG,_)xX")

4 [ *
= a,f)(x, (B() - EG,_)x) —a, [ For, Ex") di
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+a/ f (A)(x, E(A] l)x)

_a/f (A, (E()) - E(,_)x") dA
= a, B, (B() -~ EG,_)x")

b
a; [ Fi@)x, EWEG,) - EG,_)x")d

b
— £y®)x, ()x") = [ fd)x, EDD(g))x")d
= (x, D(f;)P(g))x").

Thus &( j;,gj) = @ j;,)tb(gj). A similar proof shows that ®(fg,)
= O(f,)P(g,)- Consequently

D(fg) = D(f)D(g,) + Y_ Pf)P(g)) + D P)P(g) + D Y B(f)®(g))
J i i

= O(f)D(g).

The result extends to f, g € .# by the continuity of @.

Finally we remark that the above functional calculus may be obtained by
using the Lebesgue-Stieltjes integral of the function (x, E(-)x") with respect
to the function f € .4 ; more specifically

b
(s S(TH)x") = f(b)(x, x™)— / (x, EQx")df(3), (xeX, x" eX).

It is easy to check that the finiteness of the variation of f, and the bound-
edness of {E(A)} ensure that this integral exists. Again the major difficulty
with this approach is showing that the map f +— f{( T") is multiplicative.
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