COMPACTIFICATIONS OF TOTALLY BOUNDED QUASI-UNIFORM SPACES

by P. FLETCHER and W. F. LINDGREN

(Received 10 October, 1984)

1. Introduction. The notation and terminology of this paper coincide with that of reference [4], except that here the term, compactification, refers to a T_1 -space. It is known that a completely regular totally bounded Hausdorff quasi-uniform space (X, \mathcal{V}) has a Hausdorff compactification if and only if \mathcal{V} contains a uniformity compatible with $\mathcal{T}(\mathcal{V})$ [4, Theorem 3.47]. The use of regular filters by E. M. Alfsen and J. E. Fenstad [1] and O. Niåstad [5]. suggests a construction of a compactification, which differs markedly from the construction obtained in [4]. We use this construction to show that a totally bounded T_1 quasi-uniform space has a compactification if and only if it is point symmetric. While it is pleasant to have a characterization that obtains for all T_1 -spaces, the present construction has several further attributes. Unlike the compactification obtained in [4], the compactification given here preserves both total boundedness and uniform weight, and coincides with the uniform completion when the quasi-uniformity under consideration is a uniformity. Moreover, any quasi-uniformly continuous map from the underlying quasiuniform space of the compactification onto any totally bounded compact T_1 -space has a quasi-uniformly continuous extension to the compactification. If \mathcal{U} is the Pervin quasi-uniformity of a T₁-space X, the compactification $(\check{X}, \mathcal{T}(\check{\mathcal{U}}))$ we obtain is the Wallman compactification of $(X, \mathcal{T}(\mathcal{U}))$. It follows that our construction need not provide a Hausdorff compactification, even when such a compactification exists; but we obtain a sufficient condition in order that our compactification be a Hausdorff space and note that this condition is satisfied by all uniform spaces and all normal equinormal quasi-uniform spaces. Finally, we note that our construction is reminiscent of the completion obtained by \hat{A} . Császár for an arbitrary quasi-uniform space [2, Section 3]; in particular our Theorem 3.7 is comparable with the result of [2, Theorem 3.5].

2. Preliminary results. For the sake of completeness, we begin by citing some definitions given in reference [4]. A quasi-uniform space (X, \mathcal{U}) is point symmetric provided that for each $U \in \mathcal{U}$ and $x \in X$ there is a symmetric $V \in \mathcal{U}$ such that $V(x) \subset U(x)$. It is useful to observe that \mathcal{U} is point symmetric if and only if $\mathcal{T}(\mathcal{U}) \subset \mathcal{T}(\mathcal{U}^{-1})$. Evidently, if \mathcal{U} contains a uniformity compatible with $\mathcal{T}(\mathcal{U})$, then \mathcal{U} is point symmetric; the converse is false even for completely regular quasi-uniform spaces. Every compact T_1 -space is point symmetric; and, since every quasi-uniform subspace of a point-symmetric quasi-uniform space is point symmetric, point symmetry is a necessary condition for a quasi-uniform space to have a compactification.

If (X, \mathcal{U}) is a quasi-uniform space, \mathcal{U}^* denotes the coarsest uniformity that contains \mathcal{U} and, for each $x \in X$, η_x^* denotes the $\mathcal{T}(\mathcal{U}^*)$ -neighborhood filter of x. A filter \mathcal{F} on a quasi-uniform space (X, \mathcal{U}) is a *Cauchy filter* provided that for each $U \in \mathcal{U}$ there is an

Glasgow Math. J. 28 (1986) 31-36.

 $x \in X$ such that $U(x) \in \mathcal{F}$. A quasi-uniform space (X, \mathcal{U}) is totally bounded provided that for each $U \in \mathcal{U}$ there is a finite cover \mathscr{C} of X so that $C \times C \subset U$ for each $C \in \mathscr{C}$. Equivalently, (X, \mathcal{U}) is totally bounded provided that every ultrafilter over X is a \mathcal{U}^* -Cauchy filter. If A and B are subsets of a set X, T(A, B) denotes $X \times X - A \times B$. If \mathcal{U} is a totally bounded quasi-uniformity, $\mathcal{G} = \{T(A, B): \text{ for some } U \in \mathcal{U}, A \times B \cap U = \emptyset\}$ is a subbase for \mathcal{U} . Each \mathcal{U}^* -Cauchy filter \mathcal{F} contains exactly one minimal \mathcal{U}^* -Cauchy filter, namely the filter that has as a base $\{U(F): U \text{ is a symmetric member of } \mathcal{U}^* \text{ and } F \in \mathcal{F}\}$.

