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We present a detailed guide to advanced collisionless fluid models that incorporate
kinetic effects into the fluid framework, and that are much closer to the collisionless
kinetic description than traditional magnetohydrodynamics. Such fluid models are
directly applicable to modelling the turbulent evolution of a vast array of astrophysical
plasmas, such as the solar corona and the solar wind, the interstellar medium, as well
as accretion disks and galaxy clusters. The text can be viewed as a detailed guide
to Landau fluid models and it is divided into two parts. Part 1 is dedicated to fluid
models that are obtained by closing the fluid hierarchy with simple (non-Landau
fluid) closures. Part 2 is dedicated to Landau fluid closures. Here in Part 1, we
discuss the fluid model of Chew–Goldberger–Low (CGL) in great detail, together
with fluid models that contain dispersive effects introduced by the Hall term and by
the finite Larmor radius corrections to the pressure tensor. We consider dispersive
effects introduced by the non-gyrotropic heat flux vectors. We investigate the parallel
and oblique firehose instability, and show that the non-gyrotropic heat flux strongly
influences the maximum growth rate of these instabilities. Furthermore, we discuss
fluid models that contain evolution equations for the gyrotropic heat flux fluctuations
and that are closed at the fourth-moment level by prescribing a specific form for the
distribution function. For the bi-Maxwellian distribution, such a closure is known as

† Email address for correspondence: peter.hunana@gmail.com

https://doi.org/10.1017/S0022377819000801 Published online by Cambridge University Press

https://orcid.org/0000-0002-9860-9759
https://orcid.org/0000-0003-2880-6084
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0003-3812-620X
https://orcid.org/0000-0002-5317-988X
https://orcid.org/0000-0002-0617-9502
https://orcid.org/0000-0001-5794-8810
https://orcid.org/0000-0002-6210-9648
https://orcid.org/0000-0002-2381-3106
https://orcid.org/0000-0003-1549-5256
mailto:peter.hunana@gmail.com
https://doi.org/10.1017/S0022377819000801


2 P. Hunana and others

the ‘normal’ closure. We also discuss a fluid closure for the bi-kappa distribution.
Finally, by considering one-dimensional Maxwellian fluid closures at higher-order
moments, we show that such fluid models are always unstable. The last possible non
Landau fluid closure is therefore the ‘normal’ closure, and beyond the fourth-order
moment, Landau fluid closures are required.

Key words: astrophysical plasmas, space plasma physics, plasma waves
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1. Introduction

Fluid models are an extremely important tool in many areas of space physics,
astrophysics and laboratory plasmas. Even though many physical systems studied in
these fields are almost collisionless, where a proper kinetic description should be used,
traditional fluid models with isotropic scalar pressures (temperatures), such as the
usual magnetohydrodynamic description (MHD) and multi-fluid models based on this
description, were extremely successful in modelling, interpreting or at least offering
the first insight into many space physics phenomena. For example, it was indeed the
simplified fluid approach that allowed Parker (1958b) to predict the existence of the
solar wind, which was surprisingly several decades after the breakthrough discoveries
in quantum mechanics and relativity. In recent years, observational studies re-sparked
interest in the temperature anisotropy effects, that cannot be studied with the usual
MHD fluid descriptions, and we anticipate that the interest will grow even further,
once data from the Parker Solar Probe and the future Solar Orbiter missions are
analysed.

The correct modelling and understanding of collisionless plasmas in a fluid
framework concerns not only systems with plasma temperatures far from an isotropic
state. It is sometimes forgotten that while the application of fluid theory to strongly
collisional systems is intuitively obvious, the approach to collisionless (or weakly
collisional) systems is not. From a linear perspective, the usual MHD description
does not converge to the collisionless kinetic description even in the low-frequency
long-wavelength limit (even when the kinetic distribution function is considered to be
an isotropic Maxwellian), since in the absence of collisions the isotropic equation of
state is never correct. Additionally, Landau damping never completely vanishes (even
when electrons are hot). The situation is much more complicated from a nonlinear
perspective where, on average, the effect of Landau damping might be balanced by
processes called stochastic plasma echoes (Meyrand et al. 2019).

As a linear example, the ordering of the phase speeds in MHD is always slow,
Alfvén, fast, i.e. vs 6 vA 6 vf . In contrast, in collisionless systems with a sufficiently
high plasma beta, the real phase speed of the slow mode can become faster than the
Alfvén mode, so that the ordering can become Alfvén, slow, fast, i.e. vA 6 vs 6 vf . Or
in another words, the phase speeds of linear eigenmodes that are present in MHD do
not hold in the collisionless (or weakly collisional) regime, and this effect exists even
if the temperatures are isotropic. From a fluid perspective, the main reason for this
discrepancy is that, in magnetized collisionless systems, the pressure fluctuations in the
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directions parallel and perpendicular to the magnetic field lines are not equivalent, and
cannot be described with a single scalar pressure equation. The pressure fluctuations
have to be described with two different evolution equations for p‖ and p⊥, even if
the mean pressure values are equal (p(0)‖ = p(0)⊥ ) and no mean temperature anisotropy
exists.

The simplest collisionless fluid description is the CGL fluid model – named after
Chew, Goldberger & Low (1956) – and sometimes also referred to as collisionless
MHD. The CGL dispersion relation is not equivalent to the MHD dispersion relation
(even in the case p(0)‖ = p(0)⊥ ), since the pressure fluctuations still remain anisotropic
and the evolution equations for p‖ and p⊥ remain different. In another words,
in collisionless systems the distribution function is free to evolve from its initial
state and to become anisotropic. By ‘forcibly’ prescribing only one scalar pressure,
one effectively prescribes a high-collisionality regime, even if collisions are not
prescribed explicitly. Formally, the MHD equations can indeed be derived from the
collisionless Vlasov equation, i.e. with no explicit collisional operator. It is therefore
often stated, that the MHD description is highly collisional implicitly. Moreover, as
discussed for example by Kulsrud (1983), while in the presence of a magnetic field,
transverse motions can in some circumstances be described by fluid-type equations,
the determination of pressures as well as longitudinal motions a priori requires a
kinetic description.

Here we focus on collisionless fluid models. Nevertheless, weak collisions can be
incorporated easily, and calculations just yield additional terms on the right-hand sides
of the parallel and perpendicular pressure and heat flux equations. For the simple
Bhatnagar–Gross–Krook (BGK) collisional operator (Bhatnagar, Gross & Krook 1954),
see for example Snyder, Hammett & Dorland (1997). A thorough review of anisotropic
fluid models, including the collisional dynamics, was presented by Barakat & Schunk
(1982). A very good discussion about collisionality of various astrophysical plasmas,
such as the solar wind, interstellar medium, accretion disks and galaxy clusters, can be
found for example in Schekochihin et al. (2009). Weakly collisional fluid models also
seem to be applicable for modelling the upper solar photosphere and chromosphere,
where a curious situation exists and the proton–proton collisional frequency is roughly
equal to the proton cyclotron frequency – see for example figure 1 in Khomenko et al.
(2014). We note that in this guide we use the definition of a ‘collisionless fluid model’
as being a fluid model that (i) is derived from the collisionless Vlasov equation with
zero right-hand side; and (ii) that has two different pressure equations. Our definition
therefore differs from an alternative view of for example Zank et al. (2014) and Zank
(2014), where models with a scattering operator that reflects charged particle scattering
by electromagnetic fluctuations on the right-hand side of the Vlasov equation are also
viewed as collisionless.

Fluid modelling of collisionless plasmas is an extremely attractive subject, and
an enormous amount of theoretical and numerical work was done in this field in
the past. The manuscript presented here has no intention of being a proper review
paper in this field. In our opinion, no satisfactory easy-to-read introductory paper
exists about collisionless fluid models, and this manuscript attempts to fill such a
spot. Instead of just stating the major results and discussing what was done in the
past and by whom, we make a significant effort to present a (hopefully consistent)
derivation of basic collisionless fluid models. On one hand, the presented calculations
might be considered as too detailed in many places. On the other hand, it is exactly
the relatively complicated algebra of collisionless fluid models, that makes the field
difficult to enter for new researchers. The primary goal of this paper is to allow
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researchers new to the subject to follow the algebra easily. Instead of spending years,
an interested reader should be able to become comfortable with the basics of the
subject in a matter of days, or perhaps a couple of weeks. The text is separated to
two parts. Part 1 is dedicated to fluid models that are obtained by closing the fluid
hierarchy with simple (non-Landau fluid) closures. Part 2 is dedicated to Landau fluid
closures.

Here, in Part 1, § 2, we start with the detailed derivation of the pressure
tensor equation. The pressure tensor p is then decomposed to its gyrotropic part
pg
= p‖b̂b̂ + p⊥(I − b̂b̂) (also referred to as pCGL), and non-gyrotropic part Π, the

latter usually called the finite Larmor radius (FLR) corrections to the pressure
tensor, or the gyroviscous stress tensor. In the highly collisional decomposition
p = pI + Π, see e.g. Braginskii (1958, 1965), the quantity Π is called the stress
tensor. The decomposition procedure yields rigorously exact (even though still not
closed) evolution equations for p‖ and p⊥, see e.g. Oraevskii, Chodura & Feneberg
(1968), Passot & Sulem (2004) and Goswami, Passot & Sulem (2005). Importantly,
at the leading order (by neglecting the Π and also the non-gyrotropic heat flux
contributions qng), the equations of Chew et al. (1956), hereafter referred to as CGL,
are recovered. We discuss the paper by Chew et al. (1956) and point out that the
paper derived the correct form of the pressure equations with the gyrotropic heat flux
contributions included, however, the quantities qn, qs used in that paper are related
to the usual q‖, q⊥ by relations qn = q‖ − 3q⊥ and qs = q⊥. By further neglecting the
heat flux contributions, the pressure equations can be written in conservative form.
The resulting pressure equations became known as the CGL equations, and they can
be interpreted as the conservation laws for the first and second adiabatic invariants
(Kulsrud 1983; Gurnett & Bhattacharjee 2005).

Furthermore, we discuss the general equations of collisionless multi-fluid models.
The pressure equations are rigorously exact, even though the system is not closed,
since the FLR pressure tensor and the entire heat flux tensor are not specified; for
a quick look see (2.89)–(2.92). Rewriting the system to a form where the usual
CGL conservation laws are on the left-hand side, and all other contributions on
the right-hand side, nicely represents the complicated plasma heating processes
that can be encountered, and that are responsible for the breaking of the adiabatic
invariants; see (2.100), (2.101). We also discuss the conservation of energy. For the
case of periodic boundary conditions, the total conservation of energy has a very
illuminating form, that can be found for example in Yang et al. (2017a,b). That
formulation is obtained by considering the total ‘internal’ energy for each particle
species Eint

r =
1
2 〈Tr pr〉 (where the brackets represent integration over the entire spatial

domain), which only reveals the total plasma heating. Here, we split the internal
energy into its parallel and perpendicular components Eint

‖r =
1
2 〈p‖r〉, Eint

⊥r = 〈p⊥r〉, and
formulate the total conservation of energy with the possibility of anisotropic plasma
heating, see (2.113)–(2.116).

