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SUMMARY

This paper seeks to establish the concept that the analysis of high temporal resolution meteorological
data adds value to the investigation of the effect of climatic variability on the prevalence and severity
of agricultural pests and diseases. Specifically we attempt to improve disease potential maps of root rots
in common beans, based on a combination of inherent susceptibility and the risk of exposure to critical
weather events. We achieve this using simulated datasets of daily rainfall to assess the probability of heavy
rainfall events at particular times during the cropping season. We then validate these simulated events
with observations from meteorological stations in East Africa. We also assess the utility of remotely sensed
daily rainfall estimates in near real time for the purposes of updating the risks of these events over large
areas and for providing warnings of potential disease outbreaks. We find that simulated rainfall data
provide the means to assess risk over large areas, but there are too few datasets of observed rainfall to
definitively validate the probabilities of heavy rainfall events generated using rainfall simulations such as
those generated by MarkSim. We also find that selected satellite rainfall estimates are unable to predict
observed rainfall events with any power, but data from a sufficiently dense network of rain gauges are not
available in the region. Despite these problems we show that remotely sensed rainfall estimates may provide
a more realistic assessment of rainfall over large areas where rainfall observations are not available, and
alternative satellite estimates should be explored.

I N T RO D U C T I O N

Pests and diseases are a major cause of low productivity in crops and livestock
worldwide (Oerke et al., 1995) and particularly in sub-Saharan Africa where there
are few resources to invest in protection in the form of pesticides, vaccines, etc.
(Homewood et al., 2006; Otsyula et al., 2004; Williamson et al., 2008).

A number of pest and disease outbreaks are triggered by climatic factors (Table 1).
For some biotic stresses the general seasonal conditions are most important while for
others the timing of rainfall or dry spells within a season is crucial when they coincide
with susceptible periods of plant or animal growth, such as in the case of aflatoxins
(Aspergillus spp.) in groundnuts (Arachis hypogaea). Risk management is an integral
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Table 1. Examples of crop pests and diseases associated with specific climatic conditions.

Target Pest/disease Climate favouring outbreak

Cattle Rift valley fever Moist conditions
Groundnut (Arachis) Aflatoxin Dry spell during pod filling
Potato (Solanum tuberosum) Late blight (Phytophthora infestans) Moist conditions
Maize (Zea mays) Maize streak virus Moist conditions
Cassava (Manihot eculenta) Cassava mosaic virus Moist conditions
Sorghum (Sorghum bicolor) Mould/smut (Fusarium moniliforme) Dryer conditions
Sorghum Charcoal rot (Macrophomina

phaseolina)
Soil moisture stress

Cattle Sleeping sickness
(trypanosomiasis)

Rainfall and temperature

Common bean (Phaseolus vulgaris) Root rots (Pythium spp.) Free water in soil post-germination
Chickpea (Cicer arietinum) Stem rot (Sclerotinia sclerotiorum) Cool and wet conditions
Banana (Musa spp.) Black sigatoka (Mycosphaerella

fijiensis)
High relative humidity and water
on leaves

Pearl millet (Pennisetum glancum) Smut (Tolyposporium pennicillariae) Warm temperature, moderate
humidity and low windspeed

Pearl millet Ergot (Claviceps fusiformis) Moderate minimum temperatures
and water on leaves

Sources: Ford and Leggate, 1961; Fry and Goodwin, 1997; Haware, 1990; Jésus et al., 2008; Kousik et al., 1988;
Morton, 2007; Mouliom Pefora, 1991; Nene, 1979; Reddy and Sulochanamma, 2008; Rogers et al., 1996; Thakur
et al., 1991.

component of coping with the effects of natural hazards (Baez and Mason, 2008)
and the use of meteorological data is among the risk management strategies available
to producers to help assess the probability of events that foster the transmission or
prevalence of pests and diseases. The analysis and monitoring of extreme weather
events, and where possible their prediction, can help researchers, extension agents,
farmers and pastoralists invest in the most appropriate risk management strategies
(Cooper et al., 2008) and prepare for the effects of changes in climates (Garrett et al.,
2009).

In this paper we focus on one example of a disease which is triggered by particular
climatic conditions. The fungal disease bean root rot complex (Pythium spp., Fusarium

solani subsp. phaseoli, Rhizoctonia solani) has a major impact on bean yields throughout
its range in Africa (Otsyula, 1994). Each year, the disease affects the livelihoods of
millions of people who depend on beans for food security and income (Wortmann
et al., 1998).

The impact of the disease varies through time. In some years incidence is relatively
low; in others entire crops are wiped out (CIAT, 1992). The distribution and severity
of the disease throughout the East African region is related to the intensity of bean
cultivation, the human population density, soil properties and rainfall (Otsyula and
Buruchara, 2001; Wortmann et al., 1998). The disease varies widely with location;
one area may be disease-free while others are hit badly (Buruchara and Rusuku,
1992). This heterogeneity obstructs adaptation of protective practices, because broad
remedies become cumbersome and inefficient (Ojiem, 2006). In addition protection
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may penalize yield or quality; resistant or tolerant bean varieties may not be preferred
(Otsyula et al., 2003), and seed producers may be unable to respond to demand for
resistant varieties (Otsyula et al., 2004). Cultural practices to cope with disease risk
respond slowly to variations in actual risk of disease or where causality is poorly
understood (Spence, 2003), which may vary significantly during a season depending
on growing season rainfall (CIAT, 1992).