Let (X, \mathcal{U}) be a quasi-uniform space. Then \tilde{X} denotes the set of all minimal \mathcal{U}^* -Cauchy filters on X, for each $U \in \mathcal{U}$, $\tilde{U} = \{(\mathcal{F}, \mathcal{G}) \in X \times X$: there is an $F \in \mathcal{F}$ and a $G \in \mathcal{G}$ so that $F \times G \subset U\}$ and $\tilde{\mathcal{U}}$ denotes the quasi-uniformity on \tilde{X} for which $\{\tilde{U}: U \in \mathcal{U}\}$ is a base. The pair $(\tilde{X}, \tilde{\mathcal{U}})$ is called the *bicompletion* of (X, \mathcal{U}) . Since $(\tilde{\mathcal{U}})^* = (\mathcal{U}^*)^{\sim}$, we always write $\tilde{\mathcal{U}}^*$ to denote this uniformity. It is a complete uniformity, and (X, \mathcal{U}) is quasi-unimorphic to a $\mathcal{T}(\tilde{\mathcal{U}}^*)$ -dense subspace of $(\tilde{X}, \tilde{\mathcal{U}})$.

In the study of quasi-uniform spaces, the bicompletion of a quasi-uniform space is the natural analogue of the completion of a uniform space; and, since the bicompletion (\tilde{X}, \tilde{u}) of a quasi-uniform space (X, u) is compact if the quasi-uniform space is totally bounded, the bicompletion appears to provide the natural compactification of a totally bounded quasi-uniform space. Our first result rules out this red herring.

PROPOSITION 2.1. Let (X, \mathcal{U}) be a totally bounded T_1 quasi-uniform space. Then $\mathcal{T}(\tilde{\mathcal{U}})$ is a T_1 topology if and only if \mathcal{U} is a uniformity.

Proof. If \mathcal{U} is a uniformity, $\tilde{\mathcal{U}}$ is the usual completion, which is well known to be a Hausdorff uniformity.

Now suppose that $\mathcal{T}(\tilde{\mathcal{U}})$ is a T_1 topology. Both $\mathcal{T}(\tilde{\mathcal{U}})$ and $\mathcal{T}(\tilde{\mathcal{U}}^{-1})$ are coarser than $\mathcal{T}(\tilde{\mathcal{U}}^*)$, which is compact. Thus $\tilde{\mathcal{U}}$ and $\tilde{\mathcal{U}}^{-1}$ are point symmetric and $\mathcal{T}(\tilde{\mathcal{U}}) = \mathcal{T}(\tilde{\mathcal{U}}^{-1}) = \mathcal{T}(\tilde{\mathcal{U}}^*)$. Since $\tilde{\mathcal{U}}$ is a T_1 quasi-uniformity, $\bigcap \tilde{\mathcal{U}} = \Delta_{\tilde{X}}$ and it follows that $\tilde{\mathcal{U}}$ consists of all the $T(\tilde{\mathcal{U}}) \times T(\tilde{\mathcal{U}})$ -neighborhoods of $\Delta_{\tilde{X}}$ [4, Theorem 1.20]. Evidently $\tilde{\mathcal{U}}$ and hence \mathcal{U} is a uniformity.

A filter \mathscr{F} on a quasi-uniform space (X, \mathscr{U}) is a regular filter provided that for each $F \in \mathscr{F}$ there exists an $E \in \mathscr{F}$ and a $U \in \mathscr{U}$ such that $U^{-1}(E) \subset F$. Note that in case (X, \mathscr{U}) is a uniform space the definition of a regular filter given here coincides with the definition of a regular filter given by Alfsen and Fenstad [1]. For any filter \mathscr{F} on $(X, \mathscr{U}), \mathscr{F}^r$ denotes the filter for which $\{V^{-1}(F): V \in \mathscr{U}, F \in \mathscr{F}\}$ is a base. We omit the proof of the following proposition, since comparable results are obtained in reference [1].