The CGL description is analysed in great detail in § 3. We derive the CGL
dispersion relation, and discuss properties of the slow, Alfvén and fast modes that are
present. We verify many of the classical results of Abraham-Shrauner (1967), here
written in a slightly more convenient notation by using the parallel plasma beta β‖,
and the temperature anisotropy ratio ap = T⊥/T‖. Collisionless plasmas cannot reach
arbitrarily large values of temperature anisotropy, and the linear CGL eigenmodes can
indeed become unstable, with the associated instabilities referred to as the (parallel
and oblique) firehose instability and the mirror instability. Similarly to MHD, the
simple CGL description does not contain any dispersive effects and is technically
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scale invariant, even though valid only on the largest scales. The instability thresholds
present in the CGL model therefore can be referred to as ‘hard’ thresholds, i.e.
thresholds that are obtained in the long-wavelength low-frequency limit. The firehose
and mirror instabilities are believed to play a crucial role in solar wind dynamics
(see e.g. Hellinger et al. 2006; Bale et al. 2009), and in figure 1, they are plotted
in the usual β‖ − T⊥/T‖ plane with logarithmic scales. While the firehose threshold
matches the one obtained from kinetic theory, the CGL mirror threshold contains
the well-known factor of 6 error for large β‖ values. The factor of 6 error can be
interpreted as inadequacy of the adiabatic CGL closure in the very slow-dynamics
context, such as the mirror instability. This is further addressed in § 9.4, where we
discuss that the ‘static’ closure, which can be viewed as a generalization of isothermal
closure in the presence of temperature anisotropy and variations of magnetic field
strength, reproduces the correct mirror threshold (Constantinescu 2002; Chust &
Belmont 2006; Passot, Ruban & Sulem 2006).

We discuss the core differences between MHD and CGL, which can be nicely
summarized with the concept of adiabatic indices γ , related to the number of degrees
of freedom i by γ = (i+ 2)/i. While MHD is fully three-dimensional with γ = 5/3,
the CGL can be viewed as composed of one- and two-dimensional dynamics with
γ‖ = 3 and γ⊥ = 2. We also address the velocity and magnetic field eigenvectors.
Similarly to the velocity field eigenvector in MHD (see figure 2), which shows a
‘singular’ behaviour for strictly parallel propagation with VA=Cs, the CGL eigenvector
(figure 3) shows similar singularity for β‖ = 2/(4 − T⊥/T‖). We also briefly discuss
fluid models with empirical ‘free’ polytropic indices γ‖, γ⊥, studied for example by
Hau & Sonnerup (1993), Hau et al. (1993) and Abraham-Shrauner (1973).

In § 4, we introduce the simplest dispersive effects by including the Hall term
into the induction equation, and study dispersion relations of the Hall-CGL model.
We focus on the parallel firehose instability, and show that the instability is indeed
associated with the whistler mode, see figures 4 and 5. We show that negative real
frequencies ωr < 0 have to be handled carefully, and that non-causal analytic solutions
(4.32)–(4.35) have to be modified to the causal form (4.43)–(4.46). We briefly discuss
the simplest ion-cyclotron resonances, and compare solutions of the Hall-CGL model
with solutions of linear kinetic theory, see figure 6.

In § 5, we evaluate the FLR tensor Π at several levels of approximation. The
evaluation of the FLR tensor is cumbersome, because the tensor is described by the
pressure tensor equation implicitly. We first reproduce the fully nonlinear ‘inversion’
procedure on how to obtain Π from expression (b̂ × Π) + (b̂ × Π)T that can be
found for example in Hsu, Hazeltine & Morrison (1986), Passot & Sulem (2004)
and Ramos (2005) as a brief note. Applying this inversion procedure to the pressure
tensor equation evaluates the FLR corrections correctly along the magnetic field
lines, but leads to an equation for Π that is still implicit. Nevertheless, evaluating
the resulting equation at the leading order (technically first order in frequency and
wavenumber), leads to an explicit expression for Π. We first recover the nonlinear
result of Schekochihin et al. (2010), derived in that paper slightly differently, without
using the inversion procedure. We point out that the result can be slightly simplified,
and rearranging the expression yields two different useful forms for writing the
nonlinear Π. Finally, by using the non-dispersive (MHD) induction equation, we
obtain the nonlinear result of Ramos (2005) (see also Macmahon (1965)). For further
evaluation of nonlinear FLR corrections to higher orders, an advanced reader is
referred to Ramos (2005). We continue with the evaluation of the FLR tensor in the
linear approximation, i.e. when the magnetic field lines are not too distorted. For the
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first-order tensor (here called FLR1), we recover the classical result of Yajima (1966),
which is notably different from the one provided by Oraevskii et al. (1968). In the
isotropic case, the FLR1 tensor is consistent with the one extracted from the stress
tensor of Braginskii (1965), if the collisional terms are ‘ignored’. It is noteworthy that
a proper collisionless limit cannot be achieved from the stress tensor of Braginskii
(1965), because expressions are proportional to τ (and also 1/τ ), where τ is time
between two collisions (τ ∼ 1/ν where ν is the usual collisional frequency), so the
collisionless limit τ→∞ does not work.

We consider the Hall-CGL-FLR1 fluid model, and we provide dispersion relation
for generally oblique propagation, which can be also found in Hunana & Zank (2017).
For higher-order FLR corrections, we only provide analytic dispersion relations for the
parallel propagating whistler and ion-cyclotron modes, as well as the perpendicular
fast mode. Nevertheless, we provide linearized, normalized and Fourier transformed
equations written in the x–z plane for all the fluid models. To obtain the dispersion
relation for an oblique propagation, the reader is encouraged to use analytic software
such as Maple or Mathematica, or to solve the system numerically. The second-order
FLR corrections (FLR2) are here defined as containing the Hall term and the time
derivative ∂Π/∂t. We also consider FLR corrections with the non-gyrotropic heat
flux vectors S‖⊥, S⊥

⊥
, that are here defined as FLR3. The precision of various FLR

corrections can be compared nicely by considering the perpendicular fast mode in the
long-wavelength limit. The comparison is especially meaningful, when written in the
notation of Del Sarto, Pegoraro & Tenerani (2017), see (5.119)–(5.121). We proceed
by showing that the FLR3 corrections (with the second-order non-gyrotropic heat
flux vectors) indeed recover the fully kinetic dispersion relation for the fast mode
in the long-wavelength (low-frequency) limit, a result reported by Mikhailovskii &
Smolyakov (1985). Instead of expanding the pressure tensor equation, one can derive
very precise linear FLR corrections from linear kinetic theory, which is not addressed
here, and the reader is referred to papers by Passot & Sulem (2007) and Sulem &
Passot (2015) and references therein.

In § 6, we investigate the parallel and oblique firehose instability. The FLR and
Hall dispersive effects are crucial for the stabilization of the firehose instability at
small scales, and a comprehensive discussion can be found in Hunana & Zank (2017).
That paper was essentially extracted from this guide (with many figures that we do
not republish here), and an interested reader who wants to focus on the firehose
instability can find further information there. Nevertheless, here we briefly investigate
improvements that can be made by considering the FLR2 and FLR3 corrections,
see figures 7–11. Importantly, we show that the non-gyrotropic heat flux vectors
in the FLR3 model, partially reproduce the large ‘bump’ in the imaginary phase
speed (growth rate normalized to the wavenumber), when the plasma is close to the
long-wavelength limit ‘hard’ firehose threshold, see figure 7. The firehose instability in
a fluid formalism was also investigated by Wang & Hau (2003, 2010), Schekochihin
et al. (2010) and Rosin et al. (2011) and references therein.

In § 7, we derive the heat flux tensor equation. The heat flux tensor is then
decomposed into its gyrotropic and non-gyrotropic parts, q= qg

+ qng. The procedure
yields evolution equations for the gyrotropic parallel and perpendicular heat fluxes, q‖
and q⊥, that contain the tensor of the fourth-order moment r. It is emphasized that, if
one wants to keep the non-gyrotropic Π contributions in the scalar heat flux equations,
one needs to keep the non-gyrotropic contributions of the fourth-order moment rng

as well, since there are several possible cancellations even at the linear level. The
non-gyrotropic heat flux qng can be further decomposed to the non-gyrotropic heat
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flux vectors S‖⊥, S⊥
⊥

and tensor σ . The detailed algebra of the non-gyrotropic heat flux
vectors S‖⊥, S⊥

⊥
, i.e. how to express them through lower-order moments, is presented

in appendix D. The first-order expressions are obtained at the nonlinear level and the
second-order expressions at the linear level. We do not address how to decompose
the tensor σ through lower-order moments. Such calculations require a complicated
‘inversion’ procedure for a third-rank tensor (b̂ × σ )S, and an advanced reader is
referred to Ramos (2005).

In § 8, we consider the fourth-order moment r which is a tensor of fourth rank,
rijkl. The moment is again decomposed to its gyrotropic and non-gyrotropic parts, r=
rg
+ rng and the gyrotropic part has three scalar components, r‖‖, r‖⊥ and r⊥⊥. We show

that for a bi-Maxwellian distribution function, the gyrotropic components can indeed
be evaluated as r‖‖=3p2

‖
/ρ, r‖⊥=p‖p⊥/ρ and r⊥⊥=2p2

⊥
/ρ. This constitutes a ‘normal’

closure, a name suggested by Chust & Belmont (2006). By using a similar procedure
to the one provided by Grad (1949) for dilute gases, it is possible to express the non-
gyrotropic bi-Maxwellian rng through a combination of pg and Π, see e.g. Oraevskii
et al. (1968).

In § 9, a dispersion relation of a fluid model closed with the bi-Maxwellian
‘normal’ closure is provided for generally oblique propagation, and we call this
model second-order CGL (CGL2). We specifically focus on the mirror instability,
since this simple fluid model (without any Landau damping) corrects the erroneous
1/6 factor in the ‘hard’ mirror threshold found in the basic CGL description, a result
also reported by Dzhalilov, Kuznetsov & Staude (2011). The mirror instability is
not addressed to a higher level of sophistication in this guide. However, we note
that capturing the mirror growth rate (when the threshold is crossed) sufficiently
well requires Landau fluid models (Snyder et al. 1997) and the stabilization at small
scales requires FLR corrections (Passot & Sulem 2007; Sulem & Passot 2015). We
also provide the dispersion relation of the Hall-CGL2 fluid model. Finally, the CGL2
model can be simplified by considering slow-dynamics regime and constructing
generalized isothermal closure that is called the ‘static’ closure, yielding the simplest
fluid model that captures the correct mirror threshold (Constantinescu 2002; Chust &
Belmont 2006; Passot et al. 2006).

