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Abstract

Superposition is a mapping on point configurations that sends the n-tuple (Xl, ..• , Xn ) E

X n into the n-point configuration {xr , ... , Xn } C X, counted with multiplicity. It is an
additive set operation such that the superposition of a k-point configuration in X n is a
kn-point configuration in X. A Poisson superposition process is the superposition in X
of a Poisson process in the space of finite-length X-valued sequences. From properties
of Poisson processes as well as some algebraic properties of formal power series, we
obtain an explicit expression for the Janossy measure of Poisson superposition processes,
and we study their law under domain restriction. Examples of well-known Poisson
superposition processes include compound Poisson, negative binomial, and perrnanental
(boson) processes.
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1. Introduction

A Poisson process (PP) X on a space X is a random point configuration for which the counts
of points in nonoverlapping subsets are independent Poisson random variables. The law of any
Poisson process X is determined by a mean measure ~ on X so that X(A) := #(X n A), the
number of points of X in A ~ X, is a Poisson random variable with mean {(A). The class ofCox
processes generalizes Poisson processes by allowing the mean measure to arise from a random
process. Cox processes are useful models in various applications, including neuroscience,
finance, and quantum mechanics; see Cox and Isham (1980). Boson, or permanental, point
processes appear primarily in quantum mechanical applications. Unlike the Poisson process,
permanental processes incorporate nontrivial dependence between counts in nonoverlapping
regions of X, and so are more appropriate in settings with interaction between points; see
Hough et al. (2006) or McCullagh and M~ller (2006).

In this paper we study a class of point processes related to each of the above processes.
A Poisson superposition process (PSP) is a random point configuration in X obtained from a
Poisson process X in the space seq(X) := Un>O X n of finite-length X-valued sequences by
counting each component of each point in X withits multiplicity. The projected configuration Z
can be regarded as either a random multiset of X or a random integer-valued measure on X for
which Z({x}) = 0,1,2, .... For example, the superposition of X = {(2), (3), (1,3), (2,3, 4)}
is the multiset Z = {1, 2, 2, 3, 3, 3, 4} that counts each component with its multiplicity.
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1014 H. CRANE AND P. MCCULLAGH

k=O,I,2, ....

Many well-known point processes correspond to Poisson superposition processes with a suitable
mean measure, for example, compound Poisson, negative binomial, and permanental processes.

Our main theorems characterize certain structural properties of Poisson superpositions. In
particular, when the mean measure ~ ofthe associated Poisson process has finite mass, we obtain
an exact expression for the Janossy measure as a function of ~ (Theorem 4.1). Conversely, given
the Janossy measure of the Poisson superposition process, we can recover the mean measure of
the corresponding Poisson process (Theorem 4.2). If the mean measure has infinite mass, then
both the Poisson process and the superposition process are almost surely infinite, in which case
the superposition distribution is determined by its restrictions to subsets for which the number
of points is finite with probability 1. The restricted process is also a Poisson superposition, but
the associated mean measure is not obtained by simple restriction of ~ to seq (A) C seq (X)
(Theorem 4.3).

We organize this paper as follows. In Section 2 we review some preliminary properties of
scalar Poisson superposition and Poisson point processes. In Section 3 we discuss measures
on finite-length sequences and prepare our discussion of Poisson superposition processes in
Section 4. In Section 5 we conclude with some familiar special cases of Poisson superposition
processes.

2. Preliminaries: Poisson point processes

Throughout this paper, X is a Polish space with sufficient furnishings to accommodate a
Poisson point process, i.e. X has a Borel a-field 93X containing singletons on which a nonnega­
tive Kingman-countable measure is defined; see Kingman (1993, Section 2.2). Foreshadowing
our study of Poisson processes and their superpositions, we record some facts about Poisson
random variables and scalar superpositions.

2.1. Scalar Poisson superposition

A random variable X taking values on the nonnegative integers Z+ := to, 1, 2, ... } has the
Poisson distribution with parameter A > 0, denoted X "v PO(A), if

Ake-A

JP>{X = k} = kl'

The moment generating function of X "v PO(A)is M).. (t) := exp{A(et -I)}, from which infinite
divisibility and the convolution property are evident, i.e. the sum X. := Lr X; of independent
Poisson random variables X, "v PO(Ar) is distributed as X. '"V PO(Lr Ar).