PROPOSITION 2.2. Let \mathcal{F} be a filter on a quasi-uniform space (X, \mathcal{U}) .

(a) \mathcal{F} and \mathcal{F}^r have the same set of cluster points.

(b) Every regular filter is contained in a maximal regular filter.

(c) A regular filter \mathcal{F} is a maximal regular filter if and only if either X - A or B belongs to \mathcal{F} whenever $U^{-1}(A) \subset B$.

3. Construction of a compactification. The first result of this section demonstrates the importance of total boundedness in the forthcoming construction.

LEMMA 3.1. Let (X, \mathcal{U}) be a quasi-uniform space. Every regular \mathcal{U}^* -Cauchy filter is a maximal regular filter, and if (X, \mathcal{U}) is totally bounded every maximal regular filter is a \mathcal{U}^* -Cauchy filter.

Proof. Suppose that \mathscr{F} is a regular \mathscr{U}^* -Cauchy filter on X, let A and B be subsets of X and let U be an entourage in \mathscr{U} such that $U^{-1}(A) \subset B$. Let $F \in \mathscr{F}$ such that $F \times F \subset U$. If $F \cap A \neq \emptyset$, then $F \subset U^{-1}(A) \subset B$ so that $B \in \mathscr{F}$. If $F \cap A = \emptyset$, then $F \subset X - A$ and $X - A \in \mathscr{F}$. It follows from Proposition 2.2(c) that \mathscr{F} is a maximal regular filter.

Now suppose that \mathcal{U} is totally bounded and that \mathcal{F} is a maximal regular filter. Then $\mathcal{G} = \{T(A, B): \text{for some } U \in \mathcal{U}, A \times B \cap U = \emptyset\}$ is a subbase for \mathcal{U} . Let $T(A, B) \in \mathcal{G}$. Then $T(B, A)(B) \subset X - A$ so that either X - A or X - B belongs to \mathcal{F} . Since $(X - A) \times (X - A) \cup (X - B) \times (X - B) \subset T(A, B)$, we have shown that \mathcal{F} is a \mathcal{U}^* -Cauchy filter.

PROPOSITION 3.2. Let (X, \mathcal{U}) be a totally bounded quasi-uniform space and let \mathcal{F} be a maximal regular filter on X. Then for each $U \in \mathcal{U}$ and $F \in \mathcal{F}$, there exists a $x \in F$ such that $U(x) \cap U^{-1}(x) \in \mathcal{F}$.

Proof. Let $U \in \mathcal{U}$ and $F \in \mathcal{F}$. By the preceding lemma, \mathcal{F} is a \mathcal{U}^* -Cauchy filter and so there is a $G \in \mathcal{F}$ such that $G \times G \subset U$. Let $x \in F \cap G$; then $U(x) \cap U^{-1}(x) \in \mathcal{F}$.

PROPOSITION 3.3. Let (X, \mathcal{U}) be a totally bounded quasi-uniform space. Then every maximal regular filter is a minimal \mathcal{U}^* -Cauchy filter.

Proof. Let \mathscr{F} be a maximal regular filter. By the preceding lemma, \mathscr{F} is a \mathscr{U}^* -Cauchy filter so that by [4, Proposition 3.30] it suffices to show that $\mathscr{B} = \{U(F) : U \text{ is a symmetric entourage in } \mathscr{U}^* \text{ and } F \in \mathscr{F}\}$ is a base for \mathscr{F} . Let $F \in \mathscr{F}$. There is a $U \in \mathscr{U}$ and an $E \in \mathscr{F}$ such that $U^{-1}(E) \subset F$. Evidently, $U \cap U^{-1} \in \mathscr{B}$ and $U \cap U^{-1}(E) \subset F$.

PROPOSITION 3.4. Let (X, \mathcal{U}) be a point-symmetric quasi-uniform space. Then, for each $x \in X$, $\eta^*(x)$ is a maximal regular filter.

Proof. Let $x \in X$. Since (X, \mathcal{U}) is point symmetric, $\{U^{-1}(x) : U \in \mathcal{U}\}$ is a base for $\eta^*(x)$. Let $U \in \mathcal{U}$ and let $V \subset U$ such that $V^2 \subset U$. Then $V^{-1}(V^{-1}(x)) \subset U^{-1}(x)$ and so $\eta^*(x)$ is a regular filter. The result follows from Lemma 3.1.

