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1. Introduction. The notation and terminology of this paper coincide with that of
reference [4], except that here the term, compactification, refers to a rrspace. It is known
that a completely regular totally bounded Hausdorff quasi-uniform space (X, V) has a
Hausdorff compactification if and only if V contains a uniformity compatible with ST(Y)
[4, Theorem 3.47]. The use of regular filters by E. M. Alfsen and J. E. Fenstad [1] and O.
Njastad [5], suggests a construction of a compactification, which differs markedly from the
construction obtained in [4]. We use this construction to show that a totally bounded 7,
quasi-uniform space has a compactification if and only if it is point symmetric. While it is
pleasant to have a characterization that obtains for all rrspaces, the present construction
has several further attributes. Unlike the compactification obtained in [4], the compac-
tification given here preserves both total boundedness and uniform weight, and coincides
with the uniform completion when the quasi-uniformity under consideration is a
uniformity. Moreover, any quasi-uniformly continuous map from the underlying quasi-
uniform space of the compactification onto any totally bounded compact rrspace has a
quasi-uniformly continuous extension to the compactification. If °U is the Pervin
quasi-uniformity of a r,-space X, the compactification (X, 3~{°ll)) we obtain is the
Wallman compactification of (X, Sr(°U)). It follows that our construction need not provide
a Hausdorff compactification, even when such a compactification exists; but we obtain a
sufficient condition in order that our compactification be a Hausdorff space and note that
this condition is satisfied by all uniform spaces and all normal equinormal quasi-uniform
spaces. Finally, we note that our construction is reminiscent of the completion obtained
by A. Csaszai for an arbitrary quasi-uniform space [2, Section 3]; in particular our
Theorem 3.7 is comparable with the result of [2, Theorem 3.5].

2. Preliminary results. For the sake of completeness, we begin by citing some
definitions given in reference [4]. A quasi-uniform space (X, <%) is point symmetric
provided that for each U e °IL and x e X there is a symmetric V e°U such that
V(x) c U(x). It is useful to observe that °U is point symmetric if and only if
$"(<%) c 5"(<?r')• Evidently, if °U contains a uniformity compatible with 3~{<U), then °U is
point symmetric; the converse is false even for completely regular quasi-uniform spaces.
Every compact Tj-space is point symmetric; and, since every quasi-uniform subspace of a
point-symmetric quasi-uniform space is point symmetric, point symmetry is a necessary
condition for a quasi-uniform space to have a compactification.

If (X, °U) is a quasi-uniform space, °U* denotes the coarsest uniformity that contains
°U and, for each x eX, r\* denotes the 5"(%*)-neighborhood filter of x. A filter SF on a
quasi-uniform space (X, %) is a Cauchy filter provided that for each U e°U there is an
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JC eX such that U(x) e 9. A quasi-uniform space (X, °U) is totally bounded provided that
for each U e °U there is a finite cover <<? of X so that CxCcU for each C e <#.
Equivalently, (X, %) is totally bounded provided that every ultrafilter over X is a
%*-Cauchy filter. If A and B are subsets of a set X, T(A, B) denotes XxX-AxB. If °U
is a totally bounded quasi-uniformity, Sf = {T(A, B): for some U e CU, A x B n £/ = 0 } is
a subbase for %. Each %*-Cauchy filter £F contains exactly one minimal <9Z*-Cauchy filter,
namely the filter that has as a base {U(F): U is a symmetric member of aU* and F e f } .

Let (Z, %) be a quasi-uniform space. Then .£ denotes the set of all minimal %*-Cauchy
filters on X, for each Ue°U,,U= {(9, tyeXxX: there is an F e ^ and a G e « so that
F x G <= [/} and % denotes the quasi-uniformity on X for which {U:Ue°U.} is a base.
The pair (X, <U) is called the bicompletion of (A1, <%). Since (<%.)* = (°U*)~, we always
write %* to denote this uniformity. It is a complete uniformity, and (X, °U) is
quasi-unimorphic to a 5~(%*)-dense subspace of (X, <%).

In the study of quasi-uniform spaces, the bicompletion of a quasi-uniform space is the
natural analogue of the completion of a uniform space; and, since the bicompletion
(X, 4l) of a quasi-uniform space (X, °U) is compact if the quasi-uniform space is totally
bounded, the bicompletion appears to provide the natural compactification of a totally
bounded quasi-uniform space. Our first result rules out this red herring.

PROPOSITION 2.1. Let (X,0)!) be a totally bounded Tx quasi-uniform space. Then
&'(dU) is a Tx topology if and only if °U is a uniformity.

Proof. If % is a uniformity, §L is the usual completion, which is well known to be a
Hausdorff uniformity.

