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ON A FAMILY OF DISTRIBUTIONS OBTAINED 
FROM ORBITS 

JAMES ARTHUR 

Introduction. Suppose that G is a reductive algebraic group defined over 
a number field F. The trace formula is an identity 

2 J0(f) = 2 Jx(f\ f e C?(G(A)ll 

of distributions. The terms on the right are parametrized by "cuspidal 
automorphic data", and are defined in terms of Eisenstein series. They 
have been evaluated rather explicitly in [3]. The terms on the left are 
parametrized by semisimple conjugacy classes and are defined in terms of 
related G (A) orbits. The object of this paper is to evaluate these terms. 

In previous papers we have already evaluated J0(f) in two special cases. 
The easiest case occurs when o corresponds to a regular semisimple 
conjugacy class {a} in G(F). We showed in Section 8 of [1] that for such 
an o, J0(f) could be expressed as a weighted orbital integral over the 
conjugacy class of a. (We actually assumed that o was "unramified", which 
is slightly more general.) The most difficult case is the opposite extreme, in 
which o corresponds to {1}. This was the topic of [5]. We were able to 
express the distribution, which we denoted by / u n j p , as a finite linear 
combination of weighted orbital integrals over unipotent conjugacy 
classes. The general case is a mixture of these two. If o corresponds to an 
arbitrary semisimple conjugacy class {a}, let G0 be the connected 
component of the centralizer of a in G. In this paper we shall reduce the 
study of J0(f) to the unipotent case on subgroups of Ga. We will then be 
able to appeal to the results of [5]. 

Suppose that S is a finite set of valuations of F which contains the 
Archimedean places. We can embed C™(G(FS)

1) into C™(G(A)1) by 
multiplying any function/ e Cf(G(Fs)

1) by the characteristic function of 
a maximal compact subgroup of I I V ^ 5 G(FV). Suppose that M is a Levi 
component of a parabolic subgroup of G which is defined over F. If y is 
any point in M(FS\ the weighted orbital integral JM(y,f) is the integral 
of / over the G(i7

s)-conjugacy class of y, with respect to a certain 
noninvariant measure. The measure is easily defined in terms of the 
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volume of a certain convex hull if My = Gy, but in general is more delicate. 
In any case it is defined in [4]. The main result of [5] (Theorem 8.1) is a 
formula 

• W / ) = 2 2 \W%\ \W%\-'aM(S, u)JM(u,f), 
M u 

where u ranges over the unipotent conjugacy classes in M(FS) which are 
the images of unipotent classes in M(F), and {aM(S, y) } are certain 
constants. In Corollary 8.5 of [5] we showed that 

aM(S, 1) = vol(M(F)\M(A)l)9 

but the other constants remain undetermined. The main result of this 
paper (Theorem 8.1) is a similar formula 

J0(f) = 2 2 \K\ \W$\-laM(S, y)JM(y,f) 
M y 

for arbitrary o, in which y ranges over classes in M(FS) with semisimple 
Jordan component {a}, and {aM(S, y) } are given in terms of the constants 
{aM'(S,u)}. 

The distribution J0(f) is defined as the value at T = T0 of a certain 
polynomial J^if). Our starting point will be an earlier formula for J^(f) 
(Theorem 8.1 of [1]). In Section 3 we change this formula into an 
expression which contains a certain alternating sum (3.4) of characteristic 
functions of chambers. Sections 4 and 5 are a combinatorial analysis of 
this alternating sum. We introduce some functions TR(X, ®/R) which gen
eralize the functions T'P(X, Y) used in [2] to prove J^(f) a polynomial. The 
main fact we require is Lemma 4.1. It asserts that T^(X, ®/R) is compact
ly supported in X, and that its integral is a sum of integrals of functions 
Tp(% Y). The proof of Lemma 4.1 requires a combinatorial property 
(Lemma 4.2) which we establish in Section 5. Having proved Lemma 4.1, 
we return in Section 6 to our formula for J0(f). We make various changes 
of variable which reduce J0 to a linear combination of distributions Jur^v 

on subgroups of Ga (Lemma 6.2). This allows us to apply the results of [5] 
in Section 7. Combined with a descent formula for weighted orbital 
integrals, they eventually lead to Theorem 8.1. 

Theorem 8.1 and the related Theorem 9.2 will be important for future 
applications of the trace formula. They can be used to prove a general 
formula for the traces of Hecke operators. They will also play a role in the 
comparison of GL(n) with its inner twistings, and in base change for 
GL(n). Details will appear in a future paper with Clozel. 

We have actually written this paper in the context of the twisted trace 
formula, which of course is a generalization of the ordinary trace formula. 
The twisted trace formula was proved by Clozel, Labesse and Langlands 
in a seminar at The Institute for Advanced Study during the academic 
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year 1983-84. Their results are to appear in a future volume on the subject. 
In the meantime, we refer the reader to the lecture notes [6] from the 
seminar. 

I thank Langlands, and also Stephen Halperin, for enlightening 
conversations related to this paper. 

1. Assumptions on G. We would like our discussion to apply to the 
twisted trace formula proved in [6], so we shall work with algebraic groups 
which are not connected. In Section 1 of the paper [4] we introduce some 
notions for such groups. For convenience, we shall describe the ones we 
will use here. 

Suppose that G is a connected component of an algebraic group G (not 
necessarily connected) which is defined over a number field F. We shall 
write G+ for the subgroup of G generated by G, and G° for the connected 
component of 1 in G+ . We shall assume that G(F) is nonempty. 

Assume that G is reductive. A parabolic subset of G is a set P = P D G, 
where P is the normalizer in G of a parabolic subgroup of G° which is 
defined over F. Notice that 

p° = P n G° = P + n G°. 

We shall let NP denote the unipotent radical of P . A Levi component of P 
is a set M = M n P, where M is the normalizer in G of a Levi component 
of P° which is defined over F. Clearly P = MNP. We call any such M a 
Levi subset of G. Let AM denote the split component of the centralizer of M 
in M°. It is a split torus over F. Let X(M)F be the group of characters of 
M which are defined over F, and set 

aM = Hom(*(M)F , R). 

Then aM is a real vector space whose dimension equals that of the torus 
AM. Observe that 

AM
 c AM°

 a n d aM c %o . 

We fix, for once and for all, a minimal Levi subset M0 of G°. (Of course 
M0 is actually a subgroup of G°.) Set A0 = AM and a0 = a M . Write 
J*" for the parabolic subsets P of G such that P° contains M0. Similarly, 
write ĉ f for the Levi subsets M of G such that M contains M0. Both & and 
Jèfare finite sets. Any P e J^has a unique Levi component MP inJ^ so we 
can write P = MPNP. Suppose that M e & Write J^(M) (respectively 
J^(M) ) for the set of elements in ^"(respectively^7) which contain M. We 
also write 0>(M) for the set of P G J£"such that MP = M. 

Suppose that P G J^ Set aP = aM and AP = AM . The roots of (P, AP) 
are defined by taking the adjoint action of Ap on the Lie algebra of NP. We 
will regard them either as characters on AP or as elements in the dual space 
a£ of aP. The usual properties in the connected case carry over to the 
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present setting. In particular, we can define the simple roots AP 

of (P, AP), the associated "co-roots" {av:a e AP} in aP, the weights AP 

and the associated "co-weights" {&v:& e AP} as in Section 1 of [1]. The 
roots of (P, AP) divide aP into chambers. We shall write aP for the 
chamber on which the roots AP are positive. Suppose that Q is another 
element in J*" such that P c Q. Then there are canonical embed-
dings Û ^ C cip and ÙQ C a% and canonical complementary subspaces 
a% c ûp and (ûp)* c aP. Let A^ denote the set of roots in AP which 
vanish on ÙQ. They can be identified with the simple roots of the parabolic 
subset P n MQ of MQ. 

Let WQ denote the set of linear isomorphisms of a0 induced by elements 
of G which normalize A0. It is actually the set 

r° 
% = w% 

that is our main concern. This, of course, is just the Weyl group of 
(G°, A0). It acts simply transitively on WQ (on either the left or the right). 
In general, for any two subspaces a and h of a0, we shall let W(a, b) denote 
the set (possibly empty) of isomorphisms from a onto b which can be 
obtained by restricting elements in W0 to a. Suppose that P0 is a minimal 
parabolic subset in W. Then aP is a subspace of a0. The centralizer of aP in 
G° is 

M°Po = Mpo = M0. 