Definition 2.1. (Scalar Poisson superposition.) For a family {X r}r~l of independent Poisson
random variables, with X; '"V PO(Ar ) for each r ~ 1, we call

a scalar Poisson superposition with parameter A = {Ar }r~l.

Note that Z lives on the extended nonnegative integers to, 1, ... ,oo}, but, unlike the Poisson
distribution, IE(Z) = 00 does not imply Z = 00 with probability 1. For example, if Ar = 1/r 2,

then lE(X r ) = l/r2 and lE(Z) = Lr>l r . l/r2 = 00, but P{Xr > O} = 1 - e- l/ r2 is
summable. The Borel-Cantelli Lemma implies that P{Xr > 0 infinitely often} = 0 and
Z < 00 with probability 1.
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In the next theorem, we write A(t) := Lr>l trAr for the ordinary generating function of
{Ar}r~l. -

Theorem 2.1. Scalar Poisson superpositions satisfy the following.

• Convolution. Let Z, Z' be independent scalar Poisson superpositions with parameters
{Ar } and {A~}, respectively. Then Z + Z' is a scalar Poisson superposition with parameter
{Ar + A~}.

• Infinite divisibility. For each n ~ 1, a scalar Poisson superposition with parameter {Ar}
can be expressed as the sum ofn independent and identically distributed (i.i.d.) scalar
Poisson superpositions with parameter {Ar / n}.

• Nonnegative integer multiplication. For m ~ 0, mZ has probability generating function
(PGF) exp{-A(l) + A(tm ) }.

• Superposition of scalar Poisson superpositions. If ZI, 22, ... are independent scalar
Poisson superpositions, Z j with parameter {At }r~ 1 for each j = 1, 2, ... , then

is a scalar Poisson superposition with parameter {A;}r~l, where

i*._ ~ iris
I\.r .- L-Jl\.s ,

sir

where sir denotes that r = skfor some k = 1,2, ....

• Thinning. Let Xl, X2, ... be independent Poisson random variables with X; --- PO(Ar)
and, given {Xr}r~l, Bl, B2, ... are conditionally independent binomial random vari­
ables with B, --- bin(Xr, p) for some 0 < p < 1. Then the thinned superposition
Z p := Lr~O r B; is a scalar Poisson superposition with parameter {pAr }r~ I.

Proof. Let {Xr}r~l be independent Poisson random variables with X; --- PO(Ar) for each
r ~ 1. By the convolution property, the sum X. := Lr>l X; is a Poisson random variable with
parameter A(I) = Lr>l Ar. If A(I) = 00 then X. = Z-= 00 with probability 1. Otherwise, if
A(I) < 00, then the JOIntPGF of (X., Z) is

G(s, t) := L JP>{X. = i, Z = j}Si t j

i,j~O

= exp{-A(I) + SA(t)}. (2.1)

From G(s, t), we can immediately recover the marginal generating functions of X. and Z:
Gx.(s) = exp{-A(I) + sA(I)} and Gz(t) = exp{-A(I) + A(t)}.

The above properties are now immediate by standard properties ofPoisson random variables.
For Z, Z' independent scalar Poisson superpositions with parameters {Ar}, {A~}, respectively,
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Lrxr = n.
r:::l

we have Gz+z,(t) = Gz(t)Gz,(t) = exp{-A(I) + A(t) - A'(I) + A'(t)}. To observe infinite
divisibility of Z with parameter A, we simply take Z 1, ... , Zn i.i.d. Poisson superpositions
with parameter {Arln} and appeal to the convolution property. The transformation of Gz(t)
under nonnegative integer scaling of Z follows by substituting t'" for t in Gz(t). Finally, let
ZI, Z2, ... be independent scalar Poisson superpositions, where Z j has parameter {A~ }r~1.

Then Lr~l r Z; is also a scalar Poisson superposition with parameter {A~}r~l, where

A; := LA~/s.

sir

The thinning property follows because the unconditional distribution of B; is PO(Ar ) for each
r = 1, 2, ... , and Xl, X2, . .. are independent by assumption. This completes the proof.

Example 2.1. (Compound Poisson distribution.) The compound Poisson distribution is defined
as a convolution of a Poisson random number of integer-valued random variables. Let N '"'V

PO(JL) and XI, X2, be i.i.d. according to Pk := P{X1 = k}, k = 0, 1,2, .... The random
variable W = Xl + + XN has the compound Poisson distribution with pap

Gw(t) = exp{JL(cPx(t) - I)},

where
cPx(t) := L Pk t k

k~O

is the PGP of each Xi, i = 1,2, .... With A(t) := JLcPx(t), we observe that

Gw(t) = exp{-A(I) + A(t)},

which is also the pap of a scalar Poisson superposition with parameter {Ar }r:::l,as in (2.1).