Now suppose that &(<&) is a 7; topology. Both W{%) and °T{iL~x) are coarser than
#"(%*), which is compact. Thus <U and %- 1 are point symmetric and #"(%) = ^ ( ^ r 1 ) =
ST(%*). Since <U is a 7, quasi-uniformity, (~) & = &x and it follows that <U consists of all
the T{%) x r(%)-neighborhoods of A^ [4, Theorem 1.20]. Evidently <k and hence °li is
a uniformity. •

A filter 2F on a quasi-uniform space (X, °tt) is a regular filter provided that for each
F e f there exists an E e 3F and a U e °\l such that U~\E) a F. Note that in case (X, °U)
is a uniform space the definition of a regular filter given here coincides with the definition
of a regular filter given by Alfsen and Fenstad [1]. For any filter 3F on (A', °U), ZFr denotes
the filter for which {V~l(F): V e aU, F e 8?} is a base. We omit the proof of the following
proposition, since comparable results are obtained in reference [1].

PROPOSITION 2.2. Let 3F be a filter on a quasi-uniform space (X, °U).
(a) & and 9'r have the same set of cluster points.
(b) Every regular filter is contained in a maximal regular filter.
(c) A regular filter ^ is a maximal regular filter if and only if either X - A or B

belongs to 3F whenever U~1(A)a B.

3. Construction of a compactification. The first result of this section demonstrates
the importance of total boundedness in the forthcoming construction.
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LEMMA 3.1. Let (X, °U) be a quasi-uniform space. Every regular °li*-Cauchy filter is a
maximal regular filter, and if (X, ali) is totally bounded every maximal regular filter is a
°U*-Cauchy filter.

Proof. Suppose that & is a regular %*-Cauchy filter on X, let A and B be subsets of
X and let U be an entourage in <U such that U~\A) cB.LttFeS? such that F x FcU.
If Fr\A40, then FcU~](A)cB so that Be&. If FHA = 0, then FcX-A and
X - A e $\ It follows from Proposition 2.2(c) that SF is a maximal regular filter.

Now suppose that °ll is totally bounded and that SF is a maximal regular filter. Then
5^={7(/l,fi):for some Ue°U, Ax B n U = 0} is a subbase for °U. Let T(A,B)eSf.
Then 7"(B,/i)(fl)cAr-y4 so that either X- A or X - B belongs to &. Since (X-A)x
(X-A)L)(X-B)x(X-B)cT(A,B), we have shown that f is a %*-Cauchy
filter. •

PROPOSITION 3.2. Let (X, °U) be a totally bounded quasi-uniform space and let ?F be a
maximal regular filter on X. Then for each U e °IL and F e f , there exists a x e F such that
U(x)nU-\x)e&.

Proof. Let Ue°U and F eZF. By the preceding lemma, SF is a <%*-Cauchy filter and
so there is a G e S? such that G x G c U. Let x e F n G; then £/(*) n i/"'(x) e ̂ . •

PROPOSITION 3.3. Lef (X, %) 6e a totally bounded quasi-uniform space. Then every
maximal regular filter is a minimal °U*-Cauchy filter.

Proof. Let SF be a maximal regular filter. By the preceding lemma, 2F is a
%*-Cauchy filter so that by [4, Proposition 3.30] it suffices to show that 39 = {U(F): U is a
symmetric entourage in °U* and F e 2F) is a base for ̂ . Let F e 2F. There is a U e °U and
an E e & such that IT ' (£) c F. Evidently, (/ fl U~l e % and t/ n (/-'(£) <= F. •

PROPOSITION 3.4. Let (X,^) be a point-symmetric quasi-uniform space. Then, for
each x e X, r\*{x) is a maximal regular filter.

Proof. Let x € X. Since {X, °ll) is point symmetric, {U~\x) : U e °U} is a base for
rj*(x). Let Ue°U and let V <z U such that V2<= (/. Then V'l(V-\x))c U~l(x) and so
r]*(x) is a regular filter. The result follows from Lemma 3.1. •

THEOREM 3.5. Let (X, °ii) be a point-symmetric totally bounded T{ quasi-uniform
space. Then (X, °ll) has a totally bounded compactification (X, %) that is a subspace of the
bicompletion of {X, %). Moreover, if "U is a uniformity, (X, %) is the uniform completion
of(X,°U).