In § 10, we consider the bi-kappa distribution function. We show that the closure
at the fourth-order moment is constructed by r‖‖ = ακ3p2

‖
/ρ, r‖⊥ = ακp‖p⊥/ρ and

r⊥⊥ = ακ2p2
⊥
/ρ, where the coefficient ακ = (κ − 3/2)/(κ − 5/2), and the closure is

valid for κ > 5/2. We call this closure and the associated fluid model ‘BiKappa’,
and we discuss its dispersion relations. Even though the linear modes are generally
different in this fluid model than in the CGL2 fluid model, we show that the ‘hard’
thresholds for the parallel and oblique firehose instability, and for the highly oblique
mirror instability, are not affected by and are independent of the κ value. The Hall-
BiKappa fluid dispersion relation is also provided. We also provide the first-order
non-gyrotropic heat flux vectors S‖⊥, S⊥

⊥
. We do not calculate the rng for the bi-kappa

distribution, and therefore we do not provide the second-order non-gyrotropic heat flux
vectors.

In § 11, we discuss the core differences between the usual fluid models and kinetic
theory. Namely, we discuss why the usual fluid models do not contain collisionless
damping mechanisms, such as Landau damping, regardless of the order to which
the fluid hierarchy is developed. The effect of Landau damping is present in the
collisionless Vlasov equation, and the crucial difference between the usual fluid
hierarchy and kinetic calculations just lies in the technique of how the Vlasov equation
is integrated over the velocity space. We introduce preliminary ideas as to how the
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10 P. Hunana and others

Landau fluid closures will be constructed. For example, for closures performed at
the fourth-order moment instead of the ‘normal’ closure, one needs to consider
perturbations around this state, and prescribe r‖‖ = 3p2

‖
/ρ + r̃‖‖, r‖⊥ = p‖p⊥/ρ + r̃‖⊥

and r⊥⊥ = 2p2
⊥
/ρ + r̃⊥⊥. The deviations r̃‖‖, r̃‖⊥, r̃⊥⊥ will be calculated from linear

kinetic theory in Part 2, by performing Landau fluid closures.
In § 12, we derive the evolution equation for a general nth-order fluid moment

(a tensor with 3n components). We then consider fluid models in the simplified
one-dimensional (1-D) geometry that can be viewed as an electrostatic case (or as a
propagation along the mean magnetic field), and that are closed at a general nth-order
level by a Maxwellian fluid closure. A dispersion relation is obtained, which for n> 4
always yields some solutions that are unstable. It is therefore concluded that the last
non-Landau fluid closure is the ‘normal’ closure and that for n > 4, Landau fluid
closures are required. This surprising result, first reported in Hunana et al. (2018),
serves as motivation for Part 2, which is a detailed guide to Landau fluid closures.

2. Pressure tensor equation
Collisionless plasmas are described by the Vlasov equation, which in CGS units

reads
∂fr

∂t
+ v · ∇fr +

qr

mr

(
E+

1
c
v×B

)
· ∇vfr = 0, (2.1)

and which describes how a distribution function fr(x, v, t) evolves in time. The r is
the index of species and r = p for protons, r = e for electrons, etc. The qr is the
particle charge, mr the particle mass, c the speed of light, E the electric field vector
and B the magnetic field vector. The species index r can sometimes be confusing
in lengthy tensor calculations with multiple indices and for clarity we will often
drop it and reintroduce it when required. To derive the fluid equations, we need to
integrate (perform an averaging) at each spatial point over the ‘kinetic’ velocity v. It
is important to realize that the distribution function just describes the probability of
finding a particle with velocity v at the position x, t and that the ‘kinetic’ velocity v
entering the distribution function f (x, v, t) is a completely independent variable from
x, t, i.e.

∂vi

∂t
= 0;

∂vi

∂xj
= 0. (2.2)

Also, the magnetic and electric fields B(x, t), E(x, t) are macroscopic quantities that
do not depend on v and can be moved outside of velocity integrals over d3v, or in
another words ∂Bi/∂vj= 0 and ∂Ei/∂vj= 0. The definitions of the fluid moments are

n=
∫

f d3v; (2.3)

nu=
∫

vf d3v; (2.4)

p=m
∫
(v − u)(v − u)f d3v; (2.5)

q=m
∫
(v − u)(v − u)(v − u)f d3v; (2.6)

r=m
∫
(v − u)(v − u)(v − u)(v − u)f d3v, (2.7)
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where we have omitted the tensor product notation that is sometimes written down
explicitly as uu = u ⊗ u and in the index notation (uu)ij = uiuj. If two vectors or
tensors are next to each other without an operator between them, a tensor product is
always assumed. The number density n is a scalar, the fluid velocity u is a vector,
the pressure tensor p is a tensor of second rank (3× 3 matrix), the heat flux tensor q
is a tensor of third rank (with 3× 3× 3 components), the tensor r is of fourth rank
(with 3× 3× 3× 3 components), etc. Directly from the definitions, it is obvious that
all fluid tensors must be symmetric in all of their indices, i.e. pij= pji, qijk= qikj= · · · .
The fluctuating velocity is defined as

c= v − u, (2.8)

and should not be confused with the speed of light c.
The second important concept that is used in deriving the fluid hierarchy, is the

use of the usual Gauss–Ostrogradsky (divergence) theorem. The divergence theorem
is used in velocity space and, written in a form that is typically encountered when
calculating the fluid hierarchy, it reads∫

V
∇v · ( f A) d3v =

∫
S

f A · dS. (2.9)

The A is a general nth-order tensor, f is a distribution function, the left-hand side is
a 3-D integral calculated over the entire velocity volume V and the right-hand side
is a surface integral calculated over a boundary of that volume dS = n̂ dS, where n̂
is a unit normal vector to the local surface area pointing outwards. When such an
integral is encountered in the fluid hierarchy, the result is always assumed to be zero.
The volume integrals are from v = −∞ to v =∞ in each velocity component and
the integration on the right-hand side of (2.9) is therefore performed over the velocity
surface area at infinity. The necessary (but technically not sufficient) condition for the
integral to be negligible is

lim
v→∞

f (v)= 0. (2.10)

Since the area dS ∼ v2 dv, the sufficient condition for the integral to vanish, can be
estimated more precisely as

lim
v→∞

f (v)A(v)v2
= 0. (2.11)

When calculating the fluid hierarchy, the encountered expressions are always A(v)∼vn,
where n is a positive integer. Then, for example, for a Maxwellian distribution
f (v) ∼ e−v2 the limit (2.11) is always zero for all n. Even for a slower converging
distribution f (v)∼ e−|v|, the limit is always zero. For distribution functions proportional
to a power law, for example f (v) ∼ (v2)−(κ+1) as for a kappa distribution, the
situation is more restrictive, with some minimum required values of κ . When we will
calculate the nth-order fluid moment (§ 12), we will see that two surface integrals
are encountered, one with A(v) ∼ vn and one with A(v) ∼ vn+1. Therefore, for a
kappa distribution, the strict condition for limv→∞(v

2)−(κ+1)vn+1v2
= 0 yields the

requirement κ > (n + 1)/2. For example, many fluid models discussed in this guide
are closed at the fourth-order moment r, so n = 4, which implies the requirement
κ > 5/2. At first sight, the required limit (2.11) can be considered only a technical
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12 P. Hunana and others

mathematical detail since, physically, one can argue that particles with enormously
large energies will not be measured/observed, and some physical mechanism that is
responsible for a cutoff of the distribution function at finite energies can be usually
assumed. Or in another words, even observational studies that fit the data with a
kappa distribution do not assume that the fit is valid all the way up to v→∞, and
usually a cutoff is implicitly assumed. However, once we calculate the fourth-order
moments for a kappa distribution, we will see that, for example r‖‖= ακ3p2

‖
/ρ, where

ακ = (κ − 3/2)/(κ − 5/2), so the restriction κ > 5/2 returns, and has to be applied
regardless. When the limit (2.11) is satisfied, the neglect of the surface integrals (2.9)
is therefore based on solid theoretical principles, and it is not an approximate or
an ad hoc choice, the surface integrals are really zero. Nevertheless, for complete
clarity in the upcoming fluid hierarchy calculations, we will differentiate between
expressions that are zero exactly, and between the surface integrals (2.9) that are zero
asymptotically, by using = 0 and → 0.

We start directly with the derivation of the pressure tensor equation, since a detailed
derivation of the density and momentum equations can be found in many books. To
derive the pressure tensor equation, it is possible to multiply the Vlasov equation by
mcicj or mvivj (another possibility is mcivj). Here, we will use the first choice, which
is slightly easier to present in detail, because the second choice requires the use of
density and momentum equations to cancel several terms. It is useful to derive the
following identities∫

cf d3v =

∫
(v − u)f d3v =

∫
vf d3v − u

∫
f d3v = nu− un= 0; (2.12)

m
∫

cvf d3v = m
∫
(v − u)(v − u+ u)f d3v

= m
∫
(v − u)(v − u)f d3v +mu

∫
(v − u)f d3v︸ ︷︷ ︸

=0

= p; (2.13)

m
∫

ccvf d3v =m
∫

cc(v − u+ u)f d3v = q+ pu. (2.14)

We write down the derivatives with respect to time ∂/∂t and velocity ∂/∂vi explicitly,
but we abbreviate the derivative with respect to spatial coordinates as ∂/∂xi ≡ ∂i. We
will need

∂

∂t
ci =

∂

∂t
(vi − ui)=−

∂

∂t
ui; (2.15)

∂

∂t
(cicj)=−ci

∂uj

∂t
− cj

∂ui

∂t
; (2.16)

∂k(cicj)=−ci∂kuj − cj∂kui; (2.17)
∂

∂vk
ci =

∂

∂vk
(vi − ui)=

∂vi

∂vk
= δik; (2.18)

∂

∂vk
(cicj)= ciδjk + cjδik; (2.19)
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∂

∂vk
[cicj(v×B)k] =

∂

∂vk
(cicj)(v×B)k + cicj

∂

∂vk
(εklmvlBm)

= (δikcj + δjkci)(v×B)k + cicj εklmδlk︸ ︷︷ ︸
=0

Bm

= cj(v×B)i + ci(v×B)j, (2.20)

where in the last identity we used the result εklmδlk = 0 since the Levi-Civita tensor
εijk is antisymmetric and the Kronecker δij is a symmetric tensor. Integrating the first
term of the Vlasov equation yields

1 = m
∫

cicj
∂f
∂t

d3v =
∂

∂t

(
m
∫

cicj f d3v

)
︸ ︷︷ ︸

=pij

−m
∫

f
∂

∂t
(cicj) d3v

=
∂

∂t
pij +m

∂uj

∂t

∫
fci d3v︸ ︷︷ ︸
=0

+m
∂ui

∂t

∫
fcj d3v︸ ︷︷ ︸
=0

=
∂

∂t
pij. (2.21)

The second term of the Vlasov equation yields

2 = m
∫

cicj v · ∇︸︷︷︸
=vk∂k

f d3v = ∂k

(
m
∫

cicjvk f d3v

)
︸ ︷︷ ︸

=qijk+pijuk

−m
∫
vk f ∂k(cicj) d3v

= ∂k(qijk + pijuk)+ (∂kuj)m
∫

civk f d3v︸ ︷︷ ︸
=pik

+ (∂kui)m
∫

cjvk f d3v︸ ︷︷ ︸
=pjk

= ∂k(qijk︸︷︷︸
=qkij

+pijuk)+ pik∂kuj + pjk∂kui

= ∂k(qkij + ukpij)+ pik∂kuj + pjk∂kui

= [∇ · (q+ up)+ p · ∇u+ (p · ∇u)T]ij. (2.22)

To go back and forth between the index notation and the vector notation in a fully
consistent matter, it is important to establish some conventions that were not required
in simple fluid models. One important convention that is typically used is that the
divergence of a tensor is meant to be through its first component, i.e. for a general
tensor X ijk...n, the divergence ∇ · X means ∂iX ijk...n. This convention is the reason why
in the above expression we used that qijk= qkij and also the ordering of u and p inside
∇ · (up) reflects that in the index notation we have ∂k(ukpij).