2.1.1. Relation to the negative binomial distribution. A special case of scalar Poisson superpo­
sition that occurs in applications takes Ar = On" Ir , with 0 < n < 1 and f) > 0, for each r ~ 1.
In this instance, we obtain A(t) = -() log( 1 - n t) and G z (r) = (1 - 1r)o(1 - n t) -0 , the gen­
erating function of the negative binomial distribution with parameter «(), n ). This elementary
form of univariate Poisson superposition arises in diverse areas, including ecology (Fisher et
ale (1943», population genetics (Ewens (1972», probabilistic number theory (Donnelly and
Grimmett (1993», and theory of exchangeable random partitions (Kingman (1978»).

For example, if the initial Poisson sequence is written in integer partition styIe, i.e, X =
1x12x2 ... , where X; counts the number of parts of size r in a partition of the random integer
Z = Lrr Xr, then X partitions Z into a random number X. of parts with joint distribution in
(2.1). In particular, the conditional distribution of X, given Z, is

A;r
IP{X=(Xl,X2, ... ) I Z=n}<x n -,

xr !
l~r~n

When the intensity sequence has the negative binomial pattern, Ar = Br:'Ir, then the condi­
tional distribution is independent of n ,

n! (}I:xr

IP{X=(Xl,X2, ... ) I Z=n}= tn.' , (2.2)
() n jJxJXj!

where ()tn := ()«() + 1) ... «() + n - 1) is the ascending factorial. Equation (2.2) is the Ewens
sampling formula with parameter () > 0 on the space of partitions of the integer n; see Ewens
(1972) and Arratia et ala (1992).
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2.1.2. Composition offormal power series. The statistical properties in Theorem 2.1 are related
to the algebraic properties of the space of formal power series generated by the monomials
t, (2, (3, .... Consider functions f and g with f(O) = g(O) = 0 and nth Taylor coefficients fn
and gn, respectively, so that f(t) = En>! fntn [n). Then the nth Taylor coefficient of the
composition (fg)(t) := f(g(t)) is -

(fg)n = L f#rrng#b, (2.3)
rrE9'n ben

(2.4)n E 9'n.

where n E :Pn is a set partition of [n] := {I, ... , n} and #1f equals the number of blocks of 1f •

The exponential equation (2.3) is related to the lifting of (2.2) from integer partitions to set
partitions by sampling uniformly among set partitions whose block sizes correspond to the parts
of a random integer partition drawn from (2.2). Taking fn := on and gn := (n - I)!, so that
J(t) = e()t - 1 and get) = -log(1 - t), the coefficient in (2.3) gives the normalizing constant
()tn in the Ewens distribution on set partitions,

o#rr

~{Jr} := otn n(#b - 1)!,
bErr

More generally, the two-parameter Ewens-Pitman(a, ()) distribution on :Pn is defined by

(0 la) t#rr
~.B{Jr} := otn n_(_a)t#b, it E »; (2.5)

bErr

where (a, ()) satisfies either

• a < 0 and () = -aK for K = 1, 2, ... or

• 0 ~ a ~ 1 and () > -a.

By putting fn := (fJla)tn and gn := _(_a)tn, the composition (2.3) again gives the
normalizing constant ()tn in (2.5). The Ewens distribution (2.4) with parameter () coincides
with the Ewens-Pitman distribution with parameter (0, ()).

The connection between (2.3) and (2.5) is curious in a few respects. On the one hand, (2.3)
is an elementary algebraic property of exponential generating functions. On the other hand,
the Ewens-Pitman distribution arises in various contexts and, in fact, characterizes the class of
canonical Gibbs ensembles on partitions of [n]; see Pitman (2006).