Maps showing the importance of root rots were produced in 1998 based on
expert knowledge and some modelling of soil, human population and farming system
data (Wortmann et al., 1998), but climatic factors were not considered. Root rot
infestation requires free water in the root-zone of the soil since the most important
pathogen (Pythium spp.) is water-borne (Pieczarka and Abawi, 1978). Research in
Rwanda over three growing seasons showed that three-day rainfall totals of at
least 50 mm and up to 130 mm coincided with plant loss rates of up to 55% (of
susceptible varieties). In the one season where no three-day rainfall events greater
than 30 mm were observed, there were far lower plant losses (CIAT, 1992). The
timing of the events was crucial (Abawi et al., 1985) with the period between 17 and
38 days after planting being the most sensitive.

New datasets and tools developed since the creation of the original maps of root rot
incidence allow for the more accurate representation of population and land use and
for the simulation and analysis of daily weather events (Cooper et al., 2008; Jones et al.,
2002).

The objectives of the research presented in this paper are twofold. The first
objective is to produce disease potential maps, based on a combination of inherent
susceptibility and the risk of exposure to critical weather events within a general
vulnerability framework (Alwang et al., 2001). Susceptibility to root rots is determined
by up to date and high resolution spatial datasets of human population density and
the intensity of bean cultivation in bean producing areas of East Africa. Risk of
exposure maps show the likelihood of experiencing rainfall events during specific
periods of the growing season in susceptible areas. The output of this objective allows
accurate targeting of resistant cultivars or other husbandry techniques throughout the
region, and quantitative insights from new models showing current and likely future
incidence.

The second objective is to assess the possibility of within-season monitoring of
rainfall events over large areas using satellite-based rainfall estimating instruments.
This would offer a flexible basis on which to improve predictive models through the
continued acquisition of rainfall data especially when combined with information on
the severity of root rots in any particular area.

M AT E R I A L S A N D M E T H O D S

This study concentrated on the East African countries most affected by root rots in
beans: Rwanda, Burundi, the Democratic Republic of the Congo, Uganda, Tanzania
and Kenya. Further targeting was achieved by the development of a new map of areas
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susceptible to root rots in beans based on population density and the intensity of bean
cultivation.

The probability of experiencing heavy rainfall events in the early growing season was
assessed at key locations within the susceptible areas using daily rainfall observations
simulated by the MarkSim (Jones et al., 2002) software and analysed for high intensity
events using the InStat+ software (University of Reading, 2008). (For further details see
Supplementary Online Appendix at http://journals.cambridge.org/EAG). MarkSim
has been applied in the region for crop simulation modelling (Jones and Thornton,
2000) but has not been used for the analysis of disease risk. The likelihood of simulated
high rainfall events were then compared with rainfall observations from meteorological
stations in Kenya, Uganda and Rwanda.

Finally satellite measurements were assessed for use in further validating the risk
surfaces and for their suitability for in-season monitoring of rainfall events.

Assessing the risk of root rots in East African bean producing areas

Areas susceptible to bean root rots. The association between root rot severity and human
population density, intensity of cultivation and soil properties were based on a model
derived from data collected for the atlas of common bean production in Africa
(Wortmann, et al., 1998). Bean producing areas have not been captured since 1998 and
we assume that production areas have not changed markedly in East Africa relative
to the late 1990s.

We have updated the original root rot map using more recent data on population
density – the Gridded Population of the World Version 3 (CIESIN, 2005) – and the
SAGE Agricultural Lands map for cropping intensity, based on the percentage of
a 5 arc minute cell that is cropped (Ramankutty et al., 2008).Threshold values for
crop intensity and human population density were used to further restrict the area of
analysis. Values of 40% crop intensity and 200 persons per km2 were chosen. These
were then combined using simple map algebra in ArcMap (ESRI) software to create
a map showing areas with both high human population density and high bean crop
intensity (Figure 1).

Risk of exposure to heavy rainfall events. Rainfall during the first few weeks of plant
development has a spatial component but is difficult to capture using conventional
maps of annual or monthly rainfall totals. Averages mask the variability of rainfall
within the year or month as well as the variation between years. To obtain a better
indication of risk one must analyse daily weather data and specifically daily rainfall
observations during the critical period immediately after germination.

Observations from meteorological stations are often not available, incomplete or
in non-susceptible locations. Sample locations were selected in areas susceptible
to root rots in each bean producing area (Figure 2) and simulations of daily
weather were generated for 99 years using the MarkSim Software. For each of
the 24 locations the normal planting dates were identified using expert knowledge
(Table 2) (personal communications, Rubyogo, December 2005, Chirwa, December
2005).
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The daily rainfall data were exported from MarkSim and imported into the Instat+
software (University of Reading, 2008). The Instat+ software has analysis capabilities
designed for climatic data, specifically the identification of specific events. The rules
for assessing risk of root rot were more complex than traditional rainy events but
a combination of these events allowed the calculation of risk. The first step was to
define a monitoring period that started approximately one month before the normal
planting dates and identify the start of rains; a figure of 20 mm over two days was
used for the onset of the rainy season. The next step was to determine the absence
or presence of events with over 50 mm over two days in the period between day
17 and day 38 (after the onset of rains); a more severe test – 100 mm over three
days – was also used. Since all locations had bimodal rainfall patterns the test was
applied to both rainy seasons in the calendar year and the number of seasons where
the rainfall events were experienced was recorded (Table 2). MarkSim successfully
simulated daily rainfall in all but one of the locations for which the software had no
climate data.

These frequencies were used to produce maps of risk over large areas when the
point data were interpolated to produce a risk surface (Figure 3). The frequency
values were interpolated in the ArcGIS software for all susceptible areas using inverse
distance weighting with a distance decay power value of 2 and using 12 nearest
neighbours.