The third term of the Vlasov equation calculates

3 = q
∫

cicjE · ∇vf d3v = q
∫

cicjEk
∂

∂vk
f d3v

= qEk

∫
∂

∂vk
(cicj f ) d3v︸ ︷︷ ︸
→0

−qEk

∫
∂

∂vk
(cicj)f d3v
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= −qEk

∫
∂

∂vk
(cicj)f d3v =−qEk

∫
(δikcj + δjkci)f d3v

= −qEi

∫
cj f d3v︸ ︷︷ ︸
=0

−qEj

∫
ci f d3v︸ ︷︷ ︸
=0

= 0. (2.23)

Finally, the fourth term of the Vlasov equation calculates

4 =
q
c

∫
cicj(v×B) · ∇v f d3v =

q
c

∫
cicj(v×B)k

∂f
∂vk

d3v

=
q
c

∫
∂

∂vk
[cicj(v×B)k f ] d3v︸ ︷︷ ︸

→0

−
q
c

∫
∂

∂vk
[cicj(v×B)k] f d3v

= −
q
c

∫
[cj(v×B)i + ci(v×B)j] f d3v =−

q
c

∫
cjεiklvkBl f d3v −

q
c

∫
ciεjklvkBl f d3v

= −
q
c
εiklBl

∫
cjvk f d3v︸ ︷︷ ︸
=(1/m)pjk

−
q
c
εjklBl

∫
civk f d3v︸ ︷︷ ︸
=(1/m)pik

=−
q

mc
[εiklBlpjk + εjklBlpik]

=
q

mc
[εilkBlpkj + εjlkBlpki] =

q
mc
[(B× p)ij + (B× p)ji] =

q
mc
[B× p+ (B× p)T]ij.

(2.24)

In the expression above, one encounters a vector product of a vector with a matrix,
B × p. This operator might appear unusual at first, but it is just a generalization of
a vector product of two vectors, it is defined as (B× p)ij = εiklBkplj and the result is
a matrix. Similarly, a vector product between a vector and a tensor of third rank is
defined as (B× q)ijk = εilmBlqmjk and for a tensor of nth rank (B× X)i...jk = εilmBlX m...jk
(i.e. the second index in ε is the vector B index and the third index in ε is the first
index of tensor X ). However, a definition of a vector product where a matrix is applied
on a vector reads (p× B)ij = εjklpikBl, and in general p× B=−(B× pT)T, but since
the p is here symmetric, p × B = −(B × p)T. The vector product (cross-product) is
addressed further in appendix B. The term (2.24) is sometimes rewritten as

B× p+ (B× p)T =B× p− p×B. (2.25)

Combining all the results together 1 + 2 + 3 + 4 = 0, yields the entire pressure
tensor equation as

∂p
∂t
+∇ · (up+ q)+ p · ∇u+ (p · ∇u)T +

q
mc
[B× p+ (B× p)T] = 0. (2.26)

One notices that, for example, the pressure tensor equation of Kulsrud (1983),
equation (57), contains a minus sign typo in the last term, which should be written
as (2.25). That it is indeed a typo and not a definition of p× B is evident from his
subsequent equation (59). It is useful to introduce a symmetric operator that acts on
a matrix A according to

AS
≡ A+ AT

; AS
ij ≡ Aij + Aji, (2.27)

which yields a more compact form of the pressure tensor equation

∂p
∂t
+∇ · (up+ q)+

[
p · ∇u+

q
mc

B× p
]S
= 0. (2.28)
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2.1. Pressure tensor decomposition

By introducing a unit vector in the direction of the local magnetic field b̂=B/|B| and
the gyrofrequency Ω = qB0/(mc), the last term in the pressure tensor equation (2.26)
can be rewritten as

Ω
|B|
B0
[b̂× p+ (b̂× p)T]. (2.29)

At very low frequencies ω � Ω (and at very long spatial scales) this term will
dominate and must be equal to zero. The simplest possibility that makes this term to
be equal to zero is piso

= pI , where p is the scalar pressure and I is the unit matrix.
In index notation piso

ij = pδij, and we can verify that

(b̂× piso)ij = εiklb̂kpiso
lj = εiklb̂kpδlj = pεikjb̂k =−pεijkb̂k; (2.30)

[b̂× piso
+ (b̂× piso)T]ij =−pεijkb̂k − pεjikb̂k =−pb̂k(εijk − εijk)= 0. (2.31)

There is however a much more general solution that makes the term (2.29) equal to
zero, which is

pg
= p‖b̂b̂+ p⊥(I − b̂b̂), (2.32)

where the ‘g’ stands for gyrotropic. For quick analytic calculations it is sometimes
easier to use pg

= (p‖− p⊥)b̂b̂+ p⊥I since we have to deal with b̂b̂ only once instead
of twice. We need to verify that the term (2.29) indeed disappears,

(b̂× pg)ij = εiklb̂kp
g
lj = εiklb̂k((p‖ − p⊥)b̂lb̂j + p⊥δlj)

= (p‖ − p⊥)b̂j εiklb̂kb̂l︸ ︷︷ ︸
=0

+p⊥εikjb̂k =−p⊥εijkb̂k; (2.33)

⇒ [b̂× pg
+ (b̂× pg)T]ij =−p⊥b̂k(εijk + εjik)= 0. (2.34)

It is easy to see that the parallel and perpendicular pressures can be extracted from
the gyrotropic pressure tensor matrix by performing double contractions according to

p‖ = pg
: b̂b̂, and p⊥ = pg

: (I − b̂b̂)/2. (2.35)

The double contraction (the double dot product, represented by the colon) is a very
useful operator that is frequently encountered in higher-order fluid models. For two
matrices it is defined as A : B = AijBij and yields a scalar. Sometimes, the double
contraction is defined as A : B = AijBji, which for symmetric matrices is equivalent
to the previous definition. As a reminder, the usual matrix product of two matrices is
(A ·B)ij=AikBkj and yields a matrix. It is useful to write down the following identities
that involve the double contraction,

b̂b̂ : b̂b̂= 1; (2.36)

I : b̂b̂= 1; (2.37)

(I − b̂b̂) : b̂b̂= 0; (2.38)
I : I = 3; (2.39)

(I − b̂b̂) : (I − b̂b̂)/2= 1. (2.40)

Also interestingly, the trace of a matrix A can be expressed through the double
contraction with I , i.e. A : I = Aijδij = Aii = Tr(A). The pressure decomposition (2.35)
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can now be verified easily. Even more revealing is to apply the decomposition (2.35)
directly to the definition of the entire pressure tensor (2.5), which yields

p : b̂b̂=m
∫

ccf d3v : b̂b̂=m
∫
(v · b̂− u · b̂)2f d3v =m

∫
(v‖ − u‖)2f d3v ≡ p‖; (2.41)

p : (I − b̂b̂)/2=
m
2

∫
|v⊥ − u⊥|2f d3v ≡ p⊥, (2.42)

where we have used the fact that the magnitude of the 3-D velocity vector can be
decomposed as |v − u|2 = |v⊥ − u⊥|2 + (v‖ − u‖)2, or equivalently |c|2 = |c⊥|2 + c2

‖
.

A distribution function is called isotropic when the direction of the velocity vector
v does not matter, and the distribution function depends only on magnitude |v|,
as for example the Maxwellian distribution e−|v|2 . A distribution function is called
gyrotropic when the direction of the perpendicular velocity vector v⊥ does not matter,
and the function depends only on |v⊥|, as for example the bi-Maxwellian distribution
e−α‖v

2
‖e−α⊥|v⊥|2 . In another words, the gyrotropic distribution function is isotropic only

in its transverse velocity components. The same vocabulary is used for the fluid
moments, and a fluid moment is called gyrotropic when it involves integrals over
|c⊥|2i, i = 0, 1, 2, 3. . . . For the pressure tensor, there are only two possibilities,
represented by the parallel and perpendicular pressures (2.41), (2.42).