Proof. Let X denote the set of all maximal regjilar filters on A". By Proposition 3.3,
X c X. For each U e °U let 0 = 0 D X x X and let °U = % \ X x X. Since (X, <k) is totally
bounded, so is (X,tfl). ^

To show that (X, tfl) is a T, space, let & and if be two members of X and suppose
that (f , 'S) e f l ^- Since ^ and $ are maximal regular filters, there exist F e f and
G e <§ such that F n G = 0 . As ̂  is a regular filter, there exist U e <U and G, e ̂  such

https://doi.org/10.1017/S0017089500006303 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006303


34 P. FLETCHER AND W. F. LINDGREN

that (/"'(G,) c G. Since (3?, «) e <%, there exist F2 e ^ and G2 e « such that F2xG2c U.
Let x e F n F 2 and >> e G, (1 G2. Then JC e FH U~l(y) <= F(l t/-'(G,) c Ffl G = 0—a
contradiction.

The map i:X-*X defined by i(x) = rj*(x) is a quasi-uniform embedding and, by
Proposition 3.4, i(X)cX. Furthermore i^X) is a dense subspace of (X, ST{0*)) and
therefore i(X) is a dense subset of (X, 5"(%*)).

We show that (X, %) is compact. By Proposition 2.2(a), it suffices to show that every
regular filter on X has a cluster point. Let M be a regular filter on X. Since i(X) is a
r ^ ^ - d e n s e subset of X, {i~\M):M e M) is a base for a filter 5£ on X. It is a routine
matter to show that 2F is a regular filter. Let ^ be a maximal regular filter containing &.
We show that «, as a point of X, is a 3r(<%)-cluster point of M. Let U e°U, V e°)l such
that F2<=£/ and let MeM. Since *'~1(M)e'S, by Proposition 3.2 there exists an x in
r'(Af) such that V~\x) e <£ As V(»_e rj*(jt) and V"1^) x V(x) c (/, rj*(;c) € £/(«$) n M.

Finally, if % is a uniformity, (X, %) coincides with the standard completion of a
uniform space by means of regular Cauchy filters [1, Page 101]. •

The following corollary is a curious consequence of the preceding theorem and
Proposition 2.1.

COROLLARY. Let (X, °U) be a totally bounded point-symmetric Tx space. Then °ll is a
uniformity if and only if every minimal °U*-Cauchy filter is a maximal regular filter.

In general, a totally bounded quasi-uniform space may have many totally bounded
compactifications; indeed, if & denotes the Pervin quasi-uniformity of a Tychonoff space
X and & denotes the Pervin quasi-uniformity of any Hausdorff compactification X of X,
then (X, §>) is a totally bounded compactification of (X, $f>). [3, Proposition, Page 203].
The remaining results indicate the well-behaviour of the compactification selected by the
construction of Theorem 3.5.

PROPOSITION 3.6. Let (X, °ti) be a point-symmetric T, quasi-uniform space, let 9 be a
maximal regular filter on X, and let x be a cluster point of 8F. Then 9 = rj*(x).

Proof. Since rj*(x) is a regular filter, it suffices to show that ^c?j*(jt). Let
39 = { F e ^ : F = F}. Then xe(~)® and S3 is a base for 9. Let U e°U and B e 0Z. Then
U n U~\x) c U'\B) and so U~\B) e IJ*(JC). Thus 9 = 9r c ?J*(JC). •

COROLLARY. / / (X, °U) is a compact totally bounded T, quasi-uniform space, X = X.

THEOREM 3.7. Let (X, °U) be a totally bounded point-symmetric T, quasi-uniform
space, let (Y, V) be a totally bounded compact T, quasi-uniform space, and let
f:(X, °li)-*(Y, V) be a quasi-uniformly continuous map. If f maps X onto Y, or V is a
uniformity, then f has a quasi-uniformly continuous extension f: (X, tfl)—*(Y, V).

Proof. By [4, Theorem 3.29], there is a %-"f quasi-uniformly continuous map
g:X-^Y defined for each minimal %*-Cauchy filter 9 by g(&) = 5"(f"*)-limit
fil{/(F): F e ^ } . Let / = g \ X. If V is a uniformity, (Y, Y) = (Y, t) and we are finished.
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Now suppose that / maps X onto Y and let f eA". Then, as is easily verified,
{f(F):F e 3P} is a base for a maximal T-regular filter %; we show that $?, considered as
a point of Y, is f{9). Since 3~{Y*) is a Hasudorff topology, it suffices to show that $? is a
5"(f"*)-cluster point of #f. To this end, let F e 9, let VeT, and let Vf e V so that
W 2 c V . By Proposition 3.2, there is a yef(F) so that W(>>) fiW-'(>>) e $f. Since
W-1(y)er]*(y) and W(y) x ^ " ' ( J I ) c V"1, r?*0>) e V"1 x (Sif) n / (F) . Similarly, we
see that rj*(y) e V(T) D/(F), and so $f is a 5"(f"*)-cluster point of $?. By the pre-
vious corollary, Y = Y, and so / maps into V as required. •

Any continuous map between two topological spaces is a quasi-uniformly continuous
map between the two corresponding Pervin quasi-uniform spaces. The extension property
established in the previous theorem suggests, therefore, that the compactification (X, 9)
might be of particular interest. In considering this compactification, we use the following
standard notation: For any subset A of a set X, A* denotes {3':9' is a maximal closed
filter on X and A e &} and S(A) = T(A,X — A). A subbase for the Pervin quasi-
uniformity of a topological space (X, 3~) is {S(A):A e 3~) and a base for the topology of
the Wallman compactification of a r,-space (A', ST) is {G* : G e ST).

