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Abstract

We present some correlated fractional counting processes on a finite-time interval. This
will be done by considering a slight generalization of the processes in Borges et al.
(2012). The main case concerns a class of space-time fractional Poisson processes and,
when the correlation parameter is equal to 0, the univariate distributions coincide with
those of the space-time fractional Poisson process in Orsingher and Polito (2012). On the
one hand, when we consider the time fractional Poisson process, the multivariate finite
dimensional distributions are different from those presented for the renewal process in
Politi et al. (2011). We also consider a case concerning a class of fractional negative
binomial processes.
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1. Introduction

Several fractional processes in the literature are defined by considering some known equa
tions in terms of suitable fractional derivatives. In this paper we are interested in particular
Levy counting processes, as in the recent paper [6]; in particular, we deal with Poisson and
negative binomial processes. There is an extensive literature on fractional Poisson processes;
see, e.g. [7], [8], [16], [19], [24], and [26] (we also cite [15] and [20] where their representation
in terms of randomly time-changed and subordinated processes was studied in detail). For
fractional negative binomial processes; see, e.g. [6, Example 3] and [28]. Among the other
fractional processes studied in the literature, we recall the diffusive processes [2], [3], [18],
[22], [27], the telegraph processes [21], and the pure-birth processes [23].

Often the results for these fractional processes are given in terms of the Mittag-Leffler
function

x r
E (x)'-" .

cx,fJ .- ~o r(ar + fJ) ,
r~
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see, e.g. [25, p. 17]. We also recall the generalized Mittag-Leffler function

(y)(r)x r

E:,p(x) := L r! r(ar + f3) ,
r~O

where, for y E lR,

(r) ._1 y(y + 1) ... (y + r - 1) if r :::: 1,
(y) .- I if r = 0

L. BEGHIN ET AL.

is the rising factorial (also called the Pochhammer symbol), and E:. f3 coincides with Ea ,f3 when
y = 1.

In this paper we consider some processes {N p ( · ) : P E [0, I]} on a finite-time interval [0, T]
for some T E (0, (0). More precisely, N p(·) = {Np(t): t E [0, T]} is defined by

Mg

Np(t) := L l[O,t] (xt,P),
n=l

where Mg is a nonnegative integer-valued random variable with probability generating function

(PGF) g, i.e. g(u) := lE[uMg], and {xt,p: n :::: I} is a sequence of random variables with
(common) distribution function F such that F(O) = 0 and F(T) = 1, and independent of M g ;

moreover, the correlation coefficient between any pair of random variables X; and Xm , with
n i= m, is equal to a common value p E [0, 1].

Remark 1.1. We have Np(T) = M g; thus, the distribution of Np(T) does not depend on p.

In this way we are considering a slight generalization of the processes presented in [9];
indeed, we can recover several formulas in [9] by setting g (u) = eA(u-1) for some A > 0 (which
concerns a Poisson distributed random variable with mean A), and F(t) = t for t E [0, 1], where
T = 1. The case without correlation, i.e, the p = 0 case, appears in [4]; see also [17], where
that process is considered as a claim number process in insurance. Here, in view of what
follows, we recall the following formulas; see, e.g. [9, Equations (9) and (10)]). We have the
pap "'---

GNp(l)(U) = p(I - F(t)) + pF(t)g(u) + (1 - p)g(I - F(t) + F(t)u), (1.1)

and the probability mass function (PMF)

P(Np(t) = k) = (1 - p)P(No(t) = k)

+ p{(1 - F(t)) l{k=o} +F(t)JP>(Mg = k)} for all k 2: 0, (1.2)

where

JID(No(t) = k) = t C)Fk(t)O- F(t))n-kJID(Mg = n) forallk ~ 0 (1.3)
n=k

concerns the p = 0 case; see [4, Equation (2.4)].
As pointed out in [4], this class of counting processes can be useful to tackle the prob

lem of overdispersion and underdispersion in the analysis of count data where correlations
between events are present. A possible application can be given, for example, in models
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Correlated fractional counting processes on a finite-time interval 1047

if v is not integer,

(2.1)

of nonexponential extinction of radiation in correlated random media; see, e.g. [13]. We
also remark that, as far as the marginal distribution of each random variable Np(t), in (1.2)
we have a mixture between three PMFs, i.e. {JP>(No = k): k ~ OJ, {l{k=O}: k ~ OJ, and
{IfD(Mg = k): k ~ OJ, and the weights are 1 - p, p(1 - F(t», and pF(t), respectively.