The part of the pressure tensor extracted by the decomposition (2.35) is therefore
called the gyrotropic pressure pg, sometimes also called the CGL pressure pCGL. The
gyrotropic approximation is sufficient at very long spatial scales, where the Larmor
radius (= the gyroradius) of particles gyrating around the magnetic field is small,
and the non-gyrotropic contributions become negligible. However, at sufficiently
small spatial scales comparable to the gyroradius, the non-gyrotropic pressure
contributions become significant and we represent these through a tensor Π, that
is called the finite Larmor radius corrections to the (gyrotropic) pressure tensor, or
sometimes non-gyrotropic or gyroviscous stress tensor. The entire pressure tensor is
thus decomposed according to

p= p‖b̂b̂+ p⊥(I − b̂b̂)+Π, (2.43)

and for clarity we write down the decomposition explicitly in matrix notation

p = p‖

b̂xb̂x, b̂xb̂y, b̂xb̂z

b̂yb̂x, b̂yb̂y, b̂yb̂z

b̂zb̂x, b̂zb̂y, b̂zb̂z

+ p⊥

1− b̂xb̂x, −b̂xb̂y, −b̂xb̂z

−b̂yb̂x, 1− b̂yb̂y, −b̂yb̂z

−b̂zb̂x, −b̂zb̂y, 1− b̂zb̂z


+

Πxx, Πxy, Πxz
Πyx, Πyy, Πyz
Πzx, Πzy, Πzz

 . (2.44)

In the momentum equation, the pressure tensor enters through its divergence, which
is useful to break down into its components. Since ∇ · (b̂b̂)= b̂(∇ · b̂)+ (b̂ · ∇)b̂, and
∇ · (p⊥I)=∇p⊥, the divergence of the pressure tensor calculates as

∇ · p = ∇ · (p⊥I)+∇ · [(p‖ − p⊥)b̂b̂] +∇ ·Π

= ∇p⊥ + (p‖ − p⊥)[b̂(∇ · b̂)+ (b̂ · ∇)b̂] + b̂(b̂ · ∇)(p‖ − p⊥)+∇ ·Π. (2.45)
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Importantly, we have seen in (2.41), (2.42) that the scalar parallel and perpendicular
pressures are extracted by applying the double contractions to the entire pressure
tensor (and not necessarily only at the gyrotropic part). The decomposition (2.43) can
be rewritten as

p= (p : b̂b̂)b̂b̂+ (p : (I − b̂b̂)/2)(I − b̂b̂)+Π. (2.46)

Applying the double contraction : b̂b̂ to (2.46) yields the first requirement for the FLR
tensor

Π : b̂b̂= 0. (2.47)

Similarly, applying : (I − b̂b̂)/2 to (2.46) yields the second requirement for the FLR
tensor,

Π : (I − b̂b̂)= 0. (2.48)

By further using the first requirement, the second requirement can be rewritten as

Π : I = Tr(Π)= 0. (2.49)

By using the pressure decomposition (2.43) in the pressure tensor equation (2.26), and
using the fact that the gyrotropic part of pressure satisfies b̂× pg

+ (b̂× pg)T = 0, the
pressure tensor equation can be rewritten as

∂p
∂t
+∇ · (up+ q)+ p · ∇u+ (p · ∇u)T +Ω

|B|
B0
[b̂×Π + (b̂×Π)T] = 0. (2.50)

We can now derive the time dependent equations for parallel and perpendicular
pressures by applying the usual double contractions to this pressure tensor equation.

2.2. Parallel pressure equation

We calculate the double contraction with b̂b̂ term by term. We will need the following
identities

∂

∂t
(b̂b̂) : b̂b̂= 0; ∂k(b̂b̂) : b̂b̂= 0. (2.51)

The first term calculates as

∂p
∂t
: b̂b̂ =

∂

∂t
(p‖b̂ib̂j + p⊥(δij − b̂ib̂j)+Πij)b̂ib̂j =

∂p‖
∂t
|b̂|2|b̂|2︸ ︷︷ ︸
=1

+ p‖
∂

∂t
(b̂ib̂j)b̂ib̂j︸ ︷︷ ︸
=0

+
∂p⊥
∂t

(δij − b̂ib̂j)b̂ib̂j︸ ︷︷ ︸
=0

+ p⊥ b̂ib̂j
∂

∂t
(δij − b̂ib̂j)︸ ︷︷ ︸
=0

+
∂

∂t
(Πijb̂ib̂j︸ ︷︷ ︸
=0

)−Πij
∂

∂t
(b̂ib̂j)=

∂p‖
∂t
−Π :

∂

∂t
(b̂b̂).

(2.52)
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The second term calculates as

∇ · (up) : b̂b̂ = ∂k(ukpij)b̂ib̂j = ∂k(uk pijb̂ib̂j︸ ︷︷ ︸
=p‖

)− ukpij∂k(b̂ib̂j)= ∂k(ukp‖)− ukp‖ b̂ib̂j∂k(b̂ib̂j)︸ ︷︷ ︸
=0

−p⊥uk (δij − b̂ib̂j)∂k(b̂ib̂j)︸ ︷︷ ︸
=0

−Πijuk∂k(b̂ib̂j)=∇ · (p‖u)−Π : (u · ∇(b̂b̂));

(2.53)

(∇ · q) : b̂b̂= (∇ · q)ijb̂ib̂j = b̂ · (∇ · q) · b̂. (2.54)

The third term calculates as

(p · ∇u) : b̂b̂ = (p · ∇u)ijb̂ib̂j = (pik∂kuj)b̂ib̂j = (∂kuj)pikb̂ib̂j

= (∂kuj)[p‖b̂ib̂k + p⊥(δik − b̂ib̂k)+Πik]b̂ib̂j

= (∂kuj)[p‖b̂kb̂j + p⊥ (b̂kb̂j − b̂kb̂j)︸ ︷︷ ︸
=0

+Πikb̂ib̂j] = p‖b̂k(∂kuj)b̂j +Πik(∂kuj)b̂ib̂j

= p‖b̂ · ∇u · b̂+ (Π · ∇u) : b̂b̂. (2.55)

The fourth term calculates similarly as

(p · ∇u)T : b̂b̂ = (p · ∇u)jib̂ib̂j = (pjk∂kui)b̂ib̂j = (∂kui)pjkb̂ib̂j

= (∂kui)[p‖b̂jb̂k + p⊥(δjk − b̂jb̂k)+Πjk]b̂ib̂j

= (∂kui)[p‖b̂kb̂i + p⊥ (b̂ib̂k − b̂kb̂i)︸ ︷︷ ︸
=0

+Πjkb̂ib̂j] = p‖b̂k(∂kui)b̂i +Πjk(∂kui)b̂ib̂j

= p‖b̂ · ∇u · b̂+ (Π · ∇u)jib̂ib̂j = p‖b̂ · ∇u · b̂+ (Π · ∇u)T : b̂b̂, (2.56)

and the final fifth term becomes

[b̂×Π + (b̂×Π)T] : b̂b̂ = [(b̂×Π)ij + (b̂×Π)ji]b̂ib̂j = [εiklb̂kΠlj + εjklb̂kΠli]b̂ib̂j

= b̂jΠlj εiklb̂ib̂k︸ ︷︷ ︸
=0

+b̂iΠli εjklb̂jb̂k︸ ︷︷ ︸
=0

= 0. (2.57)

The entire equation for the parallel pressure therefore reads

∂p‖
∂t
+∇ · (p‖u)+ 2p‖b̂ · ∇u · b̂+ b̂ · (∇ · q) · b̂−Π :

[(
∂

∂t
+ u · ∇

)
(b̂b̂)

]
+ [Π · ∇u+ (Π · ∇u)T] : b̂b̂= 0. (2.58)

Using the symmetric operator (2.27) and the definition for the convective derivative
d/dt≡ ∂/∂t+ u · ∇, the equation is written in a simple form as

∂p‖
∂t
+∇ · (p‖u)+ 2p‖b̂ · ∇u · b̂+ b̂ · (∇ · q) · b̂−Π :

d
dt
(b̂b̂)+ (Π · ∇u)S : b̂b̂= 0,

(2.59)

which corresponds to (26) of Passot & Sulem (2004), equation (9) of Goswami et al.
(2005) (see also Oraevskii et al. (1968), Passot & Sulem (2007) and Passot, Sulem &
Hunana (2012)).
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2.3. Perpendicular pressure equation

It is possible to either apply the double contraction : (I − b̂b̂)/2 to the pressure tensor
equation to directly obtain the equation for ∂p⊥/∂t, or to apply the trace (the double
contraction : I) to obtain the equation for ∂p‖/∂t + 2∂p⊥/∂t, and then subtract the
previously obtained equation for ∂p‖/∂t. Both approaches are equivalent, since p⊥ =
(Tr(p)− p‖)/2. In another words, directly calculating the trace of the pressure tensor
yields

Tr p= δijpij = pii = p‖ b̂ib̂i︸︷︷︸
=1

+p⊥ (δii − b̂ib̂i)︸ ︷︷ ︸
=2

+ Πii︸︷︷︸
=0

= p‖ + 2p⊥, (2.60)

where we have used that TrΠ =Πii = 0. Applying the trace operator to the pressure
tensor equation (2.50) term by term yields for the first term

Tr
∂

∂t
p= δij

∂

∂t
pij =

∂

∂t
pii =

∂

∂t
(p‖ + 2p⊥); (2.61)

for the second term

Tr(∇ · (up)) = δij∂k(ukpij)= ∂k(ukpii)= uk∂kpii + pii∂kuk

= u · ∇(p‖ + 2p⊥)+ (p‖ + 2p⊥)∇ · u; (2.62)

Tr(∇ · q)= unchanged; (2.63)

the third term

Tr(p · ∇u) = δij(p · ∇u)ij = pik∂kui = ((p‖ − p⊥)b̂ib̂k + p⊥δik +Πik)∂kui

= (p‖ − p⊥)b̂k(∂kui)b̂i + p⊥∂iui +Πik∂kui

= (p‖ − p⊥)b̂ · ∇u · b̂+ p⊥∇ · u+ Tr(Π · ∇u); (2.64)

the fourth term is equivalent to the third term

Tr(p · ∇u)T = (p · ∇u)ii = (p‖ − p⊥)b̂ · ∇u · b̂+ p⊥∇ · u+ Tr(Π · ∇u)T; (2.65)

even though we kept the last expression in transpose form so that we can use the
symmetric operator after we combine all the terms. Finally the fifth term

Tr(b̂×Π)= δijεiklb̂kΠlj = b̂k εiklΠli︸ ︷︷ ︸
=0

= 0; (2.66)

Tr(b̂×Π)T = Tr(b̂×Π)= 0. (2.67)

Combining all the terms, using the parallel pressure equation (2.59) and dividing by
2 yields the time-dependent equation for the perpendicular pressure that reads

∂p⊥
∂t
+∇ · (p⊥u)+ p⊥∇ · u− p⊥b̂ · ∇u · b̂+

1
2
[Tr∇ · q− b̂ · (∇ · q) · b̂]

+
1
2

[
Tr(Π · ∇u)S +Π :

d
dt
(b̂b̂)− (Π · ∇u)S : b̂b̂

]
= 0. (2.68)

The result corresponds to, for example, equation (25) of Passot & Sulem (2004),
equation (8) of Goswami et al. (2005). It is important to note that the parallel
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and perpendicular pressure equations are exact equations. These equations are valid
regardless of what kind of higher-order closure will be adopted later. It is useful
to rewrite the term Π : (d/dt)(b̂b̂) slightly so that we can directly use the induction
equation and eliminate the time derivative. The term can be rewritten as

Π :
d
dt
(b̂b̂) = Πij

d
dt
(b̂ib̂j)=Πij

(
b̂i

d
dt

b̂j + b̂j
d
dt

b̂i

)
= b̂iΠij

d
dt

b̂j + b̂j Πij︸︷︷︸
Πji

d
dt

b̂i = 2b̂ ·Π ·
db̂
dt
. (2.69)

We will need the following identity for the time derivative of the unit vector (see later
in the text),

d
dt

b̂=
1
|B|

[
dB
dt
− b̂

(
b̂ ·

dB
dt

)]
, (2.70)

which, when used in the above expression together with b̂ · Π · b̂ = 0, allows us to
write