2.1.3. Relation to the a-permanent. The connection between the Ewens distribution and coef­
ficients of formal power series is also related to the algebraic properties of the a-permanent,
which arises in theoretical computer science (Valiant (1979, (a = 1))), statistics (Vere-Jones
(1997), (1998), Rubak et al. (2010)), and stochastic processes (Crane (2013a), Macchi (1975),
and McCullagh and Meller (2006)). For a E 1R and an lR-valued matrix M := (Mij )ls.i,js.n,

the a-permanent of M is defined by

n

pera(M) := L a#a nMj,a(j),

aE-8n j=l

where the sum is over the symmetric group ,sn ofpermutations of [n] and #0' denotes the number
of cycles of a E ,sn. To show the connection to (2.3), we appeal to the identity

peraP(M) = L fJ~#rr npera(M[b]),
rrE9'n ben
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where f34,j := 13(13 - 1)··· (13 - j + 1) and M[b] := (Mij)i,jEb is the submatrix of M indexed
by b ~ [n]; see Crane (2013b). When M := In is the n x n matrix of all Is, this identity
simplifies to

(af3)tn = L f34,#Jr nat#b,
JrE/Pn bex

from which the two-parameter distribution (2.5) is apparent by the transformation 13 1--* () Ia.

2.2. Janossy measures

The law of any finite random point configuration X ~ X is determined by the Janossy
measure J = Ln>l r», where each J(n) is a nonnegative symmetric measure on X n such
that JP>{#X = n} ~ J(n)(xn) and Ln>l J(n)(xn) = 1. Each orbit of the symmetric group
acting on X n corresponds to an n-pomt configuration in X, so we can identify J with a
probability measure on the space of finite point configurations. Equivalently, each symmetric
subset A ~ X n determines a set of n-point configurations and, in some cases, it is convenient
to define the configuration measures {In }n:::: 1 by

In(A) = L J(n)(aA)=n!J(n)(A),

C1E-8n

(2.6)

where a A = {(XC1 (l ) , ... , XC1 (n ) : x E A} denotes the image of A by relabeling coordinates
according to a .

The configuration measures of a Poisson process with finite mean measure t; are

n

In(dXI ... dxn) = e-{· n~(dxj),

j=l

n = 0,1, ... , (2.7)

where r, = ~(X). Thus, J(n)(xn) = e-{·~.n In! is the probability that #X = n.

Remark 2.1. (Notation.) Consistent with our notation for Janossy measures, we adopt the
following convention for measures on seq(X). Throughout the paper, ~ denotes the mean
measure for a Poisson point process on seq(X), whose restriction ~(n) to X n need not be
symmetric. The symmetrized version is

~n(A) := L ~(n)(aA),

C1E-8n

Each Janossy component measure J(n) is automatically symmetric on X n , but the configuration
measures {In }n> I in (2.6) are more natural for Poisson superposition processes. If A ~ X n is
symmetric, i.e. it = a A for all a E ~n, then J(n)(A) = In(A)lnL

3. Finite sequences

Superposition sends each point x = (Xl, ... , Xn) E X n to the n-point configuration
Spp(x) = {Xl, ... , Xn} C X, that is, the multiset whose elements are the components of x
counted with multiplicity. More generally, the superposition of the k-point configuration
{Xl, ... ,Xk} C seq(X) is the additive multiset operation defined as the union of the super­
positions, counted with multiplicity.
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Definition 3.1. (Poisson superposition process, version 1.) If X ~ PP( ~) is a Poisson point
process in seq(X), then Z = Spp(X) is a Poisson superposition process in X. In words,
X = (Xo, Xl, ... ) is a sequence of independent Poisson processes X, ~ pp(~(r») on X r

and Z records the components of every point in X with multiplicity.

For the remainder of the paper, we equip seq(X) with the product a-field ®n>O 2~, where
2 x:= 2x ® ... ® 2x is the n-fold product of Borel a-fields on X. -

We formalize Definition 3.1 through the following discussion of embedded subsequences.

3.1. Embedded subsequences

For n ~ 1, let x := (Xl, ... , Xn ) E X n be a length-n sequence with components in X. Each
ordered subset of integers i := (i 1, ... , im ) for which 1 ::s i 1 < ... < im ::s n determines an
embedded length-m subsequence x[i] := (Xii' ... , Xim ) . There may be multiple ways to embed
a length-m sequence into a length-n sequence, m ::s n, and so we define the embedding number

L(x', x) := #{i = (iI, ... , im ) : 1 ::s il < ... < im ::s n, x[i] = x'} (3.1)

as the number of ways to embed x' in x. From (3.1), we define the embedding measure

L(A, x) := L L(x', x),
x'EA

A ~ seq(X),

which counts the number of embedded subsequences of x contained in A, with the convention
L(Xo, x) = 1 for all x E seq(X). For fixed x E seq(X), L(·, x) is a finite measure on seq (X)
with total mass

L(seq(X),x) := L C::) = 2#x,
m~O

where #x denotes the length of x.
For x E seq(X), we define thefirst-order superposition Spp(x) ofx to be the multiset whose

elements are all length-l subsequences (with multiplicity) embedded in x. Formally, Spp(x)
is determined by the restriction of L (., x) to Borel subsets of X, where L (y, x) counts the
number of occurrences of y E X in x. For m ~ 1, we write L (m) (., x) to denote the restriction
of the embedding measure L (., x) to Borel subsets of X m .