THEOREM 3.8. Let X be a Trspace and let & be the Pervin quasi-uniformity for X.
Then (X, 9~(0>)) is the Wallman compactification of X.

Proof. We take X to be the collection of all filters on X that are maximal with respect
to the property of having a closed base; since a filter has a closed base if and only if it is
^-regular, X = X.

Let <& be the Pervin quasi-uniformity for X. To see that & a §>, let £ be a closed
subset of X and let U = S(X-E). We show that 0 = S(X-E*). Let (&,<$) eU. If
&eE*, it is obvious that {&, <$) eS(X- E*). If &t£E*, there exists an F e f and a
G e « such that F x G <= U and F n E = 0 . It follows that G <= X - E so that <g£E*;
hence {9, <3) e S(X - £*). Now suppose that {9, % e S(X - £*). If 9 e E*. then E e &
and X e « so that (&, &) e U. \f & £ E*, then X - E e & n <g so that (S?, <S) e 0. Thus
ZT(SP) is coarser than the topology of the Wallman compactification of X.

To see that "̂(0>) c 5"(^>), let G be a 5"(#)-open set, let Ŝ  e G and let £ = X - G.
Then £ = H {El- & e/4} where, for each a eA, Ea is a closed subset of X. There exists
a- e A so that ^ £ * . Since S(X - £*) is an entourage of #, V = S(V - £*) n ^ x X is an
entourage of the Pervin quasi-uniformity on X. It suffices to show that V ( ^ ) c G .
Suppose that Sif e V(^) D £. There exist F e 9 and H e W so that F x / / c V = Z x I -
(X — Eax Ea). Since 9i.E*a, we assume, without loss of generality, that F czX — Ea.
Thus H C\ Ea = 0; and, since X e E a £*, we have a contradiction. •

Our final result establishes a sufficient condition in order that (X, <%) be a Hausdorff
compactification. This condition is easily seen to be satisfied by a Tx totally bounded
quasi-uniform space that is either normal and equinormal or a uniform space.

We say that a relation V on a set X separates subsets A and B of X provided that
V(A) n V(B) = 0 . A quasi-uniform space (X, °U) satisfies property * provided that any
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two subsets of X that are separated by a member of 0U~'1 are also separated by a member
of <U.

PROPOSITION 3.9. Let (X, °U) be a point-symmetric totally bounded T, quasi-uniform
space satisfying property *. Then (X, tfl) is a Hausdorff compactification of (X, cli).

Proof. Let 9 and <$ be two members of X. There is an A e 3F, and B e CS, and a U e °U
so that U~l(A)r\U~l(B) = 0. By hypothesis there is a Ve°U with V(A)C\V(B) = 0.
Let W € % with ff2cK.We assert that W(F) n W(G) = 0 . Suppose that Sif e W(^) n
W(^). Then there is an F e ^ , a G e «, and an // e % such that F x H c W ^ x / Z c W ,
and HxHczW. Thus f x C c f f o W ^ - ' c V ^ - ' . Since there exists (p,q)e(Fx
G)(1(A xB) , there is an r e A' such that (p,r)e V and (r,q)e V~]; hence r<=V(p)n
V(q) c V(y4) n V(B)—a contradiction. •

According to Theorem 3.47 of reference [4], a totally bounded Tychonoff space
(X, °U) has a Hausdorff compactification if and only if % contains a uniformity compatible
with 3^{°ll). Thus any point-symmetric totally bounded Tychonoff quasi-uniformity °IL
satisfying property * contains a uniformity compatible with 3~{°U). If X is a Tychonoff
space that is not normal, then (X, &) has a Hausdorff compactification, but (X, SP) is the
Wallman compactification, which fails to be a Hausdorff space. Thus a quasi-uniformity %
may contain a uniformity compatible with 3~{°ll) and still fail to satisfy property *. The
problem of determining necessary and sufficient conditions in order that (X, %) be a
Hausdorff compactification is still open; indeed, even property * has not yet been ruled
out as such a condition.
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