Π :
d
dt
(b̂b̂)=

2
|B|

b̂ ·Π ·
dB
dt
, (2.71)

which is an expression of general validity since no specific form of the induction
equation was assumed yet. In the next section we will calculate the decomposition
of the heat flux tensor q and we will show that, if only the gyrotropic heat flux
components q‖, q⊥ are considered, the heat flux terms entering the pressure equations
read

b̂ · (∇ · qg) · b̂=∇ · (q‖b̂)− 2q⊥∇ · b̂; (2.72)
1
2 [Tr∇ · qg

− b̂ · (∇ · qg) · b̂] =∇ · (q⊥b̂)+ q⊥∇ · b̂. (2.73)

Therefore, by splitting the heat flux into gyrotropic and non-gyrotropic parts, q= qg
+

qng, the pressure equations read

∂p‖
∂t
+∇ · (p‖u)+ 2p‖b̂ · ∇u · b̂+∇ · (q‖b̂)− 2q⊥∇ · b̂+ b̂ · (∇ · qng) · b̂

−
2
|B|

b̂ ·Π ·
dB
dt
+ (Π · ∇u)S : b̂b̂= 0; (2.74)

∂p⊥
∂t
+∇ · (p⊥u)+ p⊥∇ · u− p⊥b̂ · ∇u · b̂+∇ · (q⊥b̂)

+ q⊥∇ · b̂+
1
2
[Tr∇ · qng

− b̂ · (∇ · qng) · b̂]

+
1
2

[
Tr(Π · ∇u)S +

2
|B|

b̂ ·Π ·
dB
dt
− (Π · ∇u)S : b̂b̂

]
= 0. (2.75)

Terms with the non-gyrotropic heat flux qng can be further split into non-gyrotropic
heat flux vectors S‖⊥, S⊥

⊥
and the heat flux tensor σ , which is addressed in appendix D,

see (D 124), (D 126). Terms containing the FLR pressure tensor Π are usually called
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the FLR stress forces, and these forces can generate complicated plasma heating
processes. The FLR stress forces can generate both parallel and perpendicular plasma
heating that can be determined only from fully nonlinear numerical simulations, since
all the terms disappear at the linear level. This process is also sometimes called
‘stochastic heating’. The importance of stochastic heating was shown by Laveder,
Passot & Sulem (2013), who performed 1.5-dimensional numerical simulations with
the sophisticated FLR Landau fluid model of Passot & Sulem (2007), Passot et al.
(2012).

2.4. On the paper by Chew et al. (1956)
The very influential paper by Chew et al. (1956) that is typically cited for the CGL
equations (with zero heat fluxes) actually also derived the pressure equations when the
gyrotropic heat fluxes are considered. It is important to emphasize that, even though
the scalar pressures pn, ps in the notation of that paper are equal to the usual pressures
p‖, p⊥, this is not the case for the heat fluxes. The gyrotropic heat flux tensor in
that paper is decomposed into components qn, qs according to (Chew et al. 1956,
equation (34))

qg
ijk = qnb̂ib̂jb̂k + qs(δijb̂k + δjkb̂i + δikb̂j). (2.76)

In contrast, the usual gyrotropic heat flux decomposition to q‖, q⊥ reads (see later in
the text)

qg
ijk = q‖b̂ib̂jb̂k + q⊥(δijb̂k + δjkb̂i + δikb̂j − 3b̂ib̂jb̂k), (2.77)

i.e. the last term is not present in their decomposition. However, this does not mean
that their pressure equations (Chew et al. 1956, equations (31), (32)) are incorrect. It
only implies that their equations are written in terms of

qn = q‖ − 3q⊥; qs = q⊥. (2.78)

By neglecting the FLR corrections Π and qng, the parallel and perpendicular pressure
equations (2.74), (2.75) simplify to

dp‖
dt
+ p‖∇ · u+ 2p‖b̂ · ∇u · b̂+∇ · (q‖b̂)− 2q⊥∇ · b̂= 0; (2.79)

dp⊥
dt
+ 2p⊥∇ · u− p⊥b̂ · ∇u · b̂+∇ · (q⊥b̂)+ q⊥∇ · b̂= 0. (2.80)

By using (2.78), the heat flux contributions in the parallel pressure equation above can
be rewritten as

∇ · (q‖b̂)− 2q⊥∇ · b̂=∇ · [(qn + qs)b̂] + 2b̂ · ∇qs, (2.81)

which agrees with the parallel pressure equation obtained by Chew et al. (1956),
equation (31). The pressure equations of Chew et al. (1956) are therefore correct,
but it has to be remembered that qn is not the usual parallel heat flux q‖ =
m
∫
(v‖ − u‖)3f d3v.1 Actually, the authors do not even call the quantities qn, qs

heat flux components, but components of a ‘pressure-transport’ tensor.
To conclude this subsection, we will go slightly ahead and use (3.51), (3.52)

(without the zero right-hand sides) that are the usual CGL pressure equations and
1Sometimes the parallel heat flux is defined with the factor of 1/2 as q‖ =m/2

∫
(v‖ − u‖)3f d3v, but this

definition should be avoided.
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valid only at long spatial scales when the Hall term in the induction equation is
neglected. Under this assumption, the pressure equations (2.79), (2.80) are rewritten
as

d
dt

(
p‖|B|2

ρ3

)
=−
|B|2

ρ3
[∇ · (q‖b̂)− 2q⊥∇ · b̂]; (2.82)

d
dt

(
p⊥
ρ|B|

)
=−

1
ρ|B|
[∇ · (q⊥b̂)+ q⊥∇ · b̂]. (2.83)

It is often forgotten that the paper by Chew et al. (1956) derived the correct pressure
equations with gyrotropic heat flux contributions. The authors, however, did not write
the equations in the form (2.82), (2.83), and left them in the form (2.79), (2.80),
using the ‘conservative’ form only after prescribing the closure q‖ = q⊥ = 0 (their
equations (35), (36)),

d
dt

(
p‖|B|2

ρ3

)
= 0; (2.84)

d
dt

(
p⊥
ρ|B|

)
= 0. (2.85)

Over time, equations (2.84), (2.85) became known as the CGL description. Equations
(2.84), (2.85) are often replaced by the equations of state p‖|B|2/ρ3

= const. and
p⊥/(ρ|B|) = const., see e.g. Mjølhus (2009). Additionally, similarly to the definition
of (appropriately normalized) entropy in MHD, s = ln(p/ργ ), it is useful to define
parallel and perpendicular entropy in the CGL model, according to

s‖ =
1
3

ln
(

p‖|B|2

ρ3

)
; s⊥ =

2
3

ln
(

p⊥
ρ|B|

)
. (2.86)

The total entropy, s‖+ s⊥= ln(p1/3
‖ p2/3

⊥ ρ
−5/3), is equivalent to the MHD entropy when

p‖ = p⊥, see for example (9)–(11) in Abraham-Shrauner (1967).

2.5. Physical meaning of CGL equations
The exact derivation of the CGL equation (2.84), (2.85) will be completed in the next
section. Here, we briefly discuss the physical meaning of these equations. The CGL
equations (2.85), (2.84) can be interpreted as the conservation of the first and second
adiabatic invariants, as is nicely discussed for example by Kulsrud (1983) and by
Gurnett & Bhattacharjee (2005). Considering many particles with velocity components
v‖ and v⊥ with respect to the mean magnetic field, the parallel and perpendicular
pressures can be estimated as

p‖ ∼ 〈v2
‖
〉ρ; p⊥ ∼ 〈v2

⊥
〉ρ, (2.87)

where the brackets represent an average over all particles. To complete the estimate,
we need expressions for 〈v2

‖
〉 and 〈v2

⊥
〉, which come from the conservation of the

adiabatic invariants. The first adiabatic invariant is the conservation of magnetic
moment µ of a particle that is gyrating periodically around a mean magnetic field.
The second adiabatic invariant, sometimes also called the longitudinal invariant, is
associated with a particle bouncing periodically between two magnetic mirror points.
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The conserved quantity is the integral over the parallel momentum of a particle
J ≡

∮ b
a mv‖ dl, where the magnetic mirrors are located at ‘a’ and ‘b’ and the integral

is performed along the magnetic field line. The distance between the two magnetic
mirrors at ‘a’ and ‘b’ can be labelled as L. The conservation of the first and second
adiabatic invariants is therefore

µ≡
mv2
⊥

2B
= const.; J ≡mv‖L= const. (2.88)

Since we are considering only non-relativistic particles, the particle mass ‘m’ is also a
constant. The conservation of magnetic moment µ therefore implies v2

⊥
∼B, and using

this in (2.87) yields p⊥ ∼ Bρ, recovering (2.85). The CGL equation (2.85) therefore
corresponds to conservation of magnetic moment, i.e. the first adiabatic invariant.
The conservation of the second adiabatic invariant J is more tricky, since we need to
somehow estimate the non-intuitive length L between the two magnetic mirrors, and
no magnetic mirrors are explicitly assumed, since we are just dealing with somewhat
random magnetic field lines. The length L can be nevertheless estimated from two
fundamental physical principles. Consider a magnetic flux tube (a deformed cylinder)
with cross-sectional area A and length L. The conservation of the total magnetic flux
through the area A implies AB= const., which yields an estimate for the area A∼ 1/B.
The second principle is the conservation of the total mass of particles that are
completely trapped in that flux tube and that cannot escape, mnAL= const., yielding
L∼ 1/(ρA). The use of A∼ 1/B yields the final estimate for the non-intuitive length
L ∼ B/ρ. The conservation of the second adiabatic invariant J therefore implies
v‖∼ 1/L∼ ρ/B. Using this result in (2.87) implies p‖∼ ρ3/B2, recovering (2.84). The
CGL equation (2.84) corresponds to conservation of the second adiabatic invariant
J, and the equation is valid for particles that are completely trapped and therefore
cannot carry a heat flux. As we discuss later, the consideration of the Hall term, the
heat flux and the FLR stress forces (the stochastic heating), leads to the breaking
of these two adiabatic invariants. Nevertheless, exact conservation laws can still be
derived, and the very simple CGL equations (2.84), (2.85) have to be modified with
non-zero right-hand sides.

In Part 2 of our guide (see § 4.1), we show that the conservation of magnetic
moment is very useful for understanding the form of the perturbed distribution
function f (1) in the gyrotropic limit. By performing calculations in the laboratory
reference frame, we show that to obtain the correct f (1) in the gyrotropic limit
actually requires the usual complicated kinetic integration around the unperturbed
orbit (see the Appendix of Part 2) and only then the gyrotropic limit can be imposed.
In contrast, performing calculations in the guiding-centre reference frame allows one
to prescribe the conservation of magnetic moment from the beginning, and obtain the
correct f (1) in the gyrotropic limit perhaps more intuitively. Conservation of adiabatic
invariants is important in many areas of space physics and astrophysics. For example,
conservation of adiabatic invariants is used to construct models that describe particles
trapped inside of magnetic islands and that are being accelerated during magnetic
island contraction and merging (Drake, Swisdak & Fermo 2013; Zank et al. 2014).