The aim of this paper is to present some correlated fractional counting processes by choosing,
in a suitable way, the PGP g and a distribution function F above. In Section 2 we present a class
of space-time fractional Poisson processes (in fact we have the same univariate distributions of
the space-time fractional Poisson process in [24] when p = 0). A class of fractional negative
binomial processes is presented in Section 3.

Finally, since the presentation of the results in [9] refers to the concept of weighted Poisson
processes (see also [4] concerning the p = 0 case), in Section 4 we give some minor results on
weighted processes. Even though this section seems to be disconnected from the other sections
in this paper, in our opinion it is a nice enrichment of the content of [9].

2. A class of correlated fractional Poisson processes

For the aims of this section, some preliminaries are needed. First, we consider the Caputo
(left fractional) derivative d'' jdt V of order v > °(see, e.g. CD~+ in [12, Equations (2.4.14)
and (2.4.15)] with a = 0. We use the notation [x] := max{k E Z: k :::: x}) defined by, for all
t ~ 0,

1 it 1 d
n

f(s) ds
r(n - v) 0 (t - s)v-n+l ds"

(where n = [v] + 1),

dV

dt v f (t) if v is integer.

Note that, since here we consider v E (0, 1], we have (see, e.g. [12, Equation (2.4.17)] with
a = 0), for all t ~ 0,

dV {I t 1 d f(s) ds if v E (0, 1),
-f(t):= ~(1 - v) 10 (t - s)" ds
dt v _ f (t) if v = 1.

dt

We also consider the (fractional) difference operator (I - B)a in [24]. More precisely, I is
the identity operator, B is the backward shift operator defined by Bf(k) = f(k - 1), and
B r - 1Bf(k) = f(k - r) and, therefore,

(l- B)Ci = f(-I)j(~)Bj.
j=O ]

We now recall that Orsingher and Polito [24] considered the space-time fractional Poisson
process {N~,v(t): t ~ O} for a, v E (0,1], whose PMFs {Pk(t): k ~ O} solve the Cauchy
problem:

d'' a a \0, k > 0,-Pk(t) = -A (I - B) Pk(t), Pk(O) =
dt V 1, k=O.

The explicit form of the PGF of this process has the following form (see [24, Equation (2.28)]):

E[uN~tV(t)] = £v,1 (-A"t" (1 - u)a).
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In this section we consider a class of correlated space-time fractional Poisson processes on
a finite-time interval [0, T]. For a, v E (0, 1], we consider Np ( ' ) = N~'v (.) such that the PGP
of Mg is

g(u) := E v,l ( - ACXT V(1 - u)CX),

and the distribution function of the random variables {X:' P: n ~ I} is

(2.2)

F(t) := (~) via for t E [0, T].

In what follows we present the PGFs in Proposition 2.1 and the corresponding PMFs
in Proposition 2.2. Moreover, in Proposition 2.3, we give an equation for the PMFs in
Proposition 2.2 with respect to time t.

Proposition 2.1. The PGFs {GN;,V(t): t E [0, rn are

GN;.V(t)(u) = p(1- (-fria) + p(~)via Ev,l (-Aar(l- u)a)

+ (1 - P)Ev,l ( - Aa t v(I - u)CX).

by (1.1), and we conclude with some manipulations of the last term.

Remark 2.1. By Proposition 2.1, if p = 0, we have the paF

G N~.V(t)(u) = Ev,l (-A"t"(1 - u)CX), (2.3)

which coincides with the PGF presented in the last case of [24, Table 1]. Note that (2.3) is a
generalization of (2.2) with t E [0, T] instead of t = T. Thus, the univariate distributions of the
random variables {N6'V (t) : t E [0, T]} (for the a = 1 case) coincide with the distributions of
the random variables of the renewal process {M(t): t E [0, T]} in [26] (restricted to the same
finite-time interval). On the other hand, one can check that the multivariate finite-dimensional
marginal distributions are different from those in [26] (and, in fact, {N~,V(t): t E [0, T]) is not
a renewal process). We explain this with a simple example where we take into account that