It follows that every element in W(aP, aP ) is the restriction to aP of a 
unique element in W0. We therefore identify W(aP, aP ) with a subgroup 
of J^Q. If P is any element in ^which contains P0, the set of chambers of aP 

can be recovered as the disjoint union 

U U s~laQ-

(See Lemma 9.2.2 of [6].) This generalizes a well known result for 
connected groups. In those parts of the paper in which P0 is fixed, the 
sets 

W(aP, aQ\ P,Q^ P0, 

will be regarded as subsets of W(aP, aP ) and hence also of W0. For if s 
belongs to W(aP, ÙQ), we extend s to the unique element in W(aP, aP) 
such that s (a) is a root of (P0, AP ) for every root a G A P . 

Let A be the adèle ring of F. We can form the adèlized variety G(A), as 
well as the adèle group G°(A). If 

x = Xi v xv 

is any point in either G(A) or G (A), define a vector HG(x) in aG by 

e<Hc(xW = k(x) | = TJv |x(X v) |v, x G X(G+)F. 
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(Here and in the future the products over v stand for products over the 
valuations of F.) Let G(A)1 and G0(A)1 be the subsets of G (A) and G°(A) 
respectively of elements JC such that HG(x) = 0. (Our notation is 
somewhat ambiguous in that GU(A)! depends on G and not just G°.) If GQ 
is the variety over Q obtained from G by restriction of scalars, let À£ 
denote the identity component of the Lie group AG (R). Then G°(A) is the 
direct product of G^A)1 and A%, and G(A) equals G (A) XA™. 

For each valuation v, let K^ be a maximal compact subgroup of 
G'T(FV)9 and set 

Kv = i C n G(FV). 

Then K = J J V Kv is a maximal compact subgroup of G (A). We assume 
that it is admissible relative to M0 in the sense of Section 1 of [2]. Then if P 
is any element in J^ 

G°(A) = P°(A)K = NP(A)M°P(A)K. 

For any point 

x = nPmPkp, nP e NP(A), mP e MP(A), kP e K, 

in G°(A), define 

HP(x) = HMp(mP). 

If JC G G(A), we can define HP(x) in a similar fashion. 

2. The distributions J J. The distributions we propose to study are 
parametrized by G°(F)-orbits of semisimple elements in G(F). They were 
defined for connected groups in [1]. Our references will henceforth be 
mostly to papers that apply only to connected groups. The analogous 
results for arbitrary G have been proved by Clozel, Labesse and 
Langlands. They can all be found in the lecture notes [6]. The references 
for the trace formula are actually for groups defined over Q. However, the 
results can all be carried over to arbitrary F, by restricting scalars, or by 
directly transcribing the proofs. 

Suppose that a is a semisimple element in G(F). We shall write Ga for 
the identity component of the centralizer of o in G°. It is a connected 
reductive group defined over F. For any subgroup H of G which is 
defined over i% we shall write H(Fy o) for the centralizer of o in H(F). 
Then Ga(F) is a subgroup of finite index in G°(F, o). We will let 

i^io) = Ga(F)\G°(F, a) 

denote the quotient group. 
There is a Jordan decomposition for elements in G(F). Any element 

y e G(F) can be decomposed uniquely as y = ou, where a is a semisimple 
element in G(F) and u is a unipotent element in GJF). Let yv denote the 

https://doi.org/10.4153/CJM-1986-009-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-009-4


184 JAMES ARTHUR 

semisimple component o of y. As in [1], define two elements y and y' to be 
equivalent if ys and ŷ  are in the same G°(F) orbit. Let 0 be the set 
of equivalence classes in G(F). It is clearly in bijective correspondence 
with the set of semisimple G°(F) orbits in G(F). 

The space C™(G(A)1) of smooth, compactly supported functions on 
G (A)1 can be defined in the usual fashion. Our objects of study are 
distributions on G (A) which are indexed by the classes in (9. As originally 
defined, they depend on a minimal parabolic subset P0 in J*" and also a 
point T e a0 which is suitably regular with respect to P0, in the sense that 
a(T) is large for every root a in AP . Given P0, a standard parabolic subset 
will be, naturally, an element P e ^ which contains P0. Let rP be the 
characteristic function of 

[H e a0:tt(H) > 0, o5 e Â P } . 

The distribution 

/ [ ( / ) , o e 0 , / e crCG(A)1), 

is then defined by the formula 

f y (-]\àim(AP/AG) (2.1) 
jG»(F)\G»(Ay p ^ p 

o 

X 2J KP 0(Sx, 8x)ïp(Hp(8x) — T)dx, 

where 

8^P°(F)\G°(F) 

KP,0(y,y)= 2 LA)f(y-lw)dn-
zMp(F)no JNPW 

(See [1], p. 947 and Theorem 7.1) 
We would like to find a formula for J^(f) in terms of locally defined 

objects. A first step in this direction is the formula given by Theorem 8.1 
of [1]. If Q D P0 is a standard parabolic, set 

Jo,o(y>y) = 2 2 
y^MQ(F)no v^NQ(F,ys)\NQ(F) 

where NQ(A, ys) is the centralizer of ys in NQ(X). Then for T sufficiently 
regular, J0(f) equals 

w Xo(f)XGo(,)lô2o(-i)^v^) 

8<=Q°(F)\G°(F) 
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This will be our starting point for the next section. 
It was shown in Proposition 2.3 of [2] that J^(f) was a polynomial in T, 

and could therefore be defined for all T. We are interested in its value at a 
particular point T0, whose definition (Lemma 1.1 of [2] ) we recall. For 
each element s e W0, write ws and ws for representatives of s in G°(F) and 
K respectively. These cannot in general be chosen to be the same. The 
obstruction is T0, which is the point in a0, uniquely determined modulo aG, 
such that 

for each s e W0. Set 

Joif) = Jl°(f)-
This distribution is independent of P0, (see the discussion in [2] following 
Proposition 2.3), and will be our main object of study. 

In [5] we considered a special case. For any connected reductive 
subgroup H of G° which is defined over i% let °UH denote the Zariski 
closure in H of the set of unipotent elements in H(F). It is an algebraic 
variety, defined over F. If H = G = G°, then %(F) belongs to 0. As in 
[5], we denote the corresponding distributions by J^n[p and Jun[p 

respectively (or by J^nL and J^nip when we wish to emphasize the role of 
G). Observe that in this case the formulas (2.1) and (2.2) are the same. 

3. A preliminary formula. We choose a class o e 0 and a function 
/ e C^°(G(A)1). We propose to keep these objects fixed until Section 9. 
We shall begin by examining the formula for J0 ( / ) , so for the time being 
we want also to fix the minimal parabolic P0 in ^ For o unramified in the 
sense of [1] we showed (p. 950 of [1] ) that (2.2) could be written as a 
weighted orbital integral of / . In this section we shall perform similar 
manipulations for our arbitrary o to obtain at least a reduction of (2.2). 

Fix a semisimple element a in o. We can choose a so that it belongs to 
Mp (F) for a fixed standard parabolic subset Px of G, but so that it belongs 
to no proper parabolic subset of MP. We shall write Mx = MP, Ax = AM 

and ÛJ = aM. Then 

Ga = Cent(a, G°)° 

is a connected reductive group with minimal Levi subgroup 

Mla = Cent(a, M?)° = M°{ n Ga 

and standard minimal parabolic subgroup 

P]a = Cent(o, Py = P°ln Ga, 

both defined over F. Notice that 

A\ = A\c 
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is the split component of both Px and PXo. In general, the centralizer of 
o in G° is not connected. Its group of rational points is G°(F, o). We shall 
have to be careful to distinguish between this group and Ga(F). 

We shall take a standard parabolic subset Q of G and study its 
contribution to the integrand of (2.2). We must then look at the formula 
for JQ 0(y, y). Suppose that y belongs to MQ(F) n o. We know that y is 
G0ÇF)-conjugate to an element aw, u e °UC (F), but we will have to be 
more precise. The semisimple constituent ys commutes with a torus in Gu 

which is a G (^-conjugate of Ax. This torus is in turn M^Fj-conjugate to 
a torus AQ, where Qx c g is a standard parabolic subset of G which is 
associated to Px. Thus we can write 

for 

fX WsOUWs jl, 

M°Q(F) and 

w;]M°Q(F)wsn %a(F). 

The Weyl element s is uniquely determined up to multiplication on the left 
by Weyl elements of MQ and multiplication on the right by the Weyl group 
of (G°(F, a), Ax). Once s is fixed, fi is uniquely determined modulo 

M°Q(F) n wsG°(F, o)w~l. 