Definition 3.2. (Poisson superposition process, version 2.) Let X be a Poisson process with
mean measure ~ on seq (X). The Poisson superposition process Z ~ PSP(~) is the random
measure obtained by first-order superposition of X,

Z(A) := L(1)(A, X) for A C X.

The mean measure or first-order intensity is K(A) = lE(Z(A)).

In the following example we show that the preceding definition by embedding coincides
with the description from the beginning of Section 3.

Example 3.1. Let X = Z and suppose that

Xl = {(I), (3)}, X2 = {(2, 0), (1,2), (3, 4)}, X3 = {(I, 2, I)},

and Xn = 0, n ~ 4, are realizations of independent Poisson processes on x', X 2, ... ,

respectively. Then the superposition on X is the multiset Z = {Ol, 14 , 23 , 32 , 41}, i.e. Z (0) = 1,
Z(I) = 4, Z(2) = 3, Z(3) = 2, Z(4) = 1, and Z(x) = 0 otherwise.
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By our phrasing in terms of the embedding measure, we can exploit properties of measures
on finite sequences to study Poisson superposition processes. The following sections, though
technical, are necessary to prove our main theorems.

3.2. Measures on finite sequences

For any measure ~ on seq(X), we define the measure L~ on seq(X) as the mixture of L(A, .)
with respect to ~ ,

(L~)(A) :=1 L(A, x) d~(x),
seq(X)

A ~ seq(X).

As seq(X) is a disjoint union of XO, X I , X 2, ... , each measure ~ on seq(X) decomposes as
the sum of its disjoint component measures ~ = Lr>O {(r). Moreover, when restricted to the
subset of length-m sequences, we define -

L~(m)(A) :=1 L(A, x) ds(m)(x) = ( L(A, x) ds(x).
seq(X) lxm

Therefore, we can also write L~ = Lr>O L~(r), but the components {L~(r)}r~1 need not be
mutually singular. -

3.2.1. Superposition and disaggregation measures. A measurable subset A ~ X acts linearly
on t; = Lr>O ~(r) by transforming each component measure ~(r) ~ A~(r) in the obvious way:
for each n ~ 1, 2, ... ,

n

(A~(n»)(BI ... Bn) = L ~(n+l)(BI ... Br·A·Br+1 ... Bn),
r=O

(3.2)

where BI, ... , Bn are measurable subsets of X, and BI ... Bn denotes the Cartesian product.
For example, n = 0, 1correspond to (A~(O»)(Xo) = ~(l)(A) and (A~(1»)(B) = ~(2)(A x B)+
~(2)(B x A), respectively. Iterating the above action for AI, ... ,Ak ~ X gives the k-fold
action

(AI" . Ak{(n»)(BI ... Bn) = L L {(n+k)(CI ... Cn+k), (3.3)

ae-8k l:sil <···<h:sn+k

where _CI, ... , Cn+k are subsets of X such that Ci, = Aa(r) and <; = Bv, where 1 ::s il <
... < in ::s n+k is the complement of 1 ::s i I < < ik ::s n+k. It follows that the action (3.3)
on { is commutative, Aa(l) ... Aa(k)~(n) = Al Ak{(n) for all permutations a: [k] --+ [k],
but the resulting measure on X n+k need not be symmetric.

Choosing Al = ... = Ak = X in (3.3), yields

~(n+k) (C[l:n+k]),

where B[l:n] := BI x ... x Bn is the Cartesian product, Ci, = B], and Ci
j

= X. For a pair
of measurable sets AI, A2 C X, we extend the action in (3.2) to formal linear combinations
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from which we define the superposition measure

Xk~
exp(X)~ := L - = L~.

k;::O k!

In the reverse direction, we define the disaggregation measure of K := L~ on seq(X) by

1021

The transformation ~ ~ K is invertible. But, unlike the relation between moments and
cumulants, the first n components of ~ do not determine the first n components of K and vice
versa. In particular, the first-order superposition measure K(I) = L~(I) does not determine ~(I).