JP>(M(s) = 1) = JP>(Nri'v (s) = 1) = ASvE~,v+t (-AS V
) for S E [0, T]

by [8, Equation (2.5)]. In fact, for t E (0, T), we have

IP(M(t) = 1, M(T) = 1) = At VE~,v+l (-AtV)Ev,l(-A(T - r)") (2.4)

by combining [26, Equations (11) and (14)] (with (tt, t2) = (t, T) and (nt, n2) = (1, 1» with
[26, Equations (2) and (4)], and

Jp>(NJ'v (t) = 1, NJ'v (T) = 1) = -fAr E~,V+l(-Ar) (2.5)

because JP>(N;' V (t) = 1 I N;' v(T) = 1) = t / T by construction. Then (2.4) and (2.5) coincide
only for the nonfractional v = 1 case; see Figure 1.
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FIGURE 1: The probabilities (2.4) (dashed line) and (2.5) (solid line) versus v E (0,1] for t = ! and
T=A=1.

Proposition 2.2. The PMFs {Jp>(N~,V(t) = -): t E [0, T]} are

for all k ~ o.

Proof First, we have

JP>(Mg = n) = JP>(N~,V(T) = k)

(-I)n 00 (_)..ClTv)r fear + 1)- --L for all n ::: 0 (2.6)
- n! r=O F'(vr + 1) fear + 1 - n)

by the PGF in (2.2) (see [24, Equation (1.8)]) and by Remark 1.1. Moreover, if we consider
(1.3), we obtain

Jp>(N~'v (r) = k)

=E(:)(fyv/alk (1- (fr/ar-k

(-I)n 00 (_)..ClTv)r fear + 1)

x -;;r~ r(vr + l) r(ar + 1 - n)

= (-I)k (!-.) (v/Cl)k 00 (_I)n-k (1 _(!-.) v/Cl)n-k

k! T ~ (n - k)! T

00 (_)..CltV)r(T)Vr r(ar+l) f(ar+l-k)

x~ r(vr + l) t r(ar + 1 - k) r(ar + 1 - n)
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= (-I)k (!.-)CVlet)k 00 (_AettV)r (~)Vr r(ar + 1)

k! T ~ r(vr + 1) t r(ar + 1 - k)

x f (-1)j (1 _(!.-) Viet)j r(ar +1- k) for all k ::: O.
. j! T f(ar+l-k-j)

J=O

Then, by the well-known 'Newton's generalized binomial theorem', we obtain

( l)k ( t ) (vla)k
JP>(Net,v(t) = k) = -=-- -

o k! T

x 00 (-Aatvy (~)vr f(ar + 1) (1 + (!-)v/a _ 1)etr-k
~ r(vr + 1) t r(ar + 1 - k) T

= (-I)k 00 (_Aettv)r (!.-)(Vlet)k-vr+vr-CVlct)k f(ar + I)

k! ~ r(vr + 1) T r(ar + 1 - k)

(-I)k 00 (-Aa tv)r r(ar + 1)- --L forallk ~ 0,
- k! r=O f(vr + 1) r(ar + 1 - k)

where, as we expected by (2.3), JP>(N~,v(t) = k) here meets rp(N~,V(T) = k) in (2.6) (here we
have t and k in place of T and n in (2.6)). We conclude the proof by considering (1.2) together
with the last expression above obtained for the p = 0 case.

In view of Proposition 2.3, we remark that in a part of the proof we refer to [5, Theorem 2]
which can be derived by referring to a subordinated representation of the space-time fractional
Poisson process in terms ofboth stable subordinator and its inverse; see also [5, Equations (3.20)
and (3.1)].

Proposition 2.3. Let {JP>(N~,V(t) = -): t E [0, T]} be the PMFs in Proposition 2.2. Then we
have the following equations:

In all cases we have the initial conditions JP>(N~' v (0) = 0) = 1 and JP>(N~'V(0) = k) = 0 for
all k ~ 1.
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Proof. The initial conditions trivially hold. Throughout this proof we consider the notation

p~,v (t) = IP(N~'v (t) = k) for all k 2: 0

for the PMF concerning the p = 0 case. Then, by (1.2) and Remark 1.1, we obtain

dV dV

-IP(Npa,V(t) = k) = (1 - p)_p~,v(t)
dt V dt V

{
I d" via 1 a v d

V
v/a}+ p - Tv/a l{k=O} dt v t + Tv/aIP(Np ' (T) = k) dt v t

d
V

a v P { a v } d" via= (1 - p) dt VPk' (t) - Tv/a l{k=O} -IP(Np' (T) = k) dt Vt .