The element u is clearly uniquely determined by JA and wr Let 
W(ax\ Q, Ga) be the union over all standard Qx c Q of those elements 

s G W(aPi, aQi) 

such that s~ a is positive for every root a in Ag and such that s ft is 
positive for every positive root /? of (G0, Ax). This set would uniquely 
represent all elements s arising above were it not for the fact that the 
Weyl group of (G°(F, a), Ax) could be larger than that of (G0(F), Ax). 
However, in the formula for JQ 0(y, y) we will be able to take a sum over 
W(ax; Q, Ga) if at the same time we sum JU, modulo 

M°Q(F) n wsGa(F)w;\ 

and then divide by \tG(a) |, the index of Ga(F) in G°(F, a). 
It follows from this discussion that JQ Q(y, y) equals the sum over s in 

W(ax; Q9Ga) of 

G,„w-\ V V V / / • / „ - i „ - i „ - i , . . ^ - i 2 2 2 / k (<01 2d 2J 2J J f(y v //, wsouws \invy)dn, 
jU V U 

in which JU, v and u are summed over 

M°Q(F) n WsGa(F)W;\M°Q(F), 

NQ(F,p-lwsow;lv)\NQ(F\ 
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and 

W;'M°Q(F)WS n %(F) 

respectively, while the integral is over n in 

NQ(A9 ^~lwsow~lfi). 

In this expression we replace ws \m by nw~ /x, changing the integral to 
one over 

w-lNQ(A, a)ws = w;lNQ(A)ws n Ga(A). 

Since 

NQ(F9tL-lwsowrlti = V~l(NQ(F) O wsG0(F)w;1)^ 

we can change the sum over \x and v to a sum over IT in 

Q°(F) n H>G a(F)wAô°0O. 

We obtain 

JQ,o(y>y) = UG(°)rl 2 2 2 jf(y-^-xwsounw;\y)dn. 
S IT U 

We substitute this into the expression 

(3.1) n 2 JQ 0(8x, 8x)rQ(HQ(8x) - T) 
SŒQ°(F)\G°(F) 

which occurs in the formula (2.2). Take the sum over 8 inside the sum over 
s, and then combine it with the sum over 77. For a given s, this produces a 
sum over £ in 

Q°(F) n WsGa(F)wr\G°(F). 

The expression (3.1) becomes 

\iG(a)\-] 2 2 2 / f ( x - ] r \ o u n w ; ^ x ) 
s i u J 

X rQ(HQ(ix) - T)dn. 

Finally, replace £ by ws£, changing the corresponding sum to one over 
R(F)\G°(F), where 

R = W;XQ\ n G„. 

Clearly R is a standard parabolic subgroup of G0 with Levi decom
position 

R = MRNR = (W;lM°Qws H G0)(w;lNQws n G„). 

It follows that (3.1) equals the sum over 
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s G W{a,;Q,Ga) 

of 

ft)!"' 2 n 2 j f(x-xi-Xounix) 
£eR(F)\G°(F) ue^F) JN*W 

X îQ(HQ(w£c) - T)dn. 

We can now rewrite (2.2). We see that / „ ( / ) equals the integral over x 
in G0(F)\G0(A)' and the sum over standard parabolic subgroups R of Ga 

and elements £ in R(F)\G°(F) of the product of 

|tC(«)l"' 2 fN...f(x-lrlounix)dn 

with 

0.2) 2 e 2 , ( - i ) d i m ( ^ c ) T e ( / / e ( H > | x ) - r ) . 

In (3.2), Q and 5 are to be summed over the set 

{Q 3 P0,s e ^ ( a , ; g, ( ? „ ) : < ' G V n Ga = /?}• 

We shall free this expression from its dependence on the standard 
parabolic Q. 

We shall write 1FR(M{) for the set of parabolic subsets P e &(MX) such 
that Pa = R. Suppose that Q and s are as in (3.2). Then 

p = w;xQws 

is a parabolic subset in ^R(MX). The corresponding summand in (3.2) is 
easily expressed in terms of P. For 

rQ(HQ{wsix) - D = Tg(ffe(HiÉx) + HQ(ws) - T), 

where ws is a representative of 5 in K. By Lemma 1.1 of [2] this equals 

rQ(HQ(wsèx) + T0 - sT0 - T). 

Since 

HQ(w£x) = sHp(£x)9 

this is the same as 

îP(HP(tx) - ZP(T - T0) - T0), 

where 

(3.3) ZP(T- T0) = s~\T- TQ). 

Conversely suppose that P is any parabolic subset in ^FR(MX). Then 
there is a unique standard parabolic Q and an element w e W0 such 
that 
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P = *>s
 ]Qws. 

We demand that s~ a be positive for each root a in A^ , so that 5" will also 
be uniquely determined. Since the space saP contains ÙQ, it must be of the 
form Û£ for a standard parabolic Qx. Otherwise s~x would map some 
positive, nonsimple linear combination of roots in Ajj to a simple root 
in AP , a contradiction. Moreover, combining this property with the fact 
that Q contains wsR w~l, we see that s ft is positive for every positive root 
/? of (Ga, Ax). It follows that the restriction of s to aP defines a unique 
element in W(ax; Q, Ga). Therefore, the double sum in (3.2) can be 
replaced by the sum over P G ^R(MX). 

We have established 

LEMMA 3.1. For sufficiently regular T, J0(f) equals the integral over x in 
G°(F)\G°(A)\ and the sum over standard parabolic subgroups R of Ga and 
elements £ in R(F)\G (F) of the product of 

\cG(o)rl 2 j f(x-}C]ounfr)dn 

with 

(3.4) 2 (-\fm^/A^P(HP(^x) - ZP(T - T0) - T0). 

4. A construction. The next two sections represent a combinatorial 
digression. The expression (3.4) is a sum over parabolic subsets of G. We 
shall introduce a construction designed to transform it into a sum over 
parabolic subgroups of Ga. 

The discussion will center around the group Ga, where a is a fixed 
semisimple element in G(F). In the next two sections we will not single out 
standard parabolic subsets of either G or Ga. We do assume, however, that 
there is a fixed Levi subset Mx in ££ which contains a, and such that MXa is 
a minimal Levi subgroup of Ga. Then, as in Section 3, we set 

and 

a l = aMx
 = a M l C T -

Set 

^ = &G\MXa\ 

the set of parabolic subgroups of Ga which contain MXa. We have the 
map 

P-*Pa = Cent(a, P°)°, P e &{MX\ 
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from ^(Mx) onto ^F°. Suppose that R is a group in S^°. We shall be 
concerned with the three successively embedded subsets 

K(MX) = {P G HM,):Pa = R,aP = aR}, 

J^(M,) = {/> G J^M,):P0 = R), 

and 

^ W ) = (^ e&(Mx):Pa D R} 

of ^"(Mj). It is helpful to think of these sets geometrically. Associated to R 
is the positive chamber aR of aR. Its closure is the disjoint union over 
P e &R(MX) of the chambers ctp. The set <FR{MX) corresponds to 
those chambers which are actually contained in aR, while the first set 
&\(M{\ corresponds to those chambers which are open in aR. Observe 
that ^ R(MX) consists of the minimal parabolic subsets from^R(MX). 

Our construction will actually be a generalization of a definition from 
Section 2 of [2]. The earlier definition will be the special case here that 
Ga = G = G°. We shall begin by recalling the earlier definition, or rather 
its extension to our connected component G. Take a point Y e a0 and for 
any P G f let 7P be the projection of Y onto aP. Then there is a 
function 

TG
P(X, YP\ X e Q0, 

for any P e J^ such that 

(4.1) T%X9 YP) = 2 (-\fm(AQ/A^(X)rQ(X - YQ), 

and 

(4.2) rP(X - YP) = 2 (-\fim{AQ/A^(X)TG
Q(X, YQ). 

{Qe&Qz>P} 

The function TG(X, YP) depends only on the projection of X onto ûp, and 
it is compactly supported as a function of X in ûp. (See Lemma 2.1 of [2]. 
In [2] we wrote T'P(X9 Y) instead of YG

P{X, YP) and we treated 
only the case that G — G . However, the proof applies equally well to 
arbitrary G.) 

Fix a group R in !F°. Suppose that 

<& = {YP:P e J ^ ( M , ) } 

is a set of points in a0 with the usual compatibility condition. Namely, if 
P, P' e ^R(MX) are adjacent (that is, their chambers share a common 
wall), then Yp, — YP is a multiple of the co-root av, where a is the unique 
root in Ap, n ( — Ap). Let Q be any parabolic element in^R(MX). Then Q 
contains a P in JF°R(MX). Define YQ to be the projection of YP onto ÙQ. 
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Because of our condition on ^ YQ will be independent of which group P is 
chosen. For any 5 E f ° with S D R, set 

% = {YQ:Q^^s(Ml)}. 

For each such R and <^we define a function 

T%(X, %), X e a,, 

such that 

(4.1)* r£(* %) 
2 T (̂X)( 2 (- l fm(V^) 

and 

(4.2)* ( 2 ( - î ^ ^ ^ T p C j f - YP) ) 

2 ( - \fim{ÀR/As)TS
R(X)TG

s(X, %). 