Validation of exposure risk

Little information has been collected on the frequency of root rot incidence in
beans across East Africa. Data collected in Rwanda in the early 1990s (Buruchara
and Rusuku, 1992) concentrated on yield loss rather than frequency: reports from this
period showed that the severity of losses was greater in some regions in Rwanda than
others, which might be due to differences in rainfall patterns. However, differences
between neighbouring fields were also observed, which serves to remind that causality
of incidence is complex, with soil fertility being another important factor.

Comparison between observed and simulated heavy rainfall events. Observed daily rainfall
data were made available for this study in four locations in East Africa: Katumani
in Eastern Province in Kenya, Kabete in Central Province in Kenya, Namulonge in
Central Uganda and Kigali in Rwanda (Figure 2). The longest time series available
was for Katumani, where 41 years of continuous observations between 1961 and 2001
were recorded. Daily rainfall amounts were observed for 30 years in Kabete, 32 years
in Namulonge and for 11 years at Kigali.

The observations were imported into the Instat+ software and the same process
followed as described above (Risk of exposure to heavy rainfall events) to determine the
number of heavy rainfall events during the post-germination period. Additional
simulations were generated using MarkSim at the same locations as the meteorological
stations. At such sites MarkSim can use observed climatic normals for rainfall, or the
values built in to the software. We decided to use those built-in, to match the simulations
at sites where there is no station (cf. Hartkamp et al., 2003).
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Table 2. Sample locations† with number of years with heavy rainfall events (simulated by MarkSim) per 99 years.

Main season Other season Average

MarkSim
ID Country Latitude Longitude Start

Day number
for monitoring
start of season

50 mm
over 2
days

100 mm
over 3
days Start

Day number
for monitoring
start of season

50 mm
over 2
days

100 mm
over 3
days

50 mm
over 2
days

100 mm
over 3
days

(a) Central Kenya −1.168 37.949 March 32 36 22 September 213 53 34 45 28
(b) Central Kenya −0.514 37.069 March 32 36 17 September 213 24 6 30 12
(c) Tanzania −3.310 37.485 March 32 37 9 September 213 9 1 23 5
(d) Western Kenya 0.640 35.783 Feb–April 32 20 4 Aug-Oct 213 15 0 18 2
(e) Uganda 0.490 30.223 March 32 36 10 September 213 39 5 38 8
(f) Uganda 1.585 33.865 March 32 1 0 September 213 0 0 1 0
(g) Uganda 3.049 30.865 March 32 37 7 September 213 48 13 43 10
(h) Burundi −4.130 30.032 March– April 60 67 17 Sept–Oct 244 36 12 52 15
(i) Rwanda −1.992 30.470 March– April 60 38 6 Sept–Oct 244 32 5 35 6
(j) Burundi −2.522 30.024 March–April 60 No data No data Sept–Oct 244 No data No data
(k) Burundi −3.397 29.671 March–April 60 29 2 Sept–Oct 244 17 3 23 3
(l) Rwanda −2.631 28.981 March–April 60 20 0 Sept–Oct 244 18 1 19 1
(m) Burundi −2.884 29.199 March–April 60 33 4 Sept–Oct 244 27 8 30 6
(n) Burundi −3.616 30.007 March–April 60 45 8 Sept–Oct 244 23 2 34 5
(o) Rwanda −1.575 29.561 March–April 60 28 3 Sept–Oct 244 14 1 21 2
(p) Rwanda −1.676 30.108 March–April 60 31 3 Sept–Oct 244 16 1 24 2
(q) Uganda −1.214 30.041 March 32 19 4 September 213 19 3 19 4
(r) Uganda −0.574 30.361 March 32 22 0 September 213 14 1 18 1
(s) Western Kenya −0.574 34.576 Feb–April 32 34 6 Aug-Oct 213 29 8 32 7
(t) Western Kenya −0.524 35.165 Feb–April 32 37 8 Aug-Oct 213 23 2 30 5
(u) Western Kenya 0.149 34.669 Feb–April 32 41 7 Aug-Oct 213 44 16 43 12
(v) Western Kenya 0.157 34.282 Feb–April 32 29 4 Aug-Oct 213 45 3 37 4
(w) Uganda 0.637 33.087 March 32 28 2 September 213 29 2 29 2
(x) Uganda −0.229 31.656 March 32 24 7 September 213 28 0 26 4

†Sample locations are indicated on Figure 2.

https://doi.org/10.1017/S0014479710000980 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0014479710000980


Risk of root rots in common beans in East Africa 363

Table 3. Rwanda Meteorological Service stations with available rainfall data.

Station Start date Finish date
Years with at least
1 month missing

Kigali January 1998 December 2008 0
Gisenyi March 2002 December 2008 0
Gikongoro January 1998 December 2008 7
Byumba January 2007 December 2008 0
Kamembe January 2004 May 2009 0

TRMM validation of risk surfaces

Alternative sources of ‘observed’ daily rainfall are satellite-based instruments that
measure the characteristics of clouds to estimate rainfall on the ground. One of these
sources – the Tropical Rainfall Measuring Mission (TRMM) – is assessed here as an
alternative to ground measuring stations to validate the assessment of heavy rainfall
events and to investigate the potential of remotely sensed rainfall estimates for in-season
monitoring and early warning of root rot outbreaks.

The TRMM has five principal instruments: a precipitation radar, a microwave
imager, a visible and infra-red scanner, a cloud and earth radiant energy scanner
and a lightning imaging scanner (NASA, 2006). The principal dataset used in this
section is the daily rainfall estimates dataset derived from the 3B42 v6 algorithm
which combines data from TRMM microwave and infra-red instruments (Huffman
et al., 2007). The data are available from 1998 and have a spatial resolution of 0.25◦ ×
0.25◦ between latitudes of 50◦S and 50◦N.