3.3. Subset restriction

Janossy measures only determine the law of point processes that are almost surely finite.
For infinite, but locally finite, point processes, the law is determined by restriction to certain
test sets VeX.

On the one hand, V n C X n implies that each V-sequence is also an X-sequence, so the
natural embedding seq (V) ~ seq (X) preserves sequence length and component order. On
the other hand, subset restriction also determines a natural deletion map T: seq(X) ~ seq(V)
in the reverse direction, by which each component of the X-sequence x = (XI, ... ,xn ) that
does not belong to V is deleted, leaving the remaining components Tx = (XiI' ... , xik) in their
original relative order i I < . .. < i k. In other words, Tx is the maximal embedded subsequence
belonging to seq(V).

If ~ is a measure on seq (X), then the induced measure T ~ on seq (V) is defined as the usual
image measure

(T~)(A) = ~(T-IA), A ~ seq(V),

where T -1 A is the inverse image of A in seq (X). The inverse image T -1 ( {v})of v E V n is the
set of X-sequences that include v as an embedded subsequence and have no other components
belonging to V, i.e, sets of the form {v} x (X \ V)k, k ~ 0, with any of (ntk) embeddings.
Evidently, T ~ = exp(X \ V)~ = exp( - V) exp(X)~ and exp(V)(T~) = K.

In words, if ~ is a measure on seq (X) with superposition K = exp(X)~, then the induced
measure on V-restricted sequences is obtained by subset restriction of K to seq(V) C seq(X),
followed by disaggregation (T ~)(A) = exp( - V)K(A). The state of affairs is best described
by a commutative diagram in which the projection T and the pointwise restriction R are maps
on measures associated with the subset V C X; see Figure 1.

Commutativity asserts that, for each measure t; on seq(X) and V eX, the superposition of
the projection ev T ~ is a measure on seq (V) equal to the restriction of the superposition ReX~ .

meas (seq (V))

TI
meas (seq (X))

meas (seq (V))

RI
meas (seq (X))

FIGURE 1: A commutative diagram. The projection T and the pointwise restriction R are maps on measures
associated with the subset V eX.
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4. Poisson superposition processes

Let Xl, X2, . .. be independent Poisson processes for which Xr ~ X r has finite mean
measure ~(r) for each r = 1,2, .... We denote the union of Xl, X2, ... by X := Ur>1 X r ~
seq(X) and their superposition in X by Z(·) := L(l)(·, X), as in Definition 3.2. We further
assume that ~. := Lr ~(r)(xr) < 00; whence, n, := #Xr < 00 for each r = 1,2, ... , and
n, := Lr n, < 00 with probability 1. In this case, we let {Jjn)}n=1.2, ... denote the component
Janossy measures of {X r}r::::l and {Jr,n}n=1,2, ... be the associated configuration measures, as in
(2.7). It follows that

n
_{(r) n (r)Jr,n (dx 1, ... , dxn) = e· ~ (dx j ) ,

j=l

from which the component Janossy measures are given by

Xl, ... , X n E X r
,

r ~ 1.
n

J (n)(d d) - ( ,)-1 _{.(r) n (r)(d .)r XI,···,xn-n. e ~ Xl'

j=l

Theorem 4.1. Let Z be the superposition ofindependent Poisson processes Xl, X2, ... , where
each X; has mean measure ~(r) < 00 on X r such that t; := Lr>1 ~(r)(xr) < 00. Then the
Janossy measures {J(n)}n~O of Z are given by J(n) = In/n!, where

In(dx) = e-{· L n~#b(dx[b]),
7rE:Pn be»

X = (Xl, ... , X n ) E X n , n ~ O. (4.1)

Proof. Similar to (2.1), we obtain the joint probability generating functional for the Janossy
measures of X. = Ur>1 X r and Z by

- J(s, t) = nL J/jlsjt rj

r::::lj~O

= exp{-~. + s~(t)},

where ~(t) = Lr>l t' ~(r) is the generating functional for the mean measures {~(r)}r~l and
~.<r) = ~ (r) (X") for each r = 1, 2, .... The generating functional J (t) of the Janossy measures
for Z is, thus,

J(t) = exp ( - {. + Ltn{<nl).
n::::l

from which (4.1) is apparent by differentiation.