Either formula serves to define this function while the other follows from 
the fact that 

(4.3) 2 (-\fm(AR/As)T^X)T$(X) = 0, 
{S^^a:R(zSczR'} 

for any groups R Ç R' in ^F°. (See the remark following Corollary 6.2 of 
[1].) The second formula is evidently the one which pertains to (3.4). It is 
clear that TR(X, &R) depends only on the projection of X onto aR. We 
shall show that it is compactly supported as a function of X in the 
orthogonal complement, aR, of aG in aR, and we shall find its Fourier 
transform. 

Given R and % and also P e ^R{MX\ set 

x <1(Y V\tMXh ^ ( A ) = I c r^(X, YP)<rA)dX9 X e m£. 

As the Fourier transform of a compactly supported function, cf
P(K) extends 

to an entire function of À. It has a simple formula in terms of the 
function 

cP(X) = eX™ 

(Lemma 2.2 of [2] ) and agrees with the general definitions of Section 6 of 
[2]. Define 

4(A) = 2 MX). 
R^&%MX) 
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LEMMA 4.1. For any R and % the support of the function 

X->TG
R(X,%), Z e aG

R, 

is compact and depends continuously on ^R. Moreover, 

L TG
R(X, %)eX(X)dX = c'R(\), X e ia*R. 

Proof For any X in aR, we have 

r£(* %) 
= 2 rS

R(X)( 2 (-\f^Ao/A^(X - YQ)) 

= 2 4(X) 2 2 (-l)^A*A>%(X)T$(X, YP), 

by (4.1)* and (4.2). This equals 

2 T$(X, YP) 

X ( _ 2 (-l)dim(V^)TÔa (X)-^ (X)V 

In the next section we shall prove 

LEMMA 4.2. For R e J^G tf«d P G ^ ( M J ) , //ze expression 

2 ( - i ) d i m ( v ^ ) T ^ ) ^ ( ^ ) , j f Ê û ^ , 
{Ô^(A/,):ÔCP} 

equals \ if P belongs to ^R{MX) and X belongs to aP, and equals 0 
otherwise. 

Assuming Lemma 4.2, we obtain 

(4.4) T%(X, %) = 2 TG
P(X, YP)eP(X\ X e aR, 

P^R{MX) 

where eP(X) equals 1 if X belongs to aP, and equals 0 otherwise. This 
equals 

2 T$(X, YP) 

almost everywhere on a^. Lemma 4.1 follows from this fact and Lemma 
2.1 of [2]. 

Continuing a convention from [2], we shall often denote the values of 
cP(X) and cR(X) at X = 0 by cP and cR respectively. 
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5. Combinatorial lemmas. The purpose of this section is to prove 
Lemma 4.2. We continue with the notation of Section 4. Since the center 
of Ga could be larger than that of G, the space aG could be properly 
contained in the analogous space ar for Ga. We are denoting the com-
plementary subspace by aG . 

Let i ^ b e a fixed group in ^°. Then 

aG c aGo c aR, 

and 

aR = aG® aG
Gg ® aG

R°. 

LEMMA 5.1. The function 

2 (-\fm{A^/A^TP(Xl X e aR, 

equals the characteristic function of the set 

{X e aG + aR°:cd(X) ^ 0 , S G A ^ } . 

Proof. We shall define a simplicial complex 

c = u c> 

whose simplices are indexed by the parabolic subsets ? G ^ ( M J ) with 
P ^ G. For any such P set 

A/> - { © ! , . . . , s„} , 

and then define cP to be the simplex 

{*!©!+ . . . + *„©„:/,• i^O, ^ + . . . + tn = 1}. 

It lies in (a#)*, the complement of aG in a^. Let C be the union of the 
simplices cP. U R = Ga, C is homeomorphic to the unit sphere in 
(a#)*. If R ¥= Ga, C is homeomorphic to the intersection of the unit sphere 
with a closed convex cone. 

If X e aG the required formula is immediate, both sides being equal to 
1. Suppose then that X £ aG. Fix a small positive number € and set 

JT+ = {A e (aG
R)*:X(X) i= c}. 

Let ^ be the set of elements P whose simplex cP belongs to the interior 
of J^"1", and let ^ ° be the set of P whose simplex meets the boundary of 
^ + . We can choose € so that the boundary of Jif+ contains no zero 
simplex of C. Moreover, we can assume that & + consists of those P for 
which X(X) is strictly positive for every X in cP. Now rP is the character
istic function of the open cone in aP which is dual to the positive chamber 
in (ctp)*. It follows that rp(X) equals 1 if P belongs to ^ + , and equals 0 
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for any other group P e &R(MX) with P =£ G. Consequently 

(5.1) 2 (-if^^^TpiX) 
Pe&t i(Mx) 

= 1 + 
{P^R 

2 (- i \dim(AP/Ac 
^P(X) 

= 1 + 2+ ( -
Y\dim(AP/AG)^ 

This equals 

i - x(c+), 
where C + is the simplicial complex consisting of those simplices in 
& and \(C ) is its Euler characteristic. 

Let D+ be the intersection of C with J?+. If # = Ga, D+ is a 
hemisphere and is contractible. If P ^ Ga,D

+ is either contractible or the 
empty set. Therefore, the Euler characteristic x ( ^ + ) equals 1 unless D + 

is empty, in which case it equals 0 by definition. Now D+ is the union of 
C + with 

u (cP n JT + ) . 
PŒ0>° 

We shall exhibit a retraction from D + onto C + . Suppose that P e ^ ° . 
Since € is small, we can take 

with 

and 

£,(*) ^ 0, l ^ i 

£37(X) > €, r + l ^ j ^ / î . 

An arbitrary element in cP n Jt?+ is of the form 

X = tfr + . . . + /„SW, 

with *,. ̂  0, *! + . . . + fw = 1, and A(X) ^ e. The point 

belongs to the intersection of (cP D ^ + ) with C + . If À belongs to two 
spaces cP n Jf+ , Xx is still uniquely defined. In fact, it is clear that X —» Aj 
extends to a continuous retraction of Z)+ onto C + . Therefore, 

X (C + ) = X(D+). 

We have shown that (5.1) equals 1 if D is empty and equals 0 
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otherwise. Since e is small, D is empty precisely when X(X) ^ 0 for every 
X G C. However C and Ap U (aG )* both generate the same positive 
cones in (a^)*. (This is just a restatement of the fact that the closure of aR 

is the union over P e J ^ ( M J ) of the chambers up .) Therefore Z>+ is empty 
precisely when the projection of Xonto a^ vanishes, and when S5(Ar) ^ 0 
for every £3 e Ap. The lemma follows. 

LEMMA 5.2. The expression 

2 (-i)dim(^7^p(x), x e da, 

; / X belongs to aG + ctpa, ««J vanishes otherwise. 

Proof. The given expression equals 

This follows from the fact that for a given P e J^(M) , the groups 
S e J£"a such that # c S c PCT are parametrized by the subsets of 
KR\ AP . Apply Lemma 5.1. If X does not belong to aG + ctp°, it projects 
onto none of the spaces a^ + as

a, and the expression is zero. Suppose then 
that X does belong to aG + afy. Let R' be the group in J^a, with 
R c R\ such that 

Âp, = {S3 e Âp:S3(X) ^ 0}. 

Our expression becomes 

^ (— \\àïm(AR/As)^ 

{S^^-.R'aS} 

It equals 0 if Rf ¥= Ga and it equals 

/_Y\dim(AR/AGg) 

if # ' = qa. However, R' = Ga precisely when ®(X) > 0 for 
every £5 e AR. Therefore the expression equals 

(-\fm(A^/A^TR(Xl 

as required. 
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LEMMA 5.3. The expression 

2 (-\fm{Ar/Ac\p
R°(X)îP(Xl X e aR. 

equals I if R = Ga and X belongs to aG, and vanishes otherwise. 

Proof. The given expression equals 

2 rs
R(x) 2 (-\fm^/A^TP(xy 

{S^°.S^R} P^3FS(MX) 

G 

Apply Lemma 5.2. If X does not belong to aG + aR°, it projects onto 
none of the spaces aG + af°, and the expression is 0. Suppose then 
that X does belong to aG + a^a. Our expression becomes 

2 (-lfmiA^/A0T
s
R(X)rs(X). 

{S^^a:S^R} 

As we noted in (4.3), this vanishes if R ¥= Ga. If R = Ga, so that 
a<R° = {0}' ^ clearly equals 1. The lemma follows. 

We can now prove Lemma 4.2. We must evaluate the expression 

(5.2) 2 {-\f^AQ/A^{X)ATP
Q{X\ X(EaR, 

{Q^R(Mx):QoP} 

where now P is a fixed element in J ^ ( M ) . Let M = MP. The sum in 
(5.2) may be replaced by a sum over J^JJ nR(Ml), the set of 
parabolic subsets Q of M which contain Mx and such that Qa contains 
Ma n R. The resulting expression is just that of Lemma 5.3, but with 
(G, Ga, R) replaced by (M, Ma, Ma n R). It is easy to see that 
Ma = Ma O R if and only if P0 = R. It follows that (5.2) equals 1 if 
Pa = R and X belongs to aM = aP, and equals 0 otherwise. This was the 
assertion of Lemma 4.2. 