2.6. Exact equations of anisotropic multi-fluid models
Before we discuss solutions of specific fluid models, it is beneficial to summarize the
most general equations of multi-fluid models that were derived with no simplifications
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at all. By reintroducing the species index r, the equations that were directly obtained
by integrating the collisionless Vlasov equation read

∂ρr

∂t
+∇ · (ρrur)= 0; (2.89)

∂ur

∂t
+ ur · ∇ur +

1
ρr
∇ · pr −

qr

mr

(
E+

1
c

ur ×B
)
= 0; (2.90)

∂p‖r
∂t
+∇ · (p‖rur)+ 2p‖rb̂ · ∇ur · b̂+ b̂ · (∇ · qr) · b̂

−
2
|B|

b̂ ·Πr ·
drB
dt
+ (Πr · ∇ur)

S
: b̂b̂= 0; (2.91)

∂p⊥r

∂t
+∇ · (p⊥rur)+ p⊥r∇ · ur − p⊥rb̂ · ∇ur · b̂+

1
2
[Tr∇ · qr − b̂ · (∇ · qr) · b̂]

+
1
2

[
Tr(Πr · ∇ur)

S
+

2
|B|

b̂ ·Πr ·
drB
dt
− (Πr · ∇ur)

S
: b̂b̂
]
= 0, (2.92)

where the convective derivative dr/dt = ∂/∂t + ur · ∇. In the above equations, the
pressure tensor for each species was just decomposed into gyrotropic contributions p‖r,
p⊥r and the rest of the pressure tensor (the FLR pressure tensor Πr), according to

pr = p‖rb̂b̂+ p⊥r(I − b̂b̂)+Πr, (2.93)

which is a rigorous decomposition not introducing any simplifications. The heat flux qr
contributions are here left at the most general level without any simplifications either.
The equations are accompanied by Maxwell’s equations, that for now we write down
here with no simplifications to emphasize that no Maxwell equations were used in
deriving the above system,

∇ ·E= 4πρc = 4π
∑

r

qrnr; ∇ ·B= 0; (2.94)

∂B
∂t
=−c∇×E; j=

∑
r

qrnrur =
c

4π
∇×B−

1
4π

∂E
∂t
. (2.95)

Equations (2.89)–(2.95) represent an exact (even though not closed) kinetic Vlasov–
Maxwell system formulated in fluid variables, and the description is valid for any
general distribution function and for all considered spatial and temporal scales. All
advanced collisionless multi-fluid models have to be based in one way or another on
these equations. One can concentrate on the proton dynamics or one can concentrate
on the electron dynamics and simplify these equations accordingly for these spatial
scales. Naturally, one can consider complicated multi-fluid descriptions composed of
many particle species.

For a new reader who just jumped straight to this section, the symmetric operator
‘S’ acts on a matrix Aij according to AS

ij=Aij+Aji. If one does not like the symmetric
operator in the expressions above, the symmetric operator is actually not necessary,
since

(Π · ∇u)ij =Πik∂kuj; (2.96)

(Π · ∇u)Sij =Πik∂kuj +Πjk∂kui; (2.97)
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(Π · ∇u)S : b̂b̂= 2b̂iΠik(∂kuj)b̂j = 2(Π · ∇u) : b̂b̂= 2b̂ · (Π · ∇u) · b̂; (2.98)

Tr(Π · ∇u)S = 2Πik∂kui = 2Π :∇u= 2(Π · ∇) · u, (2.99)

where we also got rid of the double contractions. Note that Πik=Πki and also pik=pki.
Equations (2.89)–(2.92) contain two very important catches – the entire heat flux

tensor qr and the non-gyrotropic pressure tensor Πr are not specified yet. In this
moment, the entire class of collisionless fluid models separates to many possible
classes and sub-classes, depending on how precisely one wants to evaluate the heat
flux tensor qr and the FLR pressure tensor Πr. There are several complications how
to correctly model these two quantities, but before we discuss this, we want to
point out that by using the simple general identities (3.46), (3.47) (that are nothing
more than calculating derivatives and using the density equation for each species
separately), the above pressure equations can be rewritten to the following form

dr

dt

(
p‖r|B|2

ρ3
r

)
=
|B|2

ρ3
r

{
2p‖r∇ · ur − 2p‖rb̂ · ∇ur · b̂+ 2

p‖r
|B|

b̂ ·
drB
dt
− b̂ · (∇ · qr) · b̂

+
2
|B|

b̂ ·Πr ·
drB
dt
− (Πr · ∇ur)

S
: b̂b̂
}
; (2.100)

dr

dt

(
p⊥r

ρr|B|

)
=

1
ρr|B|

{
−p⊥r∇ · ur + p⊥rb̂ · ∇ur · b̂−

p⊥r

|B|
b̂ ·

drB
dt

−
1
2
[Tr∇ · qr − b̂ · (∇ · qr) · b̂]

−
1
2

[
Tr(Πr · ∇ur)

S
+

2
|B|

b̂ ·Πr ·
drB
dt
− (Πr · ∇ur)

S
: b̂b̂
]}

. (2.101)

Again, no simplifications were introduced and no Maxwell equations were used yet.
The equations are exact. The equations represent the complicated plasma heating
processes that are responsible for anisotropic plasma heating, and that are in general
very difficult to classify. The left-hand sides of (2.100)–(2.101) are the familiar CGL
equations that represent conservations of the first and second adiabatic invariants,
and all the expressions on the right-hand sides break these adiabatic invariants.
On the right-hand side, we have the ∂B/∂t that couples various species together
through Maxwell’s equations, and that also introduces the Hall term responsible for
the simplest dispersive effects. The heat flux tensor qr (a tensor of third rank), is
decomposed into its gyrotropic and non-gyrotropic (FLR) parts qr = qg

r + qng
r . At large

scales, the gyrotropic heat flux can be viewed as a gateway for the simplest form
of collisionless damping mechanism, known as Landau damping, that can be further
separated to a ‘pure’ electrostatic Landau damping, and its magnetic analogue, the
transit-time damping – see Part 2 of the text, subsection ‘Coulomb force and mirror
force (Landau damping and transit time damping)’. Nevertheless, fluid models that
contain the gyrotropic heat flux fluctuations, but that do not contain any Landau
damping, can be constructed as well (see CGL2 model later in the text). The FLR
pressure tensor Πr introduces further dispersive effects and therefore also modifies
the collisionless damping rates, as well as the heat flux qr modifies the FLR pressure
corrections Πr. The quantities qr and Πr are therefore generally coupled. Importantly,
the FLR pressure tensor Πr introduces complicated turbulent plasma heating processes,
referred to as stochastic heating. Since these FLR stress forces completely disappear at
the linear level in the above pressure equations, they can be explored only with fully
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nonlinear numerical simulations (Πr still enters at the linear level in the momentum
equation and modifies the dispersion relations).

From a fluid perspective, there are several major difficulties how to correctly model
the quantities Πr and qr. The heat flux tensor qr is described by an infinite hierarchy
of higher-order fluid moments, and one needs to find an appropriate way, how to close
the system. The FLR pressure tensor Πr is described by equations that are implicit,
and the FLR corrections have to be typically expanded on temporal and spatial scales
in order to obtain tractable expressions that can be used for numerical simulations.
This expansion will naturally restrict the area of validity of such fluid models to those
scales considered. For example, for the proton–electron plasma where the spatial and
temporal scales are largely separated because of the mass ratio mp/me= 1836, simple
first-order FLR corrections expanded around the proton scales kρi,ω/Ωp will long lose
their validity at the electron scales. The most complicated Landau fluid models that
use linear kinetic theory to evaluate Π and that contain the Bessel functions (Passot &
Sulem 2007; Passot et al. 2012; Sulem & Passot 2015), have technically no restriction
for wavenumbers k⊥ρi, but the first-order frequency restriction is there nevertheless.

2.7. Conservation of energy
The equations (2.100)–(2.101), that correctly split the entire plasma heating into
parallel and perpendicular heating, are indeed quite complicated. To gain further
insight, let us briefly consider a case in which we are not interested in parallel
and perpendicular heating (whose net effect can possibly be zero), and we are only
interested in the heating of the entire system. Such formulations are sometimes used
to interpret plasma heating in fully kinetic simulations (Yang et al. 2017a,b). By
summing together the pressure equations (2.91), (2.92), we are interested in the
evolution equation ∂(p‖+ 2p⊥)/∂t, or in another words, we are interested in ∂Tr p/∂t.
Summing the equations together (actually the trace of the entire pressure tensor
equation was calculated a few pages back, that is how the p⊥ equation was derived)
yields

∂

∂t
(p‖r + 2p⊥r)+∇ · ((p‖r + 2p⊥r)ur)+∇ · (Tr qr)+ 2((pg

r +Πr︸ ︷︷ ︸
=pr

) · ∇) · ur = 0. (2.102)

Note that Tr∇ · qr = ∇ · (Tr qr), and also TrΠr = 0. By integrating over the entire
spatial volume of the plasma, one can define the internal energy (or thermal energy)
for each particle species as

Eint
r =

1
2

∫
Tr pr d3x=

1
2

∫
(p‖r + 2p⊥r) d3x≡

1
2
〈p‖r + 2p⊥r〉. (2.103)

By considering a special case of periodic boundary conditions, i.e. typical numerical
simulations of turbulence in a periodic box, one can use the Gauss–Ostrogradsky
theorem (2.9), now in a spatial domain, and for periodic boundary conditions all
divergence operators in (2.102) vanish, yielding

∂

∂t
Eint

r =−〈(( pg
r +Πr) · ∇) · ur〉. (2.104)

Equations (2.102), (2.104) are equivalent to (4) and (7) of Yang et al. (2017b). Here
the equations are just written in such a way that one can explicitly see the pressure
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components p‖, p⊥,Π, but the equations are equivalent. Following Yang et al. (2017b),
one can also easily derive the evolution equations for the ‘kinetic’ energy and the
electromagnetic energy

Ekin
r =

1
2
〈ρr|ur|

2
〉; Emag

=
1

8π
〈(|B|2 + |E|2)〉. (2.105)