Theorem 4.2. Let Z be a finite point process in X with Janossy measure {In/n!ln::::o and
Jo > 0, and let

~n(dx) = L (-I)#7r-l(#rr -1)!Jo- #7r n J#b(dx[b]) lorn ~ 1, X E x-. (4.2)

7rE/Pn bE7r

Then Z is a Poisson superposition process ifand only if ~ is nonnegative.
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Proof The relationship (4.2) is apparent from the relationship between moments and cu­
mulants, see McCullagh (1987, Section 2.3) or Streitberg (1990). Therefore, given a finite total
measure s. < 00 and a family of Janossy measures for a Poisson superposition process, the
mean measure of the Poisson process on seq (X) can be recovered uniquely up to permutation
of component measures.

Corollary 4.1. Let {Z, }r?:} be independent Poisson superposition processes, where Z; rv

Psp(sr) for each r = 1,2, .... The convolution of{Z, }r?:l' defined by

Z. (.) := L z.r».
r?:l

is a Poisson superposition process with generating measure {. = Lr {r. Moreover, every
Poisson superposition process is infinitely divisible.

Proof The proof follows from the convolution property of Poisson processes and is anal­
ogous to the proof of the corresponding property for scalar Poisson superpositions. Infinite
divisibility follows immediately from the convolution property.

4.1. Subset restriction

Theorem 4.3. Let Z rv PSP(s) be a Poisson superposition process with parameter { on seq (X)
and denote by Z[V] its restriction to V ~ X. Then Z[V] rv PSP(T~) is a Poisson superposition
process on V with parameter ~V := T ~ and configuration measures

f: (dx) = e-/;'v L nI;"~(dx[b]),
IrEfPn ben

X E X n
, (4.3)

where T: seq (X) ~ seq(V) is the projection defined in Section 3.3.

Proof To observe (4.3), we first project X to seq(V) and then apply superposition. The
projection into seq (V) remains a Poisson process since nonoverlapping subsets of V correspond
to nonoverlapping Borel sets of seq (X) under projection; hence, counts in nonoverlapping
subsets of seq (V) are independent Poisson random variables with updated intensity {v := T { .
This completes the proof.

5. Special cases

To conclude, we highlight some well-known point processes that are also Poisson superpo­
sition processes.

5.1. Self-similar measures

Let seq+(X) be the set of nonnull finite sequences, t; := Ln>O ~(n) be a measure on seq (X),
and V' C X be any subset such that -

00

~(seq+(V/))= L ~(k)(V'k) < 00.

k=l

In other words, the restriction {[V'] of ~ to seq (V') C seq (X) is finite on nonnull sequences.
We call { self-similar if, for each V C V' C X, the projection T (~[V/]) of the V'-restricted
measure is proportional to the V-restriction {[V]. Here, {[V] is the restriction of{ to seq(V) C
seq(X), while T: seq(X) ~ seq(V) is the projection described previously.
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For a simple example, consider the weighted product measures ~(k) = ~rk / k! on X k so that
~(seq(V/» = exp(~l (V'» < 00 holds whenever ~l (V') < 00. For V e V' e X such that
~1 (V') < 00, restriction of ~ to seq (V') followed by projection onto seq (V) gives

(T~[V'])(A) = ~(A) exp(~l (V' \ V» for A C seq(V).

Thus, the projected measure exceeds the restricted measure by the constant factor

exp(~l (V' \ V» < 00.

For a general self-similar measure ~ on seq (X), we denote the projection seq (V') """""* seq (V),
V ~ V' ~ X, by Tv,v'. Then Tv,v'~[V'] ex ~[V] and, in particular, Tv~ ex ~[V], where
Tv := Tv,x. The Janossy measures for the Poisson superposition process restricted to V are
determined by (4.3), where ~ v := Tvt . In the self-similar case, these Janossy measures satisfy

J; (dx) = e-s. L a~1T n~#b(dx[b]),

1TE:Pn bE1T
(5.1)

where av = Tv~(A)/~(A) ~ 1 is the proportionality constant. Some special cases arise in
this setting.

5.1.1. Product measures. As in the above example, suppose that ~(k) := ~rk / k! is a weighted
product measure for each k. In this case, the symmetrized measures ~k = k! ~(k) = ~?k are
product measures on symmetric subsets A ~ X k and (5.1) can be written as

n n

Jnv(dx) = e-s. n~l(dxj) L a~1T = e-s·Bn(av) n~l(dxj),

j=l 1TE:Pn j=l

where Bn(a) := Lk :P(n, k)ak is the generating function for the number of partitions of [n]
with k blocks; see Wilf (2006, p. 18). Taking V = X, we obtain

n

In(dx) = e-s·:Bnn~l(dxj),
j=l

where 93n := #:Pn is the nth Bell number.