Moreover, we have
d V

_ a,v(t) = -Aa(I _ B)a a,v(t)
dz" Pk Pk

by [5, Theorem 2] and
~tv/a = r/«: r(vja + 1)
dr " F'(v/« - v + 1)

(see, e.g. [12, Equations (2.2.11) and (2.4.8)], or a correction of [12, Equation (2.4.28)]). Then,
we obtain

dV

-IP(Na,V(t) = k) = -Aa(I - B)a(I _ p)pct,v(t)
dt V p k

(
t r a v v r(vja + 1)

- P T {l(k=OI-JJ1'(Np ' (T) = k)}t- r(vja - v + 1)'

From now on we consider the k = 0 and k 2: 1 cases separately.
Case 1: k = O. First, we have

(l- B)ap~.v(t)= f=(-1)j(~)p~~j(t) = p~,v(t)
j=o ]

by (2.1); therefore,

dV

dtvJJ1'(N~,V(t) = 0) = -Aa(1 - p)p~.v(t)

(
t )v/ct r(vja + 1)

- p - {I - JJ!>(Nct,V(T) = O)}t-V .
T p I'(u/« - v + 1)

Then, by (1.2) and Remark 1.1,

d
V

{-lP'(Nct,V(t) = 0) = _Act lP(Nct,V(t) = 0)
dt V p p

- p{ 1 - (f )v/a + (f )v/aJJ1'(N~,V(T)= O)}}

(
t ) v]« r(vja + 1)

- p - {I -lP'(Nct,V(T) = O)}t-V ,
T p I'(v/« - v + 1)

and, finally, we can check by inspection that the last equation is equivalent to that in the statement
of the proposition.
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Case 2: k ~ 1. First, again by (1.2) and Remark 1.1, we have

L. BEGHIN ETAL.

dV

-JP>(Na,V(t) = k)
dr" P

= _)...aU - B)a[lP(N~'V(t) = k)

- p(1 - (-i) Via) l/k=O} -p(-i)vialP(N~,V(T) = k) ]

(
t )v/a r(v/a + 1)+ p - IP'(Na,V(T) = k)t-V-----
T P r(v/a - V + 1)

= _)...aU - B)alP(N~·v(t) = k) +)...ap(l_ (-iYla)U - B)a l/k=OJ

+ p(!-)v/a[Aa(] _ B)a + t-V r(v/a + 1) ]JP>(Na'V(T) = k).
T r(v/a - V + 1) P

Then we obtain the desired result by noting that

The proof is complete.

Finally, we remark that, even if the equations in Proposition 2.3 have some analogies with
other results for fractional Poisson processes in the literature, here some standard techniques
do not work because we deal with a finite-horizon time case (Le. t E [0, T]).

3. A class of correlated fractional negative binomial processes

It is well known that the negative binomial process can be seen as a suitable compound
Poisson process with logarithmic distributed summands; see, e.g. [14, Proposition 1.1]. More
precisely, for some p E (0, 1) and some integer r ~ 1, we have the POF

U ~ hr (m(u)),

where h(u) := eA(u-l), with A = -log p, is the PGF of a Poisson distributed random variable
with mean A = - log p, and

10g(I - (1 - p)u)
m(u) := -----

logp

1
for lui<-

I-p

is the PGF of a logarithmic distributed random variable (obviously, we have m(u) = 00 if
lui 2: 1/(1 - p)).

In this section we present a class of correlated fractional negative binomial processes on a
finite-time interval [0, T]. More precisely, we consider the same approach with the PGF of a
space-time fractional Poisson distributed random variable; thus, for a, v E (0, 1], we have
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in place of h (note that h coincides with h i. 1), again with A = -log p, and this meets g in (2.2)
with T = 1. Thus, we have

g(u):= {Ev,l(_(_IOgp)a(I_IOg(l ~o~lp- p)U)r)r
= l-(-IogaC-(lp- P)u)) r, (3.1)

where, again, r ::: 1 is an integer power of the function Ev,l, P E (0,1) and lui < 1/(1 - p).
We remark that g in (3.1) is the PGF of Np(T), but it does not depend on T as happens for g

in (2.2).
As far as the distribution function F is concerned, we argue as in Section 2 as follows. For

all t E [0, T], we want to have the condition

{ (
a (1 - (1 - q(t))U))}r

GN;,V(t)(u) = Ev,l -log q(t)

for some q(.) such that q(t) E (0, 1] for all t E [0, T] and q(T) = p. Then, by (1.1) with
p = °and by (3.1), we require that

1 - (1 - q(t))u 1 - (1 - p)(1 - F(t) + F(t)u)
=

q(t) P
1 - (1 - p)(1 - F(t)) - (1 - p)F(t)u

=
P

So, if we divide both numerator and denominator by 1 - (1 - p)(1 - F(t)), we obtain

P
q(t) = .