Given the relatively small number of years that TRMM has been providing
observations the source is not suitable for validating the probability of heavy rainfall
events in a season (using MarkSim simulated daily rainfall). Instead we assessed the
quality of the TRMM daily rainfall data using rainfall observations from stations in
just one country in East Africa – Rwanda.

Observed rainfall data from five stations of the Rwandan Meteorological Service
(RMS) were available and TRMM daily rainfall estimates data were extracted for
the period 1998–2008 for grid cells that coincided with the RMS stations. For the
purposes of monitoring conditions conducive to root rots in beans the most appropriate
indicator for validating the TRMM estimates was a three-day running rainfall total
during the growing seasons. Rainfall records for Kigali airport meteorological station
were complete for the period 1998–2008 while there were gaps for the stations at
Gisenyi and Gikongoro and serious gaps for Byumba (Table 3). Data for Kamembe
airport had yet to be verified so were not analysed.

We focused the analysis on the start of the growing seasons, which are between
February and April inclusive and between September and November inclusive.
Different rainfall amounts were chosen ranging from 100 mm over three days
(which is rarely encountered) to 25 mm over three days which was almost always
exceeded.
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Table 4. Percentage of bean growing areas in East and Central
Africa susceptible to root rots.

Country
Total bean growing

areas (ha) Susceptible (ha) %

Burundi 2 648 000 841 000 32
DRC 17 304 000 32 000 0
Kenya 13 655 000 1 248 000 9
Rwanda 2 197 000 929 000 42
Tanzania 10 825 000 45 000 0
Uganda 16 310 000 2 136 000 13

DRC: Democratic Republic of the Congo.

Figure 1. Combination of crop intensity and population density to focus on bean areas susceptible to root rots. Pink
signifies non-bean areas; grey areas excluded according to two criteria; light green areas are excluded by one criterion;

dark green areas satisfy both criteria. DRC: Democratic Republic of Congo.

R E S U LT S

Risk of root rots in East African bean producing areas

Areas susceptible to bean root rots. The areas susceptible to bean root rots are concentrated
in two main regions: (a) the highlands of Rwanda, Burundi and South western Uganda,
and (b) the northern shore of lake Victoria and the highlands of western Kenya. There
are other smaller areas scattered in Central and Eastern provinces of Kenya and in
the Kilimanjaro massif in north-eastern Tanzania. In terms of the proportion of the
bean areas in each country affected the most susceptible was Rwanda while the least
susceptible was the Democratic Republic of the Congo (Table 4).
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Figure 2. Locations of MarkSim simulations in bean areas susceptible to root rots. Meteorological stations shown as
red circle, MarkSim simulation locations shown as black circles (sample locations given in Table 2 are identified by
letters in parentheses). Pink signifies non-bean areas; white areas excluded according to one or two criteria; olive green

areas satisfy both criteria. DRC: Democratic Republic of Congo.

Risk of exposure to heavy rainfall events. The locations with the highest risk of heavy rainfall
events during the period immediately after germination are in southern Burundi, a
small area in northwest Uganda, the Kakamega area of western Kenya and in Kitui
in Eastern Province of Kenya. Areas with lower risk are in western Rwanda and
southwest Uganda. Despite a range of environments from humid to semi-arid the
range of probabilities is not large, and surprisingly some of the locations with the
highest probabilities of heavy rainfall events (such as eastern Kenya and eastern
Rwanda) do not have high seasonal rainfall totals.

Validation of exposure risk

Comparison between observed and simulated heavy rainfall events. The differences between
the numbers of seasons with heavy rainfall events in the susceptible period according
to observed and simulated daily rainfall were not large and did not show consistency
between locations or seasons (Table 5). For instance at Katumani there were more
‘risky’ seasons according to the simulated data using MarkSim than with the observed
data; this is also true in the case of Kigali. In contrast for Kabete there were more
risky seasons using observed data than the simulated daily data for the main season,
but this was reversed in the second season – a similar pattern to the comparison at
Namulonge.
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Figure 3. Probability of rainfall events exceeding 50 mm in 3 week post-germination susceptible period. MarkSim
simulation locations shown as black circles. White = non-bean areas; grey = excluded according to one or two criteria;

yellow = <20%; green = 20–30%; blue = 30–40%; dark blue = >40%. DRC: Democratic Republic of Congo.

The comparison between the observed and simulated rainfall events is between two
binomial distributions, where each season either experiences a heavy rainfall event or
not. Our hypothesis was that the probability of the heavy rainfall event was the same
for each distribution. This hypothesis was only rejected at the 5% confidence level for
the second season at Katumani (Table 5).

TRMM validation of risk surfaces

Results are organized for each of the four stations in Rwanda: Kigali, Gisenyi,
Gikongoro and Byumba. Greatest attention was paid to the results obtained from
Kigali since it had the longest and best quality weather data available.

A plot of the three-day running totals (calculated daily) from the TRMM and
observed rainfall data at Kigali showed a lack of a clear relationship between the totals
from TRMM and from meteorological stations (R2 = 0.204). The TRMM data give
slightly higher three-day totals although there are more extreme rainfall events (e.g. >
100 mm) in the observed dataset.

Graphs were also produced for individual years, with a range of predictive capacities
of the observed cumulative rainfall using just TRMM estimates between R2 = 0.05 in
2008 and 0.64 in 2002.

These predictive models investigate the relationship between the TRMM wet events
and the observed wet events on a daily basis, but they do not show the differences
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Table 5. Comparison of number of seasons with heavy rainfall events using observed and simulated
(MarkSim) daily rainfall data for four locations in East Africa.