6. Reduction to the unipotent case. We shall resume the discussion of 
Section 3, with the symbols a, Ga, Mx and M]a having the same meaning as 
there. We will need to fix a maximal compact subgroup 

K = n K„ 
V 

of Ga(A) which is admissible relative to M]a in the sense of Section 1 of [2]. 
Then for each group R e J£"a we have the function 

HR:Ga(A) -> aR 

defined in the usual way from the decomposition 

Ga(A) = NR(A)MR(A)Ka. 
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For any x e Ga(A), let KR(x) be the component of x in Ka relative to this 
decomposition. It is determined up to multiplication on the left by 
elements in MR(A) n Ka. 

It is clear that any objects that have been associated to the triple 
(G, M0, K) also exist for (Ga, Mlff, Ka). In particular, there is the analogue 
of the point T0 described in Section 1, a point in a j , which we shall denote 
by T0a. Let Ta be the projection of the point T — T0 + T0a onto ÛJ. Then 
T0a is the value of Ta at T = T0. For most of this section we will retain the 
standard minimal parabolic subset P0 of G, and we will assume that there 
is a standard parabolic subset Px in <P(M{). If T is suitably regular 
with respect to P0 then Ta will be suitably regular with respect to P l a . 

We start with the formula for J^(f) given by Lemma 3.1. We shall 
make some changes of variables, at first formally, leaving the justification 
until later. Change the sum and integral over (£, x) in 

(R(F)\G°(F) ) X (G°(F)\G°(A)1) 

to a sum and double integral over (ô, x, y) in 

(R(F)\Ga(F)) X (Ga(F)\Ga(A) n G°(A)1) X (Ga(A)\G°(A) )• 

(Here we should note that 

Ga(A)\G°(A) = Ga(A) n G\A)\G°(\)\) 

The expression (3.4) becomes 

2 ( - l ^ ^ ^ T p ^ ^ j ) - ZP(T - TQ) ~ T0). 

Since 

HP(8xy) = HR(8x) + HP(KR(8x)y) 

= HR(8x) + HP(KP(8x)y\ 

this equals 

2 ( - ^ ^ ^ ^ ( ( ^ ( « J C ) - r a ) - 7 ^ , j ) ) , 

with 

(6.1) YT
P(Sx,y) = -HP(KP(8x)y) + ZP(T - T0) - Ta + T0. 

The set 

&l(8x,y) = {yJ(ôx,7) : jP G ^ ( M , ) } 

satisfies the compatibility condition of Section 4, so by (4.2)* we can write 
this last expression as the sum over {S e J5"0:S 3 R} of 

(6.2) (-l)d i m < / , R /^ )Tf(//R(5x) - r0) 
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X TG
s(Hs(8x) - Ta,V

T
s(8x,y)). 

The formula for J0 (f) becomes the integral and sum over 

y e Go(A)\G0(A), 

{S e &":S 3 Plo), 

x e Ga(F)\G0(A) n G°(A)\ 

{R G &°:PU c R c S}, and 

8 e R(F)\Ga(F) 

of the product of 

(6.3) \iG(a)\-] 2 l^f(y-]ax-]8-]unSxy)dn 

with (6.2). 
Next, decompose the sum over R(F)\Ga(F) into a double sum over 

(M> 0 i n 

(*(F) n M S (F ) \M 5 (F ) ) X (S(F) \G a (F)) . 

Take the resulting sum over £ outside the sum over R, and combine it with 
the integral over 

Ga(F)\Ga(A) n G°(A)'-

Then decompose the resulting integral over 

S(F)\Ga(A) n G°(A)' 

into a multiple integral over (v, a, ra, k) in 

(NS(F)\NS(A) )X(Af n G0(A)') X (MS(F)\M5(A)') X *„. 

The variables of integration v and a drop out of (6.3), both being absorbed 
in the integral over NR(A). A Jacobian is introduced, but it cancels that of 
the last change of variables, v also drops out of (6.2), so the integral over 
NS(F)\NS(A) disappears. The variable a remains in (6.2) but occurs only 
in the second function r f . As our final change of variables, we rewrite the 
integral over NR(A) in (6.3) as a double integral over (nx, n2) in 

(TV*(A) O MS(A)) X Ns(\). 

Our formula for J^(f) is now given by the integral and sum over y9 S, k, a 
and m of the product of \tG(o) \~~l with 

(6.4) 2 2 2 / (- D^^fcL*«,<«" W.jum) 

X rs
R{HR(m) - T0)dnx, 
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where 

is defined as the product of 

ôs(m2) 1 / 2 JN(A) f(y~]ok~lm2n2ky)dn2, 

with 

(6.5) TG
s(Hs(a)- T0,W

T
s(k,y)). 

(We can obviously insert 8S, the modular function of S (A). We have 
included it so that at a later stage our definitions will agree with [4].) It is 
clear that <&J k y is a function in C^°(MS(A)1) which depends smoothly on 
y, k and a. 

We must justify the changes of variables. It would be enough to show 
that (6.4) is absolutely integrable over y, S, k, a and m. For we would then 
be able to work backwards, verifying each successive change of variables 
by Fubini's theorem. 

LEMMA 6.1. Given a compact subset A of G (A) we can choose a compact 
subset 2 of Go(A)\G0(A) such that 

y-]o%(A)y n A = 0, y e Gff(A)\G°(A), 

unless y belongs to 2 . 

In order not to interrupt the discussion, we shall postpone the proof of 
this lemma until the Appendix. 

Consider the expression (6.4) first as a function of (S, a, k, y). The index 
S of course ranges over a finite set, while k ranges over the compact set Ka. 
We restrict y to a fixed compact set of representatives of the points 2 of 
the last lemma, with A taken as the support off The variable a intervenes 
through the function (6.5). Since Hs maps (^4^ Pi G°(A)1) isomorphically 
onto ct£, Lemma 4.1 tells us that (6.5) vanishes for all a outside a compact 
set which depends continuously on k and y. Since k and y range over 
compact sets, we see that (6.4) vanishes for (a, kyy) outside a compact set 
which is independent of m. Now consider (6.4) as a function of 
m e MS(F)\MS(A)1. We immediately recognize the integrand in the 
analogue of formula (2.1) for 

In particular, (6.4) is an integrable function of m. In fact, it follows from 
the proof of Theorem 7.1 of [1] that the integral over m of the absolute 
value of (6.4) is bounded by 

H*L*.vll. 
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where ||-|| is a continuous semi-norm on C™(MS(A) ). Since this is a 
continuous function of (a, k, y), (6.4) is absolutely integrable over y, S, k, a 
and ra. We have thus shown that all our changes of variables are valid. We 
have, in addition, proved that J0 ( / ) equals 

The distribution J0 is the value at T = T0 of J J, while J^ip is the val
ue at T = T0 of J ^ ' . Setting T = T0 in (6.6), we obtain 

4(/) 

= ^ ~ ' 1,A)\C»«A, s 2 o ( / jj^l^adk)dy. 

The integration in (a, k), being over a compact set, can be taken inside 
/un

5
ip. The contribution from the integral over a is just the integral of (6.5) 

at T = T0, which equals 

(6.7) ja,T
G

s(X,<W}{k,y))dX. 

Now, for any Q e J^(M,), 

YT$k,y) = ~HQ(ky) + T„ 

where 

Set 

vG(\, ky, Tx) = eX(~Hc(ky) + TÙ, A e m£, 

so that 

v'Q(ky, T0) = jfg TG
Q(X, -HQ(ky) + Tx)dX, 

in the notation of Section 4. Then by Lemma 4.1, (6.7) equals 

It follows that 

(6.8) ,„(/) = |^(a) I"1 /Go(AAc0(A) { ^ J ^ | o } / & ( * W * , 

where 
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= Ss(m)m JK fNsWf{y-Xak-xmnkyy^ky, T^dndk, 

for any m e MS(A)1. It is clear that ®s,y,T *s a function in C^°(MS(A)1) 
which depends smoothly on y. We would like to apply the results of [4] to 
(6.8). In order to do so, we ought to free this formula from the dependence 
on the minimal parabolic subgroup P l a . 

Suppose that R is any group in 3F°. Then 

R = w;]Sws, 

for a standard S z> P]a and an element s in WQ°, the Weyl group of 
(GCT, AXa). Let wsa be a representative of s in Ka. Then if ra9 e MS(X)\ 

®S,y,T}(
ms) e c m a l s 

M " 1 * ) " 2 X 0 fNR(A/(y~lok'lmRnkyys(wsaky^ T})dndk9 

where 

Now suppose that g e J^(Mj). Then P = w~lQws belongs to ^R{MX). 
We can write 

- HQ(wsaky) + 7i 

= ~HQ(wsky) - HQ(wsaw;1) - HQ(wsw;1) + r,. 