1 - (1 - p)(1 - F(t))

Moreover, we have

p 1

q(t) = p + (l - p)F(t) = I + ((lIp) - l)F(t) '

which yields

F(t) := (llq(t)) - 1 for t E [0, T], (3.2)
(lip) - 1

and the function q (.) has to be decreasing. We also give a particular example with a choice of
q (.), and we provide the corresponding distribution function F.

Example 3.1. If we set
I-A

q(t) = 1 - (l - tiT).,

for some A E (0, 1), we recover the example in [4, Section 3.3] (see also [9, Section 4.3] for a
generalization). In fact this choice of q(.) is the analogue of [4, Equation (3.6)]; moreover, if
we set p = 1 - A, we have

p 1
q(t) = 1 - (l - tIT)(l - p) = 1 + ((lIp) - l)(tlT)

and therefore F(t) = t I T,
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In what follows we present the PGFs in Proposition 3.1 and, for r = 1only, the corresponding
PMFs in Proposition 3.2 (for r 2: 2 we have the rth convolution of the PMF of the r = 1case, but
we cannot provide manageable formulas). Moreover, in Proposition 3.3, we give an equation
for the PGFs {GN~.V(t): t E [0, T]} in Proposition 3.1 for r = 1, v = a, and p E to, I}; in this
case we consider fractional derivatives with respect to their argument u, and not with respect
to time t.

Proposition 3.1. The PGFs {GN~,v(t): t E [0, T]} are

(
(1/q(t» - 1)

GN~·v(t)(u)=p 1- (l/p)-1

(Ilq(t» -1 {E (-10 et(I- (1- p)u))}r
+p (Ilp)-I v,l g p

+ (l - P){ Ev,1 ( -loga
(

1
- (lq~~(t))U) ) r.

Proof. This is an immediate consequence of (1.1) and the formulas above.

In view of Proposition 3.2 some preliminaries are needed. First, we consider the Stirling
numbers {Sk,h : k :::: h :::: OJ; see, e.g. [1, p. 824] for their definition and some properties used
below. Moreover,

\11 [(aI, at) (ap , ap ) ] (z) := L TI~=I r(ah + (Xhj) zi

p q (bl, fJI) (bq, fJq) j~O TIk=l r(bk + fJkj) j!

is the Fox-Wright function (see, e.g. [12, Equation (1.11.14)]) under the convergence condition

q P

LfJk - Lah > -1
k=l h=l

(3.3)

(see, e.g. [12, Equation (1.11.15)]).

Proposition 3.2. Ifr = 1, the PMFs {JP>(N~,V(t) = -): t E [0, T]} are

JP>(N;,V(t) = k)

= (1 - p)JP>(N~,v(t) = k)

+ p{ (lip) - (Ilq(t» 1 _ + (Ilq(t» - IJP>(Net,V(T) = k)} fiorall k>_ 0,
(lip) - 1 {k-O} (lip) - 1 0

where, for all t E [0, T],

JP>(N~'V (t) = k) =

Ev,l(-loget(l+A t » ijk=O,
1 ( A)k k

- t "1 -h(1 A)
k! (l + At)k 6 og + t Sk,h

x \11 [ (
1, a) (1, 1)] (_ 10get (1 + A » ifk 2: 1,

2 2 (1 _ h, a) (1, u) t

(3.4)

and At := (I/q(t» - 1 (note that the convergence condition (3.3) holds because we have
ex + v - (a + 1) = v-I> -1).
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Proof. First, we remark that it is enough to check (3.4) (concerning the p = 0 case); in fact,
we obtain the formula for the general case by combining (1.2), F in (3.2), and (3.4). It is well
known that

(3.5)

First, if At = (1/q(t)) - 1 as in the statement of the proposition, we have

(
a (1 - (1 - q(t))u)) aGN(X,v(t)(u) = E; 1 -log = E; 1(-log (1 + At(I - u))),

o ' q(t) ,

and we immediately obtain (3.4) for k = O. Moreover, if we prove that

dk

du k E v,1(-loga (1 + A(I - u)))

