ON THE MINIMAL LIPSCHITZ CONSTANT

K. Goebel

In this paper we give necessary and sufficient conditions that a continuous transformation $f: A \rightarrow A$ of a metric space A with the metric r should be a contraction with respect to an equivalent metric s. This is the solution of a problem stated by J.S.W. Wong [2].

Let E_r be the set of all metrics equivalent to r (i.e. $S \in E_r$ if and only if s generates the same topology as r) and let E_r^* be a subset of E_r consisting of all bounded metrics. Denote

$$\theta(f, r) = \sup \left[\frac{r(fx, fy)}{r(x, y)} : x, y \in A, x \neq y \right].$$

Finally let $d_r(X)$ mean the diameter of $X \subset A$ with respect to the metric r.

THEOREM 1.

inf [
$$\theta(f, s)$$
 : $s \in E_r$] ≤ 1 .

THEOREM 2.

inf
$$[\theta(f, s) : s \in E_r^*] < 1$$

if and only if there exists a metric $\hat{s} \in E_r^*$ such that:

$$\lim_{n\to\infty}\sup \sqrt[n]{d_{\widehat{S}}(f^n(A))} < 1.$$

THEOREM 3.

inf
$$[\theta(f, s) : s \in E_r] < 1$$

if and only if there exists a metric \hat{s} ϵ $E_{\mathbf{r}}$, a constant q < 1

and a sequence of spheres $\ K_1\subset K_2\subset K_3\subset \dots$ such that : $\bigcup_{i=1}^\infty \ K_i = A \ \text{and}$

(1)
$$\limsup_{n\to\infty} \sqrt[n]{d_{\widehat{s}}(f^{n}(Ki))} \leq q, \qquad i = 1, 2, ...$$

<u>Proof.</u> Suppose the metric s satisfies the conditions of Theorem 3. Consider the power series

$$s_{\tau}(x, y) = s(x, y) + \sum_{n=1}^{\infty} s(f_{x}, f_{y}^{n}) \tau^{n}, \quad \tau > 0.$$

By (1) this series is uniformly convergent on an arbitrary sphere K_i , $i=1,2,\ldots$ and its radius of convergence is equal at least $\frac{1}{q}$. In view of $s \leq s_{\tau}$ and by continuity of s_{τ} it follows that $s_{\tau} \in E_{\tau}$. Moreover, we have

$$s_{\tau}(fx, fy) = s(fx, fy) + \sum_{n=1}^{\infty} s(f_x^{n+1}, f_y^{n+1}) \tau^n$$

$$\leq \frac{1}{\tau} \left\{ s\left(x,y\right) + \sum_{n=1}^{\infty} s(f_{x}^{n},f_{y}^{n}) \tau^{n} \right\} = \frac{1}{\tau} s_{\tau} \left(x,y\right).$$

Hence $\theta(f, s_{\tau}) \le \frac{1}{\tau}$ and $\inf \left[\theta(f, s_{\tau}) : \tau < \frac{1}{q}\right] \le q < 1$.

On the other hand, if $\theta(f,s)=q<1$ for some metric $s\in E$ then (1) holds for an arbitrary sequence of spheres K.

Theorem 2 can be proved quite similarly. Theorem 1 follows immediately from the fact that the set E_r^* is non empty and for $s \in E_r^*$ the radius of convergence of the power series (1) is equal at least 1.

Let us now consider a stronger equivalence relation between metrics. We assume that $r \sim s$ if there exist two constants $\alpha > 0$, $\beta > 0$ such that $\alpha r(x, y) < s(x, y) \le \beta r(x, y)$

for arbitrary $x, y \in A$. In this case every transformation which is Lipschitzian in one metric is also Lipschitzian with respect to any equivalent metric.

THEOREM 4.

$$\inf [\theta(f, s) : s \sim r] = \lim_{n \to \infty} \sqrt[n]{\theta(f^n, s)} = \inf_{n=1} \sqrt[n]{\theta(f^n, s)}.$$

(lim $\sqrt[n]{\theta(f^n, s)}$ does not depend on the choice of $s \sim r$).

For the proof cf [1].

REFERENCES

- 1. K. Goebel, On a property of Lipschitzian transformations Bull. Acad. Polon. Sci. 16 (1968) no.1 p.27-28.
- 2. J.S. W. Wong, Some remarks on transformations in metric spaces. Can. Math. Bull. 8 (1965) no.5 p.659-666.

Maria Skłodowska - Curie University, Lublin, Poland