5.2. Completely random superpositions

For each n ~ 1, let ~(n) be diagonal, i.e. supported on the diagonal of X n ,

diagfX") := {(x, ... , x) E X n : x EX}.

(5.2)Ai eX.

Since ~(n) vanishes off the diagonal, it is determined by a measure ~(n) on X in the obvious
way:

The first-order superposition Z is a scalar Poisson superposition in the sense that Z(A) =
Lr> 1 r X r (A) is a linear combination of independent Poisson random variables with integer
coefficients, as in Section 2.1. Moreover, the counts Z (A) and Z (A') are independent whenever
A and A' are disjoint, so each Poisson superposition Z ~ PSP(~) is a completely random
measure; see Kingman (1993, Chapter 8).
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From (5.2), the measures ~(n) on X determine a measure A on the product space N x X by

A({n} x A) = ~(n)(A).

If X is a Poisson process in the product space with mean measure A, projection into X by
summation of marks gives Z(A) = Ln>l nX({n} x A), which coincides with the diagonal
Poisson superposition Z ~ PSP(s). Since every measure in the product space N x X also
determines a diagonal measure on seq(X), the argument in Kingman (1993, Section 8.2)
immediately leads to the following theorem.

Theorem 5.1. A completely random integer-valued process Z(·) on X with no fixed atoms is
necessarily a Poisson superposition with diagonal measures.

5.2.1. Compound Poisson process. Let NO) , N(2), ... be independent Poisson processes on lR,
where N(n) has intensity 'Apn and L~1 Pn = 1. Given N(n), we define the increment of
N(n) by /(n)(t) := N(n)(t) - N(n)(t-) and Xn on diag(JRn) by putting (x, ... ,x) E X n if
and only if /(n)(x) = 1. Thus, X n is obtained by embedding a Poisson process in lR with
intensity s(n)(dx) = 'Apn dx into diag(]Rn). Defining Z := Spp(X), where X := {Xr }r 2:I ,

gives a Poisson superposition process with diagonal measures {s (r) }r> 1. On the other hand,
N(t) := L~l N(n)(t) is a Poisson process with intensity 'A and -

N(t)

W(t):= LXi,
i=l

t 2: 0,

determines the paths of a compound Poisson process with intensity 'A and increment distribution
{Pk}k2:0, where Xl, X2, ... are i.i.d. with lP{XI = k} = Pk.

5.2.2. Negative binomial processes. Suppose that the nth component measure is

S(n)(AI x ... An) = _Os_I_(A_l_n_. ._._n_A_n_)
n

for some finite measure Sl on X. Then, each sen) is diagonal and, from the above discussion, the
number of points in nonoverlapping subsets of X are independent and, for each A ~ X, Z(A)
is a negative binomial random variable with parameter (0, ~1 (A)). Note that this definition of
negative binomial process differs from Bamdorff-Nielsen and Yeo (1969).

5.3. Boson processes

A cyclic permutation of [n] is any permutation a with a single cycle. Given a function
M: X x X ---+ R, we define the sum of cyclic products of M at x := (Xl, ... , xn ) by

n

cyp(M[x]):= L IT M(xj, XU(j»).
u: #u=l j=I

Suppose now that u. is a measure on X, and that u" is the product measure on X n . Define
tr(M) = f M(x, x) djL(x),

M 2(x, x') = Ix M(x, t)M(t, x') dJ,L(t),
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and M k by extension. Let ~ = {~(n)}n~l be a measure on seq(X) for which the density in X n

with respect to u" is

{(n)(dx) = {n(dx) = acyp(M[x])
n! n!

for some a > O. It follows that ~(n)(xn) = a tr(Mn)/n, so the total measure is

tr(Mn)

~. = ~(seq(X» = a L -- = -a log dett I - M)
n~1 n

provided that the spectral norm of M is strictly less than 1. Under positivity conditions, the
Janossy measure of the Poisson superposition Z '"- PSP(~) has a density

:J: (x) = e-{· L a#Jr ncypM(x[b]) = e-{· pera(M[x]),
J-l T(E9'n bET(

which is proportional to the a-permanent of M at x. Provided that M is symmetric, positive
definite, and 2ex is a positive integer, this is the Janossy measure of a boson, or perrnanental,
point process.
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