(-A)k ~~ (-I)jr(aj+I) aj-h

= (1 + A(1 - u))k ~ L..t f(aj - h + 1)f(vj + 1) Sk,h log (1 + A(1 - u))
J?:O h=l

(3.6)

_.!- (-Al ~10 -h 1 A S lTI [(I,a) (1 1)]
- kl(I+A)kf:! g ( + )k,h2't'2 (l-h,a) (1:v) (-log

cx
(1 + A )) (3.7)

for k ~ 1 (and for all A E lR), we obtain (3.4) for k ~ 1 (and the proof is complete) as an
immediate consequence of (3.5) and (3.7) with A = At. Therefore, in the remaining part of the
proof we only prove (3.6) by induction; in fact, (3.7) can be checked by inspection. For k = 1,
we have

d a L (-I)jaj logaj-l(l + A(l - u))
- E - lolA 1 - u - - Adu v,l( g ( + ( ))) - j?:.O f(vj + 1) I + A(1- u) ( ),

and (3.6) is proved noting that

Sl,l = 1,
. r(aj + 1)

aJ - -r-(a-j-)-

Now we assume that (3.6) holds for k > 1. Then, we have

dk+1

du k+ l E v, 1(-toga (I + A(I - U)))

d { (-A)k

= du (1 + A(1 - u))k

x""~ (-1)
j
f (a j + l ) S IOCXj - h( I + A ( l - U)) }

L...J L...J r(a . - h + l)r(v . + 1) k,h g
j~Oh=1 J J
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k{ (-k)(-A)
=(-A) (l + A(l- u»HI

,,~(-I)jr(aj+l) 'h
x L...J L...J r(a· _ h + l)r(v· + I)Sk,h logClJ- (1 + A(I - u»
j~Oh=l J J

1
+ -(1-+-A-(-I---u-)-)k

,,~ (-I)ir(aj+l)
x L...J L...J r(a' _ h + l)r(v· + I)Sk,h
j~Oh=l J J

(aj - h) logaj-h-l (1 + A(1 - u» }
x 1 + A(l _ u) (-A) ,

and we obtain
dk+1

du k+ 1 Ev,l(-loga(l + A(1 - u)))

(_A)k+l

- (1 + A(1 - u»k+l

{
k"~ (-I)ir(aj + I) 1 ai-h(l A(I »

x - L...J L..J r(a . _ h + l)r(v . + 1) Sk,h og + - U
j~Oh=l) )

+"~ (-I)ir(aj + I) s 10 ai - h- I ( 1 + A(1 - u»}
L..J L..J r(a . - h)r(v . + 1) k,h g
j~Oh=O J J

because (aj - h)1 r(aj - h + 1) = II r(aj - h) and Sk,O = O. Then, we obtain

dk+ 1

du k+ 1 E v,l(-loga(1 + A(1 - u)))

(_A)k+l

- (1 + A(I - u»k+l

{ k"~ (-l)
i

r (a j + 1) 1 aj-h(I A(l »
x - L...J L...J r(a· _ h + I)r(v· + I)Sk,h og + - u

r~Oh=l J )

k+l (l)jr(· 1) }
+ " " - a) + S _ 10 aj-(m-l}-l(l + A(l - u»

L..t L..t r(a· - m + l)r(v . + 1) k.m 1 g
r~Om=l) J

(_A)k+l

- (1 + A(l - u»k+l

k '
"{,, (-I)Jr(aj + 1) . h

x L..t £...J. . (-kSk,h + Sk,h-l) logaJ - (1 + A(l - u»)
. r(a) - h + l)r(v) + 1)
J~O h=l

+ (-l)
i

r (aj + 1) s 10 ai-(HI) (1 + A(l - u»)}
r(aj - (k + 1) + l)r(vj + 1) k,k g ,

and (3.6) holds for k + 1 because -kSk,h + Sk,h-l = Sk+l,h and Sk,k = Sk+l,k+l = 1.
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In view of Proposition 3.3 some preliminaries are needed. First, let (O)a be the operator
defined by

(O)a!(Z) :=

1 (Z I n-l-a(a+bZ)
r(n - a) JO-a)/b og a + bT

x [((~ + T) ~)n !(T)] _b_ dr if a E (n - 1, n),
b dr a + bt

((~+z)ddzr!(Z) ifa=n,

(3.8)

where Z > (1 - a)lb. Here, for the moment, we are assuming that a > 0 and n is an integer
value. Thus, for a E (n - 1, n), this operator can be formally considered as the regularized
Caputo-like fractional power of the operator (alb + z)(d/dz). Indeed it can be found from the
definition of Caputo fractional derivative of order a, by means of the simple transformation
z t--+ log(alb + z). Moreover, we observe that if a = 0 and b = 1, (3.8) coincides with the
Caputo-like regularized Hadamard fractional derivative recently introduced in [10].