THEOREM 3.5. Let (X, \mathcal{U}) be a point-symmetric totally bounded T_1 quasi-uniform space. Then (X, \mathcal{U}) has a totally bounded compactification (X, \mathcal{U}) that is a subspace of the bicompletion of (X, \mathcal{U}) . Moreover, if \mathcal{U} is a uniformity, (X, \mathcal{U}) is the uniform completion of (X, \mathcal{U}) .

Proof. Let \tilde{X} denote the set of all maximal regular filters on X. By Proposition 3.3, $\check{X} \subset \tilde{X}$. For each $U \in \mathcal{U}$ let $\check{U} = \tilde{U} \cap \check{X} \times \check{X}$ and let $\check{\mathcal{U}} = \tilde{\mathcal{U}} | \check{X} \times \check{X}$. Since $(\tilde{X}, \tilde{\mathcal{U}})$ is totally bounded, so is $(\check{X}, \check{\mathcal{U}})$.

To show that $(\check{X}, \check{\mathcal{U}})$ is a T_1 space, let \mathscr{F} and \mathscr{G} be two members of X and suppose that $(\mathscr{F}, \mathscr{G}) \in \bigcap \check{\mathcal{U}}$. Since \mathscr{F} and \mathscr{G} are maximal regular filters, there exist $F \in \mathscr{F}$ and $G \in \mathscr{G}$ such that $F \cap G = \emptyset$. As \mathscr{G} is a regular filter, there exist $U \in \mathscr{U}$ and $G_1 \in \mathscr{G}$ such

that $U^{-1}(G_1) \subset G$. Since $(\mathcal{F}, \mathcal{G}) \in \check{\mathcal{U}}$, there exist $F_2 \in \mathcal{F}$ and $G_2 \in \mathcal{G}$ such that $F_2 \times G_2 \subset U$. Let $x \in F \cap F_2$ and $y \in G_1 \cap G_2$. Then $x \in F \cap U^{-1}(y) \subset F \cap U^{-1}(G_1) \subset F \cap G = \emptyset$ —a contradiction.

The map $i: X \to \tilde{X}$ defined by $i(x) = \eta^*(x)$ is a quasi-uniform embedding and, by Proposition 3.4, $i(X) \subset \tilde{X}$. Furthermore i(X) is a dense subspace of $(\tilde{X}, \mathcal{T}(\tilde{U}^*))$ and therefore i(X) is a dense subset of $(\tilde{X}, \mathcal{T}(\tilde{\mathcal{U}}^*))$.

We show that $(\check{X}, \check{\mathcal{U}})$ is compact. By Proposition 2.2(a), it suffices to show that every regular filter on \check{X} has a cluster point. Let \mathscr{M} be a regular filter on \check{X} . Since i(X) is a $T(\mathscr{U}^{-1})$ -dense subset of X, $\{i^{-1}(M): M \in \mathscr{M}\}$ is a base for a filter \mathscr{F} on X. It is a routine matter to show that \mathscr{F} is a regular filter. Let \mathscr{G} be a maximal regular filter containing \mathscr{F} . We show that \mathscr{G} , as a point of \check{X} , is a $\mathscr{T}(\check{\mathscr{U}})$ -cluster point of \mathscr{M} . Let $U \in \mathscr{U}, V \in \mathscr{U}$ such that $V^2 \subset U$ and let $M \in \mathscr{M}$. Since $i^{-1}(M) \in \mathscr{G}$, by Proposition 3.2 there exists an x in $i^{-1}(M)$ such that $V^{-1}(x) \in \mathscr{G}$. As $V(x) \in \eta^*(x)$ and $V^{-1}(x) \times V(x) \subset U$, $\eta^*(x) \in U(\mathscr{G}) \cap M$.

Finally, if \mathcal{U} is a uniformity, $(\check{X}, \check{\mathcal{U}})$ coincides with the standard completion of a uniform space by means of regular Cauchy filters [1, Page 101].

The following corollary is a curious consequence of the preceding theorem and Proposition 2.1.