(Recall that w5 is a representative of s in AT.) By Lemma 1.1 of [2] and the 
definition of HP, this equals 

-sHp(ky) + T0a - sT0a - T0 + sro 4- Tx 

= -sHP(ky) + *r„ 

modulo a vector which is orthogonal to ÙQ. Consequently, 

-HQ{wsaky) + Tx = s(-HP(ky) + r ,), 

from which it follows that 

We have therefore shown that 

From this it follows easily that 

(6.9) JX(*S&,T) = JX&**.T)-

(See the remark at the end of Section 2 of [2].) 
Our progress to this point may be summarized as follows. 
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LEMMA 6.2. J0(f) = 

Proof. Recall that W^« and W™R are the Weyl groups of (Ga, Ax) and 
(MR, Ax) respectively. The number of groups in tFa which are conjugate to 
a given R equals I H ^ I I W^ff|_1. The lemma then follows from (6.8) and 
(6.9). 

7. Relation with weighted orbital integrals. Lemma 6.2 is our main step. 
We shall combine it with results from [4] and [5] to obtain a formula for 
J0(f) in terms of weighted orbital integrals. 

Suppose that S is a finite set of valuations of F. Set 

G(Fsy = G(FS) n G(A)1, 

where 

FS = n i% 

A weighted orbital integral is a distribution 

/ - 4 , ( Y , A / e C™(G(FS)\ 

on G(FS)
1 which is associated to an M e o^and an orbit y of M°(FS) in 

M(FS) Pi G(FS)
1. We shall use a descent formula from [4], which we recall 

in a form applicable here. Suppose that a is a semisimple element in M(F). 
Set 

DG(o) = det(l - Ad(o) ) f l / v 

where g and ga are the Lie algebras of G and Ga. Then DG(o) belongs to 
F*. As in [5], we write 

(**/.(*•) )M„,S 

for the finite set of unipotent Ma(Fs) conjugacy classes which meet M0(F). 
If 

u e (®K(F))M^S, 

the element y = ou represents an M°(FS) orbit in M(FS) Pi G(FS)
1. For 

a n y / G C ^ G ^ ) 1 ) , Corollary 8.7 of [4] asserts that 
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(7.1) JM(yJ) 

- ^ ' *n Ls^ÀRjw'*"• *^))* 
where 

\DG(o) \S=U \DG(a) |v, 

and $>Ryj *s t n e function in C^°(M^(ir
5)

1) defined by a formula analo
gous to that of Section 6. That is, 

(7.2) * W l ( / n ) 

= M » O 1 / 2 Xa bR(Fs)
f(y~]°k~lmnkyyK(ky> T\)dndk> 

for any j G G°(FS), Tx e a0 and m e A/^i^) 1 . 
Suppose that S contains the Archimedean valuations. Then we embed 

C^°(G(FS)
]) in C™(G(A)1) by taking the product of a given function 

in Cf\G(Fs)
1) with the characteristic function of Uv^s (K+ n G(FV) ). 

In this way C™(G(FS) ) is to be regarded as a closed sub space of 
C™(G(A)]). Any function in C^GtA) 1) belongs to C™(G(FS)

1) for some 
such S. 

Let o, a and Mx be fixed as in the last section. Let S0 be a finite set of 
valuations of F, containing the Archimedean places, such that for any v 
not in S0 the following four conditions are satisfied. 

(i)\DG(o)\v = 1. 
(ii) Kv n Ga(Fv) = Kav. 

(iii) oKva
 1 = Kv. 

(iv) If yv e G°(FV) is such thaty~]o°UG (Fv)yv meets oKv, thenyv belongs 
to Ga(Fv)Kv. 
It is clear that the first three conditions can be made to hold; the fourth 
is a consequence of Lemma 6.1. Let 5 be a finite set of valuations 
which contains S0, and take / e C^GCA)1) to be in (the image of) 
C™(G(FS)

1). The results of Section 6 tell us that the function 

y^ 2 \W^\\W^X J%{9R^T)9 y^G°(A), 

is left G0(A)-invariant. It vanishes unless 

y = ys/> 

withj>£ e Ga(Fs)\G°(Fs), and y' an element in 

II (KMv) = I I ( f t n Ga(Fv))\Kv) 
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= n (G0(FV)\G0(FV)KV). 

jMR (This follows from conditions (ii) and (iv) above and the fact that J^p 

annihilates any function that vanishes on the unipotent set in MR(A) .) If 
k = ksk\ with 

, and k' e n 
v<£S 

Kov> 

then for any such y 

v'R(ky, TO = vR(ksys> T0-

It follows that $^ r , defined in Section 6 as a function in C™(MR(A)1), 
actually equals 4>R T and is defined by (7.2) as a function in 
the subspace C^°(MR(FS) ). The formula of Lemma 6.2 becomes 

Let 

J T = ^G°(M1(J) 

denote the set of Levi subgroups of Ga which contain Mlo. We apply the 

unip main result (Corollary 8.3) of [5] to write J^f* as a linear combination of 
weighted orbital integrals. We obtain 

«eC*L(F))Lt5 

for complex numbers ^ ( S , w). Consequently, J0(/) equals 

X 2 , fl^(S, u)Jf\u, $R,y,T)dy, 

where ^°{L) is the set of elements in J^"a which contain L. 
Now, let Se°a(Mx) be the set of M e ^{Mx) such that AM = AM<j. If L 

is any group in ££° and M is the centralizer in G of ^4L, then M belongs to 
^ ( M j ) and Ma = L. It follows that M -> Ma is a bijection f r o m ^ A ^ ) 
onto o^a. We rewrite our formula for J0(f) as the sum over 
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M G jSf^M,) and u e (®K(F))KS 

of the product of 

\iG{o)r'\W^\\WG^aM^S,u) 

with 

^ L^,(,4*v,))*-
By our choice of S, \DG(o) |v = 1 for each v not in S. Therefore 

\DG(o) \s = I I |£G(a) |v • IT l^C(a) lv = 1 

by the product formula. In other words, (7.3) can be multiplied 
by \DG(o) \]

s
/2 without changing its value. Consequently (7.3) equals 

JM(ou,f) by the descent formula (7.1). 
We have proved 

LEMMA 7.1. There is a finite set S0 of valuations of F, which contains the 
Archimedean places, such that for any finite S D S0 and f e C™(G(FS) ), 

X 2 aM°(S, u)JM(ou,f). 

8. The main theorem. In Lemma 7.1 we have what is essentially our 
final formula for J0(f). However, it will be more useful if we rewrite it in a 
way that does not depend on a distinguished element o in o. 

Let M be a Levi subset of G, and let a be an arbitrary semisimple 
element in M(F). We shall say that a is F-elliptic in M if a commutes with 
a maximal torus in M° which is F-anisotropic modulo AM. If o is the fixed 
element of Lemma 7.1, then a is ^-elliptic in M if and only if M belongs to 
the set S?0

a(M{). 
Suppose that y is any element in M(F) with semisimple Jordan 

component a. If y' is another element in M(F), we shall say that y' is 
(M, S)-equivalent to y if there is a 8 G M°(F) with the following two 
properties. 

(i) a is also the semisimple Jordan component of 8~ly'8. 
(ii) a _ 1 y and o~l • 8~ly'8, regarded as unipotent elements in Ma(Fs), 

are Ma(i
7

5)-conjugate. 
Notice that there could be several classes u in (°UM (F) )M s such that ou is 
(M, S)-equivalent to y. The set of all such u, which we denote simply by 
{u.ou — y}, has a transitive action under the finite group 
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LM(O) = Ma(F)\M(F, a). 

It is, in particular, finite. Define 

(8.1) aM(S,y) = eM(a)\l
M(o)\-1 2 aM°(S, u), 

{u.ou~y} 

where eM(o) equals 1 if a is F-elliptic in M, and is 0 otherwise. Clearly 
a (S, y) depends only on the (M, S)-equivalence class of y. 