In what follows we focus our attention on the a E (0, 1) case and, in view of the proof of
Proposition 3.3, we check that

(3.9)

In fact, by (3.8), for f3 > -1, we have

(O)a logtl(a + bz)

= 1 rz IOg-a(a+bz)[((~+r)~)IOgtl(a+bT)]_b_dT
I'(I - a) JO-a)/b a + bt b dr a + bt

1 [Z logll-l (a + br)= (log(a+bz)-log(a+br»-af3 bdT
1(1 - a) (l-a)/b a + bt

and, after some computations with the change of variable y = log(a + bT)/ log(a + bz), we
obtain

(O)a logP(a + bz) = fJ logP-a(a + bz) {I (l - y)-ayP-1 dyru - a) Jo
and, therefore,

r(f3 + 1)
(O)a logll(a + bz) = logll-a (a + bz).

r(tJ+ 1 - a)

Then, by (3.10) and some computations, we obtain

which meets (3.9).

(3.10)
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Proposition 3.3. Assume that r = 1 and let {GN~'v (t): t E [0, T]} be the PGFs in Proposi
tion 3.1 with ex = v, Then we have thefollowing results.

(i) (p = I case) Let (O)v,l be the operator in (3.8) with a = I/pandb = (p-I)/p. Then

(I/q(t» - I (I )
(O)v IGNv.v(t)(u) = -GNv,V(t)(u) + 1 - for all U E 1, -- .

, I I (1/p) - 1 1 - P

(ii) (p = °case)Let (O)v,o be the operator in (3.8) with a = l/q(t)andb = (q(t)-I)/q(t).
Then

(O)v oGNv,v(f)(U) = -GNv,v(f)(U) for all u E (1, 1 ).
, 0 0 1 - q(t)

(iii) In both (i) and (ii), we have G N~,vCt)«l - a)/b) = 1.

ProofofProposition 3.3(i). For ex = v E (0, 1), we have

(l/q(t» - 1 (v(l - (1- P)U))
(O)v,IGNr·V(t)(u) = (lIp) _ 1 (O}v,IEv,1 -log P

__ (I/q(t» -1 E l(-IOgv(l- (1- P)U))
- (l/p)-1 v, p

(I/q(t» - 1
= -GNr·V(t)(u) + 1 - (lIp) - 1 '

where (for p = 1, a = 1/p, b = (p - 1)/p, and y = 1) we have used Proposition 3.1 and, for
the second equality, (3.9). Note that we have U E (1, 1/(1 - p» because GNtV(t)(U) is finite
for lui < 1/(1 - p) (see Proposition 3.1 with p = 1) and (1 - a)/b = 1. For ex = v = 1 it is
easy to check with some computations that

(
I ) d (I/q(t» - I

p-l +u du G N:·1(f)(u)=-GN:·l(f)(u)+1- (llp)-l

by Proposition 3.1 (in fact we have alb = l/(p - 1».

ProofofProposition 3.3(ii). For ex = v E (0, 1), we have

(O)v,oG Nr·V(t)(u) = (O}v,OEv,1 ( -logVC-(lq~tt))U) )

= -Ev,l(-IOgvC - (lq~~(t»)U))

= -GN~,vCt)(u),

where (for p = 0, a = I/q(t), b = (q(t) - 1)/q(t), and y = 1) we have used Proposition 3.1
and, for the second equality, (3.9). Note that we have U E (I, 1/(1 - p» arguing as we did for
the proof of Proposition 3.3(i). For ex = v = 1 it is easy to check with some computations that

( 1 + u) dd GNI,I(t)(u) = -GNI.ICt)(U)
q(t) - 1 u 0 0

by Proposition 3.1 (in fact we have alb = I/(q(t) - 1».