% of main seasons with % of other seasons with

No. of years
50 mm over

2 days
100 mm

over 3 days
50 mm over

2 days
100 mm

over 3 days

Katumani, Eastern Kenya (a)
Observed 41 22 5 27 5
Simulated 99 35 13 45 14
p-value∗∗ 0.12 0.15 0.04 0.12
Kabete, Central Kenya (b)
Observed 30 47 20 17 3
Simulated 99 39 11 22 7
p-value∗∗ 0.48 0.21 0.51 0.46
Namulonge, Uganda (c)
Observed† 32 19 3 19 3
Simulated 99 25 7 13 1
p-value∗∗ 0.45 0.42 0.43 0.40
Kigali, Rwanda (d)
Observed 11 36 0 18 0
Simulated 99 36 6 22 5
p-value∗∗ 1.00 0.40 0.76 0.45

Main season: a, b, c = March; d = Mid-March–early April. Other season: a, b, c = September; d =
Mid-September–early October.
†1991 main season observations not available but other season (September–November) observations
were available.
∗∗The p-value is the significance level for the test that the two proportions are equal.

in the experience of at least one heavy rainfall event during the growing season. An
alternative approach is to analyse threshold values of three-day rainfall events in any
particular growing season (i.e. the same as that used to examine the rainy events in
the analysis of the TRMM data conducted previously by the authors).

The summary of the presence of different events (Table 6) shows that the amount
of trigger events is broadly similar between the observed and the TRMM rainfall
data. When the individual years are analysed separately the coincidence between
the two datasets is not as strong, especially for the 50 mm trigger rainfall events
where the trigger rainfall amount is estimated correctly in only 55% of the three-
monthly periods. Observed data for Byumba station were only available for 2007 and
2008 limiting the power of the comparison with the TRMM data. More data were
available for the station at Gisenyi but the number of matches is low compared
to Kigali, with the number of false negatives very large. There are gaps in the
observed rainfall data for Gikongoro, with only 2008, 2003, 1999 and all but the
first week of 1998 complete. All the other years have some months missing and
only the second season in 2004 was complete. As with Gisenyi the number of false
absences in Gikongoro is far greater than the false presences of heavy rainfall events.
The seasonal totals of the observed rainfall were also greater than the TRMM
estimates.
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Table 6. Comparison of total number of seasons with rainfall events and season by season comparison of
absence/presence of events 1998–2008 at Kigali.

No. of seasons (n = 22) Percentage of seasons

Rainfall event TRMM Observed TRMM Observed Match False presence False absence

100 mm in 3 days 0 0 0 0 22 0 0
50 mm in 3 days 12 12 55 55 12 5 5
40 mm in 3 days 16 17 73 77 17 2 3
35 mm in 3 days 17 19 77 87 16 2 4
30 mm in 3 days 19 21 86 95 18 1 3
25 mm in 3 days 20 21 91 95 19 1 2

The TRMM therefore provides little power for predicting these three-day rainfall
events at the meteorological stations.

D I S C U S S I O N

The research presented in this paper outlines a new use of simulations of daily rainfall,
and specifically a new use of the MarkSim software. The value of these simulated data
is increased when they are combined with climatic statistical and spatial tools, and
they demonstrate the use of such data for targeting both strategic research and specific
interventions to tackle crop pests and diseases. This research is particularly pertinent
in the face of potential changes in rainfall patterns over the coming decades (van de
Steeg et al., 2009).

Although no ‘ground truthing’ was possible in this study, the map of the probability
of root rots appears consistent with the previous map of root rot severity (Wortmann
et al., 1998). Nevertheless the revised map can be improved by using MarkSim
simulations of daily rainfall over all the susceptible areas rather than interpolating
between the 24 locations that were sampled in this study as well as alternative
interpolation methods such as kriging (e.g. Grimes et al., 1999). This will require a more
automated procedure for the identification of heavy rainfall events. The variation in
risk of heavy rainfall events shown here does not show a simple correlation with annual
or seasonal rainfall averages and thus provides a novel tool for targeting the promotion
of root rot resistant bean varieties and other cultural practices for modifying the soil
structure and improving soil fertility. This tool can be modified for other pests and
diseases and for other crops or agricultural technologies. Nevertheless the research
here has shown that the spatial scale at which pests and diseases are manifest will limit
the usefulness of the tool since MarkSim currently has a spatial resolution of 18 km.
Differences in root rot incidence and severity within and between plots are due mainly
to the build up of pathogens in the soil – which is linked to the soil fertility status and
the cultivation history of a particular plot – and whether a variety is resistant to root
rots.

Plant breeding for resistance to root rots has been ongoing within the Pan African
Bean Research Alliance, but there is often a trade-off between traits. In addition the
resources destined for crop improvement need to be targeted to those areas where
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particular constraints are most severe, both now and in the future. It is currently
difficult to link the rainfall event probability map to actual incidence and severity of
root rots in the region, due to a lack of routine monitoring of outbreaks of the disease.
If monitoring were carried out it would allow for better calibration of the model and
also an even better understanding of the risk. This understanding will be vital for
modelling the incidence of root rots in beans under future climates, especially for
areas where the disease is currently uncommon.

The validation of the MarkSim heavy rainfall events with rainfall observations from
four stations shows that the differences between the two sources were in most cases
not statistically significant. Access to a longer series of observed rainfall data would
be needed to comprehensively assess the simulated dataset in those areas where the
differences between the observed and simulated datasets are large. We are unable to
reject the hypothesis that the distributions of risky rainfall events are the same between
the observed and simulated daily rainfall datasets. We therefore tentatively conclude
that simulated daily rainfall can be used for producing these kinds of risk assessments,
but that the validation could be improved by increasing the sample of meteorological
stations.