Returning to our study of the class o, we write 

(M(F) n o V s 

for the set of (M, S)-equivalence classes in M(F) n o. It is finite. Our 
main result is 

THEOREM 8.1. There is a finite set S0 of valuations of F, which contains 
the Archimedean places, such that for any finite set S Z) S0 and any 
f e C?(G(Fs)

l)9 

(8.2) J0(f)= 2 1 ^ 1 I ^ l " 1 2 aM(S,y)JM(y,f). 
MŒJ? YG(M(f)no)M ) 5 

Proof We will deduce (8.2) from Lemma 7.1. We let a and Mx be as in 
Lemma 7.1. Using the Jordan decomposition, we write the sum over y 
in (8.2) as a double sum over semisimple classes and unipotent classes. 
Combine the first of these with the sum over M. We obtain a sum over the 
set 

II = { (M, aM) }, 

in which M belongs to ££ and oM is a semisimple M (Z^-orbit in M(F) 
which is G°(F) conjugate to a. The Weyl group W0 clearly operates on II. 
Now, it follows from the definitions that 

aw*Mw~\s,wsyw;l) = aM(S,y) 

for any s G W0. Moreover, we observed in [4] that 

Therefore the sum over II can be replaced by a sum over the orbits of W0, 
provided that each summand is multiplied by the quotient of \W0\ by the 
order of the isotropy subgroup. 

Every W0 orbit in II contains pairs of the form (M, a), where M is some 
element m&(Mx). Note that the isotropy group of (M, o) in W0 contains 
W% , the Weyl group of (M°, A0). Suppose that (M, a) and 

(M',o) = ws(M,o)w~\ s G WQ, 

are two such pairs in the same W^-orbit. Then M equals wsMw~ , and s 
has a representative in G°(F) which lies in G°(F, a). Since M and M' both 
contain Ml9 we can choose the representative of s to lie in 
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Norm(^, G"(F,o)), 

the normalizer of Ax in G (F, o). Now there is an injection 

Norm(^!, M°(F, o) )\Norm(^1, G°(F, o) ) -> wf\W0. 

We have just proved that the coset of s modulo W0 lies in the image. 
Conversely, suppose that s is any coset of W0 \W0 which belongs to the 
image. Then the pair ws(M, o)w~l will clearly be of the above special form. 
Notice that 

Norm(^„ M°(F, a) )\Norm(v41, G°(F, a)) = wtf°iF'a)\wf{F'a\ 

where 

wf(F'a) = M?(F, a)\Norm(v4l5 G°(F, a) ) 

and Wçf (F,°^ is the analogous group for M. Thus, we can replace the 
original sum over II by a sum over all pairs (M, a), as long as we multiply 
each summand by 

(\wf\\w0rYl\wf^\\wf^rl. 
Since 

we have established that the right hand side of (8.2) is equal to 

2 \wf™\\wf™rl 

X 2 aM(S,y)JM(yJ). 
{y^(M(F)no)MS:ys = o} 

We must show that this is equal to the right hand side of the formula in 
Lemma 7.1. 

We have noted that a is F-elliptic in M, M e &(MX), if and only if M 
belongs \o£P®a(M{). I* follows from the definition (8.1) that the right hand 
side of the formula in Lemma 7.1 equals 

2 \W^\\W^\-]UM(o)\\iG(a)r] 

X 2 aM(S,y)JM(y,f). 
{y^(M(F)no)MS.ys = o} 

To complete the proof of the theorem, we have only to verify that 

(8.5) |W%'\ |W%'\~%M(o) | \tG(o) \~' = | w f ™ \ | w f ™ \ ~ ' . 

Recall that 
iG(o) = Ga(F)\G°(F, a). 
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Every coset in Ga(F)\G (F, o) has an element which normalizes Av so 
there is a surjective map 

GJ,F)\G\F, O) -» wG°\wf{F-°\ 
The kernel is the subgroup of cosets having representatives that act 
trivially on Ax. It is isomorphic to 

Ga(F) n M^G^F, a) n M, = M l a(F)\M?(F, a) = ^M'(a). 

It follows that 

1^1 k%)! = |<v-a)lkAV)|. 
Similarly, 

| < « | k % ) | = |<°(f-o)|| t
M-(a)|. 

This establishes (8.5) and completes the proof of our theorem. 

Suppose that y G ois semisimple. Then by (8.1), 

aG(S,y) = tG(y)\l
G(y)\-{aG°(S,l). 

Combined with Corollary 8.5 of [4], this immediately gives a simple 
formula for aG(S, y). We state it separately as a theorem, since it will be 
important for future applications. 

THEOREM 8.2. Suppose that y is a semisimple element in o. Then for any 
finite set S D S0, a (S, y) equals 

\Gy(F)\G(F, y) I"1 vol(GY(F)\GY(A)') 

if y is F-elliptic, and is 0 otherwise. 

Remarks. 1. In this paper we have not normalized the invariant 
measures. However, we have implicitly assumed that they satisfy any 
required compatability conditions. If y is F-elliptic (in G), the measure on 
Gy(A) implicit in Theorem 8.2 must be compatible with the measure 
used to define the orbital integral JG(y,f). The orbital integral relies on a 
choice of measure on Gy(Fs)\G°(Fs), and since S 3> S0, this amounts to 
a choice of measure on 

Gy(A)\G°(A) = Gy(A) O G°(A)\G°(A)1 = Gy(A)1\G°(A)1 • 

The measure on Gy(A)1 used to define this quotient measure must be the 
same as the one above. 

2. Suppose that the class o consists entirely of semisimple elements. 
Then Theorems 8.1 and 8.2 provide a closed formula for J0(f). (See 
Proposition 5.3.6 of [6].) In the special case that o is unramified (in the 
sense of [1] ), the formula is easily seen to reduce to (8.7) of [1]. 
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3. Theorem 8.2 is probably sufficient for many applications of the 
trace formula. This is fortunate, since if y is not semisimple, any general 
formula for aG(S, y) is likely to be quite complicated. If G = GL2 and y is 
principal unipotent, a formula for aG(S, y) is implicit in term (v) on page 
516 of [9]. For GL3 there are formulas for aG(S, y) which can be extracted 
from [7]. 

9. The fine o -expansion. Set 

J if) = 2 Ufl f e O G ( A ) 1 ) , 

the left hand side of the trace formula. It is a distribution, which of course 
also equals 

2 Jx(f) 

(the right hand side of the trace formula). In some situations it is easier to 
take / ( / ) as a single entity, without worrying about which terms come 
from a given o. For convenience, we shall restate Theorem 8.1 as a formula 
for J(f). 

We need to know that only finitely many o intervene for a given/. 

LEMMA 9.1. Suppose that A is a compact subset of G (A) . Then there are 
only finitely many classes o e 0 such that the set 

ad(G°(A))° = {x~]yx:x e G°(A)> Y e °} 

meets A. 

We shall prove this lemma in the Appendix. 
Now suppose that A is a compact neighborhood of 1 in G (A) . There is 

certainly a finite set S of valuations of F, which contains the Archimedean 
places, such that A is the product of a compact neighborhood of 1 in 
G(FS)

] with the characteristic function of I Iv^s Kv. We shall write S\ for 
the minimal such set. Let C^°(G(A)1) denote the space of functions in 
C^°(G(A)1) which are supported on A, and set 

C ( G ( f s ) ' ) = O G ( A ) 1 ) n Cf(G(F s)
1), 

for any finite set S D S°A. 

THEOREM 9.2. Given a compact neighborhood Ao /1 in G(A) we can find 
a finite set SA D S^ of valuations of F such that for any finite S D S^9 

and any/e Cf(G(Fs)\ 

J(f)= 2 i w f l l ^ n 1 2 aM(S,y)JM(y,f). 
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Proof. We shall apply Theorem 8.1 to the definition 

j(f) = 2 un 
Let 0A be the finite set of classes o such that ad(G°(A))o meets A. We 
define SA to be the union of SA with the sets S0 given by Theorem 8.1, as 
o ranges over 0A. Take any finite set S D SA , and l e t / G C^(G(FS) ). 
Since J0 annihilates any function which vanishes on ad(G (A))o, we 
obtain 

J(f) = 2 J0(f) 

= 2 \<\ IW$rl 2 2 <F{S9y)JM{y9f). 
M^^ o e ^ â ye(M(F)no)A / ? s 

Now suppose that y is any element in (M(F) )M s. Then y is contained in a 
unique o G 0. It is a consequence of Theorem 5.2 of [4] that the orbital 
integral JM(y, f) equals 0 if / vanishes on ad(G°(A))o. In particular, 
JM(y>f) vanishes unless o belongs to 0A. It follows that 

/(/)= 2 WllWfr1 2 aM(S,y)JM(yJ\ 
M^<? y^(M(F))MS 

as required. 

Appendix. We still owe the proofs of Lemmas 6.1 and 9.1. We shall 
establish them by global means, using reduction theory and some familiar 
arguments from the derivation of the trace formula. Viewed in this way, 
the lemmas are rather closely related. 

Let G(F)' be the set of elements in G(F) which belong to no proper 
parabolic subset of G which is defined over F. We fix a minimal parabolic 
subgroup P0 of G° with Levi component M0. For convenience, write 0 for 
any subscript or superscript where our notation would normally call 
for PQ. In particular, H0 = Hpo, A0 = Apo, and N0 = Npo. If T is any point 
in ÛQ, set 

A(T) = {a G A™ O G°(\)l:a(H0(a) - T) > 0, a G A0}. 