ProofofProposition 3.3(iii). The proposition trivially holds because we always have
GN~.v(t)(l) = 1 (even if ex =1= v) and, in both Proposition 3.3(i) and (ii), (1 - a)/b = 1.
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4. On weighted processes

In this section we consider {N; (t): t E [0, T]}, where

MW
g

N;(t) := L I[O,t] (X:,P)
n=l

and the PMF of the random variable M: is given by

1059

IfD M W = k = IfD(Mg = k)w(k)
(g ) lE[w(Mg ) ] for all k 2:° (4.1)

(4.2)

for some nonnegative numbers (weights) {w(k): k 2: O} such that

00

JE[w(Mg ) ] := L w(r)IfD(Mg = r) E (0, (0).

r=O

Then we are referring to the concept of weighted PMF; see, e.g. [11, p. 90], and the references
therein.

We remark that M: has the same distribution of M g if w(k) = 1 for all k 2: 0. Generally, we
have the following well-known property of the weighted PMFs: if we consider 'proportional
weights'

{w(k): k 2: O} ()( {w(k): k 2: O},

i.e. if, for some c > 0, we have w(k) = ciiJ(k) for all k 2: 0, then we have the same weighted
PMF.

The aim of this section is to illustrate the 'weighted version structure' for the PMF of N; (t)
for each t E (0, T], i.e,

lP'(NW (t) = k) = lP'(Np(t) = k)w(k, t) for all k ~ 0
P lE[w(Np(t), t)]

for some weights {w(k, t): k 2: O} which depend on t E (0, T] (obviously we have w(k, T) =
w(k) for all k 2: 0, i.e. (4.2) meets (4.1) when t = T). Moreover, we give the corrected version
of some formulas stated in [9].

Proposition 4.1. We set

q(k In, F(t), p) := (I - P)(:) Fk(t)(l - F(t»n-k

+ pFk/ n(t )(1 - F(t))l-k/n l{O,n}(k) for all k E to, 1, ... , n}.

Then,for all t E (0, T], we have

E~k q(k I n, F(t), p)JF>(Mg = n)w(n)
w(k, t) ex E oo for all k ~ O.

n=k q(k I n, F(t), p)JF>(Mg = n)

Proof. By [9, Equation (7)], we have the following generalization of (1.3):

00

IfD(Np(t) = k) = L q(k I n, F(t), p)IfD(Mg = n) for all k 2: 0. (4.3)
n=k
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Moreover, by (4.3) (with N';(t) and M; in place of Np(t) and M g) and (4.1), we obtain

lP'(NW(t) = k) = .E~k q(k I n, F(t), p)lP'(Mg = n)w(n).
p lE[w(Mg ) ]

Then (4.2) and the last equality yield

k
lE[w(Np(t), t)] .E~kq(k I n, F(t), p)P(Mg = n)w(n)

w( ,t) = ----- ---------~----
JP(Np(t) = k) lE[w(Mg ) ]

.E~k q(k I n, F(t), p)JP(Mg = n)w(n)
~ .

JP(Np(t) = k)

We conclude the proof by taking into account (4.3) for the denominator in the last expression.

Now the correction of [9, Equations (17) and (18)]:

cov(Np(t), Np(s» = As{1 + Ap(1 - t)}

and
cov(Np(t) - Np(s), Np(s» = _)...2 pS(1 - s).

We also present the corrected version of the displayed formula in [9, Example 4.1]. We refer
to (1.2) in this paper and, in order to have a strict connection with the presentation in [9], we
consider t E [0, 1] in place of F(t) with t E [0, T]. We have to choose

lP'(No(t) = k) = (At)k e-At(1 - t +~) for all k ~ 0
k! A

for the p = 0 case (see [4, Section 3.1]) and

{

)...k-l
-J...

lP'(Mg = k) = o-(k---l-)!e

Then, we obtain

if k ~ 1,

if k = O.

lP'(Np(t) = k) = (1- p) o..d e-At(1- t +~)
k! A

{

Ak-l }
+ p (1 - t) l{k=OI +t (k _ l)le-A l{k~11

{

(I - p)e-At (1 - t) + p (1 - t) if k = 0,
= (At)k ( k) )...k-l

(1 - p) __ e-J...t 1 - t + - + pt e-A if k 2: 1,
k! A (k - 1)!

which is the corrected version of the displayed formula in [9, Example 4.1].
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