The rainfall amounts over the two and three day time steps used in this analysis are
derived from a combination of the probability of rain days as well as the amount of
rain falling on a rainy day. The first of these is derived from the analysis of the daily
data for the meteorological station used to define the climate type, while the amounts
of rainfall depend on the monthly mean rainfall values. Within MarkSim there is
the possibility of updating the monthly mean rainfall amounts for specific locations
and further research could consider the use of summaries of observed data (climate
normals) instead of the interpolated means which are in the MarkSim database. The
thresholds for heavy rainfall events are based on trials carried out in Rwanda and the
results of the risk model are dependent on the rainfall threshold as well as the planting
date. Further research should therefore assess the sensitivity of the model to both of
these factors as well as the size of rainfall events simulated by the MarkSim software
(e.g. Dixit et al., 2011). Specifically research is required on the effect of the gamma
curves which are an essential characteristic of each type of climate within MarkSim
and which define the probabilities of rainfall events.

The biggest problem for the comparison is the relatively short duration of the
observed rainfall records, especially in Kigali which showed the largest differences
between the two datasets. The other problem is the very small number of cases in the
analysis which was restricted due to the lack of meteorological stations with available
observed daily rainfall. Access to a larger set of meteorological observations would
allow a better assessment of the relationship.

Our study of four stations in Rwanda shows that rainfall estimates from TRMM
satellite instruments are poor predictors of rainfall observations, coinciding with
the findings of Dinku et al. (2008). The most complete set of rainfall observations
were available for the Kigali Airport station. Of the six different trigger values the
worst comparison was the 50 mm value, which was incorrectly estimated for 10
of the 22 seasons – either positively estimated when there was no event observed
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or not estimated when the ground station recorded the event. As the trigger value
decreased, the number of seasons when the value was estimated also increased,
which is not surprising due to the frequent occurrence of these less intense rainfall
events.

Comparisons at the other stations were less revealing because the numbers of
complete seasons of observed rainfall were fewer than at Kigali. Both the stations in
Gikongoro and Gisenyi were at the edge of the 25 km × 25 km TRMM cell, and
given the small size of tropical thunderstorms it is possible that rainfall associated
with cloud recorded by the TRMM sensor was not recorded at the meteorological
station. Indeed, given the large decay in correlation of rainfall over relatively small
distances in the tropics (Lebel et al., 1992), especially over short periods, the utility of a
single rain gauge to represent a large area (such as those covered by TRMM pixels) is
limited, and the TRMM may give a better estimate of areal rainfall. While the spatial
variation in rainfall has been shown over different time periods (Grimes and Pardo-
Igúzquiza, 2010) there is no research on the spatial variation of these heavy rainfall
events over short distances, such as could be used to explain the differences between
the TRMM areal estimates and the meteorological stations. The AGRHYMET
cluster of rainfall gauges (Lebel et al., 1992) or the rain gauges managed by the
Ethiopian National Meteorological Agency (Grimes and Pardo-Igúzquiza, 2010) offer
such an opportunity to study the local differences in the frequency of heavy rainfall
events.

TRMM rainfall data are particularly suited to in-season rainfall monitoring due
to the short time between data capture and publication. Typically the data are
available the next day when using the TRMM Online Visualization and Analysis
System (TOVAS) (http://disc2.nascom.nasa.gov/Giovanni/tovas/). The time period
can be set so that cumulative seasonal totals are displayed (Figure 4) or for shorter
periods to monitor within season events. These values would still need to be
validated using observations although the time between observation, verification
and publication would need to be improved. Alternative rainfall estimates from
satellite exist, such as NASA’s Prediction of World Energy Resources (http://earth-
www.larc.nasa.gov/power/), but this has a considerable delay between capture and
publishing and is thus currently not suited to in-season monitoring of rainfall.
Other rainfall products estimated using satellite instruments include the Tropical
Applications of Meteorological Satellites (TAMSAT) method applied to thermal infra-
red imagery from the Meteosat platform (Thorne et al., 2001). The algorithm used
in the TAMSAT method is locally calibrated and has performed well in Africa in
comparison with more complex algorithms like those used to produce the TRMM
rainfall estimates (Teo and Grimes, 2007). The TAMSAT group provides routine
products at 10-day, monthly and seasonal timescales; the decadal and monthly
products are available from the EUMETSAT portal. The TAMSAT estimates thus
offer some promise for in-season monitoring for root rots but would imply access to
daily rainfall estimates.

To conclude, in this paper we have shown the value of long-term meteorological
rainfall observations for assessing the risk of outbreaks of pests and diseases. We have

https://doi.org/10.1017/S0014479710000980 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479710000980


Risk of root rots in common beans in East Africa 371

Figure 4. TRMM rainfall total for Rwanda: February–April 2009. The images and data used in this study were
acquired using the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) as part of the

NASA’s Goddard Earth Sciences Data and Information Services Center.

also shown that where data are sparse simulations may be are able to provide an
acceptable alternative. More rainfall observations from meteorological stations are
needed to check the validity of the results from the simulated data and hence to
improve the confidence in the results from the simulations. The methods used have
shown that these data enable maps of areas susceptible to root rot in beans to be
produced, by showing the long-term probability of heavy rainfall events during a
critical period after germination. These, in turn, can help assess long-term risks or
can be used for early warning within a particular season.