COROLLARY. Let (X, \mathcal{U}) be a totally bounded point-symmetric T_1 space. Then \mathcal{U} is a uniformity if and only if every minimal \mathcal{U}^* -Cauchy filter is a maximal regular filter.

In general, a totally bounded quasi-uniform space may have many totally bounded compactifications; indeed, if \mathcal{P} denotes the Pervin quasi-uniformity of a Tychonoff space X and $\hat{\mathcal{P}}$ denotes the Pervin quasi-uniformity of any Hausdorff compactification \hat{X} of X, then $(\hat{X}, \hat{\mathcal{P}})$ is a totally bounded compactification of (X, \mathcal{P}) . [3, Proposition, Page 203]. The remaining results indicate the well-behaviour of the compactification selected by the construction of Theorem 3.5.

PROPOSITION 3.6. Let (X, \mathcal{U}) be a point-symmetric T_1 quasi-uniform space, let \mathcal{F} be a maximal regular filter on X, and let x be a cluster point of \mathcal{F} . Then $\mathcal{F} = \eta^*(x)$.

Proof. Since $\eta^*(x)$ is a regular filter, it suffices to show that $\mathscr{F} \subset \eta^*(x)$. Let $\mathscr{B} = \{F \in \mathscr{F} : F = \overline{F}\}$. Then $x \in \bigcap \mathscr{B}$ and \mathscr{B} is a base for \mathscr{F} . Let $U \in \mathscr{U}$ and $B \in \mathscr{B}$. Then $U \cap U^{-1}(x) \subset U^{-1}(B)$ and so $U^{-1}(B) \in \eta^*(x)$. Thus $\mathscr{F} = \mathscr{F}^r \subset \eta^*(x)$.

COROLLARY. If (X, \mathcal{U}) is a compact totally bounded T_1 quasi-uniform space, $X = \check{X}$.

THEOREM 3.7. Let (X, \mathcal{U}) be a totally bounded point-symmetric T_1 quasi-uniform space, let (Y, \mathcal{V}) be a totally bounded compact T_1 quasi-uniform space, and let $f:(X, \mathcal{U}) \rightarrow (Y, \mathcal{V})$ be a quasi-uniformly continuous map. If f maps X onto Y, or \mathcal{V} is a uniformity, then f has a quasi-uniformly continuous extension $f:(X, \mathcal{U}) \rightarrow (Y, \mathcal{V})$.

Proof. By [4, Theorem 3.29], there is a $\tilde{\mathcal{U}}$ - $\tilde{\mathcal{V}}$ quasi-uniformly continuous map $g: X \to Y$ defined for each minimal \mathcal{U}^* -Cauchy filter \mathcal{F} by $g(\mathcal{F}) = \mathcal{T}(\tilde{\mathcal{V}}^*)$ -limit fil $\{f(F): F \in \mathcal{F}\}$. Let $\check{f} = g \mid \check{X}$. If \mathcal{V} is a uniformity, $(Y, \mathcal{V}) = (\check{Y}, \check{V})$ and we are finished.

Now suppose that f maps X onto Y and let $\mathcal{F} \in X$. Then, as is easily verified, $\{f(F): F \in \mathcal{F}\}$ is a base for a maximal \mathcal{V} -regular filter \mathcal{H} ; we show that \mathcal{H} , considered as a point of \check{Y} , is $\check{f}(\mathcal{F})$. Since $\mathcal{T}(\check{\mathcal{V}}^*)$ is a Hasudorff topology, it suffices to show that \mathcal{H} is a $\mathcal{T}(\check{\mathcal{V}}^*)$ -cluster point of \mathcal{H} . To this end, let $F \in \mathcal{F}$, let $V \in \mathcal{V}$, and let $W \in V$ so that $W^2 \subset V$. By Proposition 3.2, there is a $y \in f(F)$ so that $W(y) \cap W^{-1}(y) \in \mathcal{H}$. Since $W^{-1}(y) \in \eta^*(y)$ and $W(y) \times W^{-1}(y) \subset V^{-1}$, $\eta^*(y) \in \check{V}^{-1} \times (\mathcal{H}) \cap f(F)$. Similarly, we see that $\eta^*(y) \in \check{\mathcal{V}}(\mathcal{H}) \cap f(F)$, and so \mathcal{H} is a $\mathcal{T}(\check{\mathcal{V}}^*)$ -cluster point of \mathcal{H} . By the previous corollary, $Y = \check{Y}$, and so \check{f} maps into Y as required.