LEMMA A.l. For any compact subset T of G (A) and any T G a0, there is 
a compact subset A (T)T of A^ D G°(X)1 with the following property. If a 
is a point in A(T) such that a~ y a belongs to T for some y G G(F)', then 
a lies in A(T)T. 

Proof. Let e be a fixed element in G(F) which normalizes both P0 and 
M0. Then € normalizes A0 and therefore acts on ct0. Any element in G(F)' 
can be written 
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(A.l) y = vws™, v e N0(F), 77 e P»(F), s e W0, 

by the Bruhat decomposition. Let p0 be the vector in aft, defined as 
usual by 

S0(a)l/2 = ep°{H«{a)\ a e A0. 

We claim that there is a constant c r , depending only on T, with the 
property that 

(Po ~~ sp0)(H0(a) ) S c r, 

for any a e A(T) and y as in (A.l) such that a~xya belongs to T. To 
see this, note that ep0 = p0. This implies the existence of a finite dimen
sional representation A of G+ , defined over F, with the highest weight 
a positive multiple of p0. Let <j> be a highest weight vector for A. By choos
ing a height function for A, and computing the component of the vector 
A(a~lya)<j> in the direction of A(w5)<J>, (as for example on p. 944 of [1] ), 
we see that the claim follows. 

Given y as in (A.l), let P°x z> P^ be the smallest standard parabolic 
subgroup of G° which contains ws. As with PQ above, write 1 for any 
subscript or superscript where our notation would normally call for 
Px. Thus, ÛJ equals ctPo, a0 is the orthogonal complement of ax in a0, 
and AQ is the set of roots in A0 which vanish on ax. If a is any point in 
A(T) such that a~xya belongs to T, we set 

(A.2) H0(a) = X + y, X e ai, Y e af. 

(The superscript G denotes the orthogonal complement of aG.) We shall 
first show that Xbelongs to a compact subset of a{

0 which depends only on 
T. The element v̂  is contained in Mx but in no proper parabolic subgroup 
of Mx. This implies that 

where each c^ is a positive integer. From what we have proved above, we 

see that X belongs to 

{H G a j : 2 c ^ ( # ) ^ c r ; «(//) ^ a ( D , a G A J } . 

This is a compact subset of a0 which certainly depends only on T. 
All that remains is to show that the element Y in (A.2) lies in a compact 

subset of af. Our discussion at this point is motivated by some 
observations of Labesse (Lecture 4 of [6] ). The element a~ yae~ lies in 
the compact set Tc - 1 . But the element 

ye~ = VWSTT 

lies in PX(F). Therefore 
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Hx(a
 lyae l) = Hx(a

 leae ]) = (eX - X)x + (eY - Y){, 

where (-)i denotes the projection of ÙQ onto af, and e = Ad(c). 
Consequently, (eY — 7)j lies in a compact set. We shall show that the 
linear map 

H-*(eH - H)l9 H G af, 

is injective. Suppose that Z ^ ax lies in the null space. Then 

(eZ\ =ZX=Z. 

Since e is an isometry on a0 , and (-)i is an orthogonal projection, eZ 
must equal Z. Now the chamber in ax associated to Px meets the space 

b = {H G afieH = H) 

in an open subset. Consequently there is a parabolic subset P of G such 
that P° contains P°x, and such that ctp = b. But the element y belongs to 
P n GOF)'. It follows that P = G, so that up = {0}. Thus, the point Z 
equals 0, and the linear map above is injective. We have shown that Y lies 
in a compact subset of af which depends only on T. The proof of the 
lemma is complete. 

COROLLARY A.2. There is a compact subset GT of G (A)1 such that 

x~]G(F)fx n r = 0, x G G W , 

unless x belongs to G (F)GY-

Proof. Suppose that x G G^A)1. By reduction theory, x is congruent 
modulo (left translation by) G (F) to an element 

pak, p G 6), a G ^4(7]), k ^ K, 

where <o is a compact subset of 7V0(A)M0(A)1 and Tx is a fixed point in a0. 
The set 

cox = {a~lpa:a G A(TX), p G <o} 

is compact and so therefore is 

Tx = {pkgk-lp~l:p G <ol5 fc G K, g G T}. 

If J C _ 1 G ( F ) ' X intersects T, there is an element y G G(F)r such that a~xya 
belongs to Tx. By the lemma, a then belongs to the compact set A(TX)T . 
The corollary follows. 

Proof of Lemma 6.1. We are given a class o G (9 and a semisimple 
element o in o, as well as a compact subset À of G (A) . We shall first 
consider the case that a belongs to G(F)'. Then o is just the G°(i7)-orbit of 
a. Suppose that y~loy intersects A for some y G G°(A). By the last 
corollary, y is G°(ir)-congruent to an element in the compact set GA. But 
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there are only finitely many elements S e Ga(F)\G (F) such that 
x~ S~ y8x belongs to A for some x e GA. Since the projection of GA onto 
G°(i7)\G°(A)1 is compact, we see that 

{y G G o ( i 0 \ G ° ( A ) W n A # 0} 
is a compact subset of Ga(F)\G°(\)1. Its projection onto 

Ga(\) n G°(A)1\G°(A)1 = G „ ( A ) \ G V ) 

is compact. Thus, Lemma 6.1 holds if a belongs to G(F)'. 
Now suppose that o is an arbitrary semisimple element in G(F). By 

replacing a with a G (F)-conjugate if necessary, we can assume that a 
belongs to M(FJ for a Levi subset M e &. (This Levi subset was denoted 
Mx earlier.) Choose a parabolic subset P e ^ (M) , and write N = NP. Let 
JVa denote the centralizer of a in N. Then any element in °llG (A) has 
a Ga(A) conjugate in Na(A). Suppose that y is any point in G (A) 
such that 

y~lo%o(A)y n A f i . 

Then y is congruent modulo Ga(A) to an element 

nrnk, n G TV (A), m G M°(A), ^ i [ , 

such that 

(A.3) m~ln~loNa(A)nm 

meets the compact set 

{kgk~l:k G # , g G A}. 

Since the set (A.3) is contained in m~lomN(A), the element m~xom lies in 
a fixed compact subset of M(A). Applying the case we have already 
established (with G replaced by M), we see the projection of m onto 
Ma(A)\M (A) lies in a compact set. We can therefore choose m to lie in a 
fixed compact subset of M°(A). But then a - ln~loNa(A)n intersects a fixed 
compact subset of N(A). It is easy to deduce that the projection of any 
such n onto Na(A)\N(A) lies in a fixed compact set. (This follows, for 
example, from the proof of the integration formula 

X0(A)W(A) LJM ^-"n2onxn^)dnxdn2 

= X(A) ^u)du> * G Cc(^(A) )• 
See Lemma 2.2 of [1] and Lemma 3.1.1 of [6]. Equivalently, one can argue 
as in the proof of Lemma 19 of [8].) We can therefore choose n to lie in a 
fixed compact subset of N(A). Thus, our original element y is congruent 
modulo Ga(A) to a point in a compact subset of G°(A) which depends only 
on A. Lemma 6.1 follows. 
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Proof ôf Lemma 9.1. The set G(F)' is a union of classes o e 0, each one 
consisting of a single semisimple G (F)-orbit. We shall prove Lemma 9.1 
first for these classes. Suppose for a given o in G(F)f that ad(G°(A))o 
meets A. Then by Corollary A.2, there are elements y e O and x e GA 

such that x _ yx belongs to A. Consequently y belongs to 

{d-lgd:de GA,g e A}. 

This is a compact subset of G(A) and contains only finitely many 
elements in G(F)'. It follows that only finitely many classes o in G(F)' 
have the property that ad(G°(A) )o meets A. 

Now suppose that M is a Levi subset in 3? and that P e &(M). The 
intersection of any class o with M(F)' is a (finite) union of M°(ir)-orbits. 
Applying what we have just proved to M, and using the fact that 

G°(A) = P°(A)K, 

we see that there are only finitely many classes o e 0 such that the set 

(A.4) {x~liivx:ii e o n M(F)\ v e NP(F\ X e G°(A) } 

meets A. However, 

(o n M(F)')NP(F) = o H (M(F)'NP(F) ). 

(See the remark following Lemma 2.1 of [1], and also Lemma 3.1.1 of [7].) 
Suppose that o Pi M(F)' is not empty. Then every G (F)-orbit in o 
intersects M(FyNp(F). It follows that the original set ad(G°(A) )o is just 
equal to (A.4). It meets A for only finitely many such o. Since any class 
o e 0 intersects M(F)' for some M e J% Lemma 9.1 follows. 
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