Acknowledgements. The authors would like to acknowledge the African Development
Bank who provided funds through the Association for Strengthening Agricultural
Research in East and Central Africa (ASARECA) to support the project ‘Managing

Uncertainty: Innovation systems for coping with climate variability and change’ which were used,
in part to support this study. The authors are also grateful to the Swiss Agency for
Development and Cooperation (SDC) and the Canadian International Development
Agency (CIDA) for continuing to support the Pan African Bean Research Alliance
(PABRA), which provided additional support to this study. We offer our thanks for the
comments and advice of two reviewers which greatly improved the manuscript, and
for the commitment and enthusiasm of Peter Cooper.

https://doi.org/10.1017/S0014479710000980 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479710000980


372 A N D R E W FA R RO W et al.

R E F E R E N C E S

Abawi, G. S., Crosier, D. C. and Cobb, A. C. (1985). Root rot of snap beans in New York. New York’s Food and Life

Sciences Bulletin 110: 2–7.
Alwang, J., Siegel, P. B. and Jorgensen, S. L. (2001). Vulnerability: A view from different disciplines. Social Protection

Discussion Paper Series No. 0115, World Bank, Washington, DC.
Baez, J. E. and Mason, A. (2008). Dealing with Climate Change: Household Risk Management and Adaptation in Latin America.

SSRN eLibrary. Available at http://ssrn.com/paper=1320666 [Accessed 15 November 2010].
Buruchara, R. A., and Rusuku, G. (1992). Root rots research in the Great Lakes Region, in Proceedings of the Pan-Africa

Bean Pathology Working Group Meeting. Centro Internacional de Agricultura Tropical, Thika, Kenya, 26th – 30th May 1992.
CIESIN (Center for International Earth Science Information Network). (2005). Gridded Population of the World Version 3

(GPWv3): Population Density Grids. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia
University. Available at http://sedac.ciesin.columbia.edu/gpw. [Accessed 17/03/2006].

CIAT (1992). Pathology in Africa. In Bean Programme Annual Report. Cali, Colombia, Centro Internacional de Agricultura
Tropical. December 1992.

Cooper, P. J. M., Dimes, J., Rao, K. P. C., Shapiro, B., Shiferaw, B. and Twomlow, S., (2008). Coping better
with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in
adapting to future climate change? Agriculture, Ecosystems & Environment 126: 24–35.

Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J. and Ropelewski, C. F. (2008). Validation of high-resolution
satellite rainfall products over complex terrain. International Journal of Remote Sensing 29: 4097–4110.

Dixit, P. N., Cooper, P. J. M., Rao, K. P. and Dimes, J. (2011). Adding value to field-based agronomic research through
climate risk assessment: A case study of maize production in Kitale, Kenya. Experimental Agriculture 47: 317–338.

Ford, J. and Leggate, B. M. (1961). The geographical and climatic distribution of trypanosome infection rates in G.

morsitans group of tsetse-flies (Glossina WIED. DIPTERA). Transactions of the Royal Society of Tropical Medicine and Hygiene

55: 383–397.
Fry, W. E. and Goodwin, S. B. (1997). Resurgence of the Irish Potato famine fungus. BioScience 47: 363–371.
Garrett, K., Forbes, G., Pande, S., Savary, S., Sparks, A., Valdivia, C., Vera Cruz, C. and Willocquet, L. (2009).

Anticipating and responding to biological complexity in the effects of climate change on agriculture. IOP Conf.

Series: Earth and Environmental Science 6 372007. doi:10.1088/1755-1307/6/7/372007.
Grimes, D. I. F. and Pardo-Igúzquiza, E. (2010). Geostatistical analysis of rainfall. Geographical Analysis 42: 136–160.
Grimes, D. I. F., Pardo-Igúzquiza, E. and Bonifacio, R. (1999). Optimal areal rainfall estimation using raingauges

and satellite data. Journal of Hydrology, 222: 93–108.
Hartkamp, A. D., White, J. W. and Hoogenboom, G. (2003). Comparison of three weather generators for crop

modeling: a case study for subtropical environments. Agricultural Systems 76: 539–560.
Haware, M. P. (1990). Fusarium wilt and other important diseases of chickpea in the Mediterranean area. In Present

Status and Future Prospects of Chickpea Crop Production and Improvement in the Mediterranean countries, 61–64 (Eds M. C.
Saxena, J. I. Cubero and J. Wery). Zaragoza: CIHEAM-IAMZ,

Homewood, K., Trench, P., Randall, S., Lynen, G. and Bishop, B. (2006). Livestock health and socio-economic
impacts of a veterinary intervention in Maasailand: Infection-and-treatment vaccine against East Coast fever.
Agricultural Systems 89: 248–271.

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y.,
Stocker, E. F. and Wolff, D. B. (2007). The TRMM multi-satellite precipitation analysis: quasi-global,
multi-year, combined-sensor precipitation estimates at fine scale. Journal of Hydrometeorology 8: 38–55. [See also:
http://trmm.gsfc.nasa.gov/3b42.html]

Jésus, W. C., Valadares, R., Cecilio, R. A., Moraes, W. B., Vale, F. X. R., Alves, F. R., and Paul, P. A. (2008).
Worldwide geographical distribution of black sigatoka for banana: predictions based on climate change models.
Scientia Agricola 65: 40–53.

Jones, P. G. and Thornton, P. K. (2000). MarkSim: Software to generate daily weather data for Latin America and
Africa. Agronomy Journal 92: 445–453.

Jones, P. G., Thornton, P. K., Diaz, W., and Wilkens, P. W. (2002). MarkSim, Version 1. A computer tool that gene-
rates simulated weather data for crop modeling and risk assessment. CIAT CD-ROM series, CIAT, Cali, Colombia.

Kousik, C. S., Thakur, R. P. and Subba Rao, K. V. (1988). Influence of environmental factors on production and
dispersal of Tolyposporium penicillariae sporidia. Indian Journal of Aerobiology 1: 85–91.