Any continuous map between two topological spaces is a quasi-uniformly continuous map between the two corresponding Pervin quasi-uniform spaces. The extension property established in the previous theorem suggests, therefore, that the compactification $(\check{X}, \check{\mathcal{P}})$ might be of particular interest. In considering this compactification, we use the following standard notation: For any subset A of a set X, A^* denotes $\{\mathscr{F}:\mathscr{F}\}$ is a maximal closed filter on X and $A \in \mathscr{F}\}$ and S(A) = T(A, X - A). A subbase for the Pervin quasiuniformity of a topological space (X, \mathscr{T}) is $\{S(A):A \in \mathscr{T}\}$ and a base for the topology of the Wallman compactification of a T_1 -space (X, \mathscr{T}) is $\{G^*: G \in \mathscr{T}\}$.

THEOREM 3.8. Let X be a T_1 -space and let \mathcal{P} be the Pervin quasi-uniformity for X. Then $(\check{X}, \mathcal{T}(\check{\mathcal{P}}))$ is the Wallman compactification of X.

Proof. We take \hat{X} to be the collection of all filters on X that are maximal with respect to the property of having a closed base; since a filter has a closed base if and only if it is \mathscr{P} -regular, $\check{X} = \hat{X}$.

Let \mathscr{P} be the Pervin quasi-uniformity for \hat{X} . To see that $\check{\mathscr{P}} \subset \hat{\mathscr{P}}$, let E be a closed subset of X and let U = S(X - E). We show that $\check{U} = S(\check{X} - E^*)$. Let $(\mathscr{F}, \mathscr{G}) \in \check{U}$. If $\mathscr{F} \in E^*$, it is obvious that $(\mathscr{F}, \mathscr{G}) \in S(X - E^*)$. If $\mathscr{F} \notin E^*$, there exists an $F \in \mathscr{F}$ and a $G \in \mathscr{G}$ such that $F \times G \subset U$ and $F \cap E = \emptyset$. It follows that $G \subset X - E$ so that $\mathscr{G} \notin E^*$; hence $(\mathscr{F}, \mathscr{G}) \in S(\check{X} - E^*)$. Now suppose that $(\mathscr{F}, \mathscr{G}) \in S(\check{X} - E^*)$. If $\mathscr{F} \in E^*$, then $E \in \mathscr{F}$ and $X \in \mathscr{G}$ so that $(\mathscr{F}, \mathscr{G}) \in \check{U}$. If $\mathscr{F} \notin E^*$, then $X - E \in \mathscr{F} \cap \mathscr{G}$ so that $(\mathscr{F}, \mathscr{G}) \in \check{U}$. Thus $\mathscr{T}(\check{\mathscr{P}})$ is coarser than the topology of the Wallman compactification of X.

To see that $\mathcal{T}(\hat{\mathcal{P}}) \subset \mathcal{T}(\mathcal{P})$, let G be a $\mathcal{T}(\hat{\mathcal{P}})$ -open set, let $\mathcal{F} \in G$ and let $E = \check{X} - G$. Then $E = \bigcap \{E_{\alpha}^* : \alpha \in A\}$ where, for each $\alpha \in A$, E_{α} is a closed subset of X. There exists $\alpha \in A$ so that $\mathcal{F} \notin E_{\alpha}^*$. Since $S(\check{X} - E_{\alpha}^*)$ is an entourage of $\hat{\mathcal{P}}$, $V = S(\check{V} - E_{\alpha}^*) \cap X \times X$ is an entourage of the Pervin quasi-uniformity on X. It suffices to show that $\check{V}(\mathcal{F}) \subset G$. Suppose that $\mathcal{H} \in \check{V}(\mathcal{F}) \cap E$. There exist $F \in \mathcal{F}$ and $H \in \mathcal{H}$ so that $F \times H \subset V = X \times X - (X - E_{\alpha} \times E_{\alpha})$. Since $\mathcal{F} \notin E_{\alpha}^*$, we assume, without loss of generality, that $F \subset X - E_{\alpha}$. Thus $H \cap E_{\alpha} = \emptyset$; and, since $\mathcal{H} \in E \subset E_{\alpha}^*$, we have a contradiction.