Lebel, T., Sauvageot, H., Hoepffner, M., Desbois, M., Guillot, B. and Hubert, P. (1992). Rainfall estimation in the
Sahel: the EPSAT-NIGER experiment. Hydrological Sciences Journal 37: 201–215.

https://doi.org/10.1017/S0014479710000980 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479710000980


Risk of root rots in common beans in East Africa 373

Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National

Academy of Sciences 104: 19680–19685.
Mouliom Pefora, A. (1991). Effect of climatic factors on the development of Mycosphaerella fijiensis (black sigatoka

disease) in banana (AAA) in Moungo, Cameroon (1987–1989). In Proceedings of IFS/CTA Regional Seminar Influence

of the climate on the production of tropical crops, Ouagadougou, Burkina Faso. Stockholm/Ede.
NASA (2006). NASA Facts: TRMM Instruments. http://trmm.gsfc.nasa.gov/overview_dir/instrumentfacts.html

[Accessed 15 November 2010].
Nene, Y. L. (1979). Proceedings of the Consultants’ Group Discussion on the Resistance to Soil-borne Diseases of Legumes. Patancheru,

India, International Crops Research Institute for the Semi-Arid Tropics, (ICRISAT), 8th–11th January 1979.
Nyvall, R. (1999). Field Crop Diseases Handbook, Iowa State University, Ames, USA.
Oerke, E. C., Dehne, H. W., Schohnbeck, F. and Weber, A. (1995). Crop Production and Crop Protection: Estimated Losses

in Major Food and Cash Crops. Amsterdam: Elsevier.
Ojiem, J. O. (2006). Exploring socio-ecological niches for legumes in western Kenya smallholder farming systems. PhD thesis,

Wageningen University, The Netherlands.
Otsyula, R. M. (1994). Development of an integrated bean root rot control strategy for Western Kenya. In Proceedings

of a Working Group Meeting of Bean Breeders in the Eastern Africa Region. Kampala, Uganda, Centro Internacional de Agricultura

Tropical, 30th May –2nd June 1994.
Otsyula, R., Rubaihayo, P. and Buruchara, R. (2003). Inheritance of resistance to Pythium root rot in beans (Phaseolus

vulgaris) genotypes. African Crop Science Conference Proceedings 6: 295–298.
Otsyula, R., Rachier, G., Ambitsi, N., Juma, R., Ndiya, C., Buruchara, R. A. and Sperling, L. (2004). The use of

informal seed producer groups for diffusing root-rot resistant varieties during periods of acute stress, In Addressing

Seed Security in Disaster Response: Linking Relief with Development, 69–89. (Eds L. Sperling, T. Remington, J.M. Haugen
and S. Nagoda). International Center for Tropical Agriculture (CIAT), Cali, Colombia.

Otsyula, R. M. and Buruchara, R. (2001). Research on bean root rot in Kenya. In Proceedings of the PABRA Millennium

Workshop. Arusha, Tanzania, 28th May–1st June 2001, 159–166
Pieczarka, D. J. and Abawi, G. S. (1978). Influence of soil water potential and temperature on severity of pythium

root rot of snap beans. Ecology and Epidemiology 68: 766–772.
Ramankutty, N., Evan, A. T., Monfreda, C. and Foley, J. A. (2008). Farming the planet: 1. Geographic distribution

of global agricultural lands in the year 2000. Global Biogeochemical Cycles 22: 1–19.
Reddy, T. Y. and Sulochanamma, B. N. (2008). Effect of minimal amount of supplemental irrigation during drought

stress on yield and quality of groundnut. Legume Research – An International Journal 31 (2).
Rogers, D. J., Hay, S. I. and Packer, M. J. (1996). Predicting the distribution of tsetse flies in West Africa using

temporal Fourier processed meteorological satellite data. Annals of Tropical Medicine and Parasitology 90: 225–241.
Spence, N. 2003. Characterisation and epidemiology of root rot diseases caused by Fusarium and Pythium spp. in beans

in Uganda. Final Technical Report. Horticulture Research International, Wellesbourne, Warwick
van de Steeg, J. A., Herrero, M., Kinyangi, J., Thornton, P. K., Rao, K. P. C., Stern, R. and Cooper, P. (2009).

The influence of climate variability and climate change on the agricultural sector in East and Central Africa—
Sensitizing the ASARECA strategic plan to climate change. Research Report 22. ILRI (International Livestock
Research Institute), Nairobi, Kenya, ICRISAT (International Crop Research Institute for the Semi-Arid Tropics),
Nairobi, Kenya, and ASARECA (Association for Strengthening Agricultural Research in Eastern and Central
Africa), Entebbe, Uganda.

Teo, C.-K. and Grimes, D. I. F. (2007). Stochastic modelling of rainfall from satellite data. Journal of Hydrology 346:
33–50.

Thakur, R. P., Rao, V. P. and King, S. B. (1991). Influence of temperature and wetness duration on infection of pearl
millet by Claviceps fusiformis. Phytopathology 81: 835–838.

Thorne, V., Coakeley, P., Grimes, D. and Dugdale, G. (2001). Comparison of TAMSAT and CPC rainfall estimates
with rain gauges, for southern Africa. International Journal of Remote Sensing 22: 1951–1974.

University of Reading (2008). Instat+TM – an interactive statistical package. Statistical Services Centre, University of
Reading, UK.

Williamson, S., Ball, A. and Pretty, J. (2008). Trends in pesticide use and drivers for safer pest management in four
African countries. Crop Protection 27: 1327–1334.

Wortmann, C. S., Kirkby, R. A., Eledu, C. A. and Allen, D. J. (1998). Atlas of Common Bean (Phaseolus vulgaris L.)

production in Africa, Cali, Colombia, CIAT.

https://doi.org/10.1017/S0014479710000980 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479710000980