Our final result establishes a sufficient condition in order that (\check{X}, \check{U}) be a Hausdorff compactification. This condition is easily seen to be satisfied by a T_1 totally bounded quasi-uniform space that is either normal and equinormal or a uniform space.

We say that a relation V on a set X separates subsets A and B of X provided that $V(A) \cap V(B) = \emptyset$. A quasi-uniform space (X, \mathcal{U}) satisfies property * provided that any

two subsets of X that are separated by a member of \mathcal{U}^{-1} are also separated by a member of \mathcal{U} .

PROPOSITION 3.9. Let (X, \mathcal{U}) be a point-symmetric totally bounded T_1 quasi-uniform space satisfying property *. Then $(\check{X}, \check{\mathcal{U}})$ is a Hausdorff compactification of (X, \mathcal{U}) .

Proof. Let \mathscr{F} and \mathscr{G} be two members of \check{X} . There is an $A \in \mathscr{F}$, and $B \in \mathscr{G}$, and a $U \in \mathscr{U}$ so that $U^{-1}(A) \cap U^{-1}(B) = \emptyset$. By hypothesis there is a $V \in \mathscr{U}$ with $V(A) \cap V(B) = \emptyset$. Let $W \in \mathscr{U}$ with $W^2 \subset V$. We assert that $\tilde{W}(F) \cap \tilde{W}(G) = \emptyset$. Suppose that $\mathscr{H} \in \tilde{W}(\mathscr{F}) \cap \tilde{W}(\mathscr{G})$. Then there is an $F \in \mathscr{F}$, a $G \in \mathscr{G}$, and an $H \in \mathscr{H}$ such that $F \times H \subset W$, $G \times H \subset W$, and $H \times H \subset W$. Thus $F \times G \subset W \circ W \circ W^{-1} \subset V \circ V^{-1}$. Since there exists $(p,q) \in (F \times G) \cap (A \times B)$, there is an $r \in X$ such that $(p, r) \in V$ and $(r, q) \in V^{-1}$; hence $r \in V(p) \cap V(q) \subset V(A) \cap V(B)$ —a contradiction. ■

According to Theorem 3.47 of reference [4], a totally bounded Tychonoff space (X, \mathcal{U}) has a Hausdorff compactification if and only if \mathcal{U} contains a uniformity compatible with $\mathcal{T}(\mathcal{U})$. Thus any point-symmetric totally bounded Tychonoff quasi-uniformity \mathcal{U} satisfying property * contains a uniformity compatible with $\mathcal{T}(\mathcal{U})$. If X is a Tychonoff space that is not normal, then (X, \mathcal{P}) has a Hausdorff compactification, but $(\check{X}, \check{\mathcal{P}})$ is the Wallman compactification, which fails to be a Hausdorff space. Thus a quasi-uniformity \mathcal{U} may contain a uniformity compatible with $\mathcal{T}(\mathcal{U})$ and still fail to satisfy property *. The problem of determining necessary and sufficient conditions in order that $(\check{X}, \check{\mathcal{U}})$ be a Hausdorff compactification is still open; indeed, even property * has not yet been ruled out as such a condition.

REFERENCES

1. E. M. Alfsen and J. E. Fenstad, A note on completions and compactifications, *Math. Scand.* 8 (1960), 97-104.

2. Á. Császár, Complete extensions of quasi-uniform spaces, General topology and its relations to modern analysis and algebra Proc. Sympos., Prague, 1981 (Heldermann Verlag, 1982), 104–113.

3. P. Fletcher, On completeness of quasi-uniform spaces, Arch. Math. (Basel) 22 (1971), 200-204.

4. P. Fletcher and W. F. Lindgren, *Quasi-uniform spaces*, Lecture Notes in Pure and Applied Mathematics 77 (Marcel Dekker, 1982).

5. O. Njåstad, On Wallman-type compactifications, Math. Z. 91 (1966), 267-276.

DEPARTMENT OF MATHEMATICS VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VIRGINIA 24061-4097 U.S.A.

DEPARTMENT OF MATHEMATICS SLIPPERY ROCK STATE UNIVERSITY SLIPPERY ROCK, PENNSYLVANIA 16057 U.S.A.