For the kinetic energy, by first applying ur· to the momentum equation (2.90)

ur ·

(
ρr
∂ur

∂t
+ ρrur · ∇ur

)
=−ur · (∇ · pr)+ qrnrur︸ ︷︷ ︸

=jr

·E, (2.106)

which further implies

1
2
∂

∂t
(ρ|u|2) =

1
2

(
∂ρ

∂t
|u|2 + ρ

∂|u|2

∂t

)
=−

1
2
∇ · (ρu)|u|2 + ρu ·

∂u
∂t

= −
1
2
∇ · (ρu|u|2)+ u ·

(
ρ
∂u
∂t
+ ρu · ∇u

)
= −

1
2
∇ · (ρrur|ur|

2)−∇ · ( prur)+ ( pr · ∇) · ur + jr ·E, (2.107)

and for the electromagnetic energy

1
8π

∂

∂t
(|B|2 + |E|2) =

1
4π

∂

∂t

(
B ·

∂B
∂t
+E ·

∂E
∂t

)
= −

c
4π
(B · (∇×E)−E · (∇×B))− j ·E

= −
c

4π
∇ · (E×B)− j ·E. (2.108)

Therefore, by integrating over the entire volume and assuming periodic boundary
conditions, the total conservation of energy can be expressed as (Yang et al. 2017b)

∂

∂t
Eint

r = −〈( pr · ∇) · ur〉; (2.109)

∂

∂t
Ekin

r = +〈( pr · ∇) · ur〉 + 〈 jr ·E〉; (2.110)

∂

∂t
Emag

= −〈 j ·E〉, (2.111)

which beautifully clarifies how the energy can be transferred. Nevertheless, we point
out that it is exactly the splitting into the parallel and perpendicular heating that is so
complicated, since even with periodic boundary conditions, only a few terms in the
pressure equations (2.91), (2.92) vanish. Considering anisotropic heating, and splitting
the internal (thermal) energy into parallel and perpendicular parts

Eint
r = Eint

‖r + Eint
⊥r; Eint

‖r =
1
2 〈p‖r〉; Eint

⊥r = 〈p⊥r〉, (2.112)
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the conservation of total energy can be expressed as

∂

∂t
Eint
‖r = −〈p‖rb̂ · ∇ur · b̂〉 −

1
2
〈b̂ · (∇ · qr) · b̂〉

+

〈 b̂
|B|
·Πr ·

drB
dt

〉
− 〈b̂ · (Πr · ∇ur) · b̂〉; (2.113)

∂

∂t
Eint
⊥r = −〈p⊥r∇ · ur〉 + 〈p⊥rb̂ · ∇ur · b̂〉 +

1
2
〈b̂ · (∇ · qr) · b̂〉

−

〈 b̂
|B|
·Πr ·

drB
dt

〉
+ 〈b̂ · (Πr · ∇ur) · b̂〉 − 〈(Πr · ∇) · ur〉; (2.114)

∂

∂t
Ekin

r = +〈( pr · ∇) · ur〉 + 〈 jr ·E〉; (2.115)

∂

∂t
Emag

= −〈 j ·E〉, (2.116)

where

〈( pr ·∇) ·ur〉=〈p‖rb̂ ·∇ur · b̂〉−〈p⊥rb̂ ·∇ur · b̂〉+〈p⊥r∇ ·ur〉+〈(Πr ·∇) ·ur〉. (2.117)

The anisotropic plasma heating is obviously a very complicated process.

3. CGL description
The CGL model is the simplest possible fluid model that incorporates anisotropic

temperatures. In contrast to MHD, CGL contains two pressure equations. For very
good MHD reviews, from the perspective of turbulence in the solar wind, and the
use of MHD in modelling heliospheric and astrophysical plasmas, we recommend the
reviews by Goldstein, Roberts & Matthaeus (1995), Tu & Marsch (1995), Zank (1999),
Zhou, Matthaeus & Dmitruk (2004) and Bruno & Carbone (2013). The CGL model is
obtained by using the parallel and perpendicular pressure equations (2.74), (2.75) and
prescribing zero heat flux q‖ = q⊥ = 0, qng

= 0, and by neglecting the FLR pressure
tensor Π = 0. The pressure equations greatly simplify to the form

∂p‖
∂t
+∇ · (p‖u)+ 2p‖b̂ · ∇u · b̂= 0; (3.1)

∂p⊥
∂t
+∇ · (p⊥u)+ p⊥∇ · u− p⊥b̂ · ∇u · b̂= 0. (3.2)

By using the notation for the convective derivative d/dt = ∂/∂t + u · ∇, the pressure
equations can be rewritten as

dp‖
dt
+ p‖∇ · u+ 2p‖b̂ · ∇u · b̂= 0; (3.3)

dp⊥
dt
+ 2p⊥∇ · u− p⊥b̂ · ∇u · b̂= 0. (3.4)

Note that the CGL pressure equations are fully nonlinear and that the nonlinearities
are actually of fourth order, i.e. CGL pressure equations are more nonlinear than the
usual MHD pressure equation dp/dt + γ p∇ · u = 0, where the nonlinearity is only
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of second order. At first sight, expressions b̂ · ∇u · b̂ might appear to be a little
unusual when written without any brackets. From MHD, one is familiar with nonlinear
expressions of the type u ·∇u, which are also usually written without any brackets and
can be interpreted in two equivalent forms, either as (u · ∇)u (a scalar u · ∇ applied
on a vector u; or u · (∇u) (a vector u multiplied by a matrix ∇u). In a similar fashion,
the expression b̂ · ∇u · b̂ is meant to be interpreted as (b̂ · ∇u) · b̂ or b̂ · (∇u) · b̂; but
importantly, it is not meant to be interpreted as b̂ · ∇(u · b̂), because the derivative is
meant to act only on u in this case. For direct numerical simulations, the fourth-order
nonlinearity explicitly reads

b̂ · ∇u · b̂ = b̂i(∇u)ijb̂j = b̂ib̂j∂iuj = b̂x(b̂x∂xux + b̂y∂xuy + b̂z∂xuz)

+ b̂y(b̂x∂yux + b̂y∂yuy + b̂z∂yuz)+ b̂z(b̂x∂zux + b̂y∂zuy + b̂z∂zuz), (3.5)

and is of course a scalar. So far, we have not made any assumptions about particle
species, and have only integrated the Vlasov equation and derived the density,
momentum and scalar pressure equations, which can be done for each species
separately. By re-introducing the species index r, where r = p for protons, r = e for
electrons etc., the n-fluid CGL-type equations become

∂ρr

∂t
+∇ · (ρrur)= 0; (3.6)

∂ur

∂t
+ ur · ∇ur +

1
ρr
∇ · pr −

qr

mr

(
E+

1
c

ur ×B
)
= 0; (3.7)

∂p‖r
∂t
+∇ · (urp‖r)+ 2p‖rb̂ · ∇ur · b̂= 0; (3.8)

∂p⊥r

∂t
+∇ · (urp⊥r)+ p⊥r∇ · ur − p⊥rb̂ · ∇ur · b̂= 0. (3.9)

The above CGL pressure equations are valid regardless of the form of the induction
equation ∂B/∂t and are therefore very general and valid for a wide range of CGL-type
n-fluid models. It is advisable to keep them in this form when considering direct
numerical simulations or solving linear dispersion relations. The above equations are
accompanied by Maxwell’s equations. Specifically, (i) Gauss’s law ∇ ·E=4πρc where
the total charge density ρc=

∑
r qrnr, (ii) ∇ ·B= 0, (iii) Faraday’s induction equation

∇ × E = −(1/c)(∂B/∂t) and (iv) Ampère’s law ∇ × B = (4π/c) j + (1/c)(∂E/∂t),
where the total current j=

∑
r qrnrur. In many areas of space physics and astrophysics

it is often very useful to eliminate very high frequency effects occurring at frequencies
higher than the plasma frequency. This is achieved by prescribing local charge
neutrality (so called quasi-neutrality since the plasma is still ionized) by ρc = 0 and
by neglecting the second term in Ampère’s law (1/c)(∂E/∂t) known as Maxwell’s
displacement current (or Maxwell’s correction to Ampère’s law). This eliminates
high-frequency effects such as for example plasma oscillations, known as Langmuir
waves. This assumption is also equivalent to assuming that the Alfvén speed is much
less than the speed of light VA/c� 1. It is important to emphasize that Gauss’s law
∇ ·E= 4πρc is replaced by the quasi-neutrality condition ρc = 0 and no requirement
is imposed on ∇ · E (other than that it is small). For further discussion concerning
the charge neutrality and ∇ · E, see for example Braginskii (1965) page 264, Webb
et al. (2007) equation (7) and Passot & Sulem (2007) equation (A 1). Maxwell’s
equations in this approximation simplify to

∇ ·B= 0; (3.10)
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∂B
∂t
=−c∇×E; (3.11)

j=
∑

r

qrnrur =
c

4π
∇×B, (3.12)

and this form of Maxwell’s equations is considered in most of the fluid models that
we discuss, regardless of future complexities arising from FLR corrections, heat flux,
Landau damping and so on. The exception is the section in Part 2 ‘Electron Landau
damping of the Langmuir mode’, where the displacement current has to be retained.
Here, we further focus only on a plasma consisting of protons and electrons, with
charges qp= e and qe=−e, but models with more species can of course be considered.
Charge neutrality implies that the proton and electron number densities are equal, i.e.
np = ne = n. By using the definition of current j= enup − enue, the electron velocities
are related to the proton velocities by

ue = up −
1
en

j, (3.13)

which after using (3.12) yields

ue = up −
1
en

c
4π
∇×B. (3.14)

By using the momentum equation (3.7) for electrons, the electric field can be
expressed as

E=−
1
c

ue ×B−
1
en
∇ · pe −

me

e

(
∂ue

∂t
+ ue · ∇ue

)
. (3.15)

The last term represents the effects of electron inertia and is for example responsible
for the effect that at small spatial scales the frequency ω of the parallel whistler
mode converges to the electron cyclotron frequency Ωe instead of increasing to infinity.
When considering only relatively low frequencies, it is very useful to neglect the
electron inertia term.2 This yields somewhat simpler analytic expressions, but most
importantly, it provides a great benefit for direct numerical simulations since the time
step is not restricted by the requirement to fully resolve the electron motion. This of
course restricts the validity of a model to frequencies that are sufficiently smaller than
the electron cyclotron frequency. By neglecting the electron inertia and using (3.14),
the electric field can be expressed as

E=−
1
c

up ×B+
1

4πen
(∇×B)×B−

1
en
∇ · pe. (3.17)

2The magnitude of terms on the right-hand side of (3.15) can be easily compared to the advection term
by estimating ∣∣∣∣ 1

en
∇ · pe

∣∣∣∣∣∣∣∣1c ue ×B
∣∣∣∣ ∼

ρe
l
vthe
ue
;

∣∣∣∣me
e

due
dt

∣∣∣∣∣∣∣∣1c ue ×B
∣∣∣∣ ∼

1
Ωeτ

, (3.16)

where l, τ are the characteristic length scale and time scale, ρe the electron gyroradius and vthe the electron
thermal velocity.
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Using this expression in the proton momentum equation and in the induction equation
eliminates the electric field from the entire system. The system of equations therefore
reads

∂ρp

∂t
+∇ · (ρpup)= 0; (3.18)

∂up

∂t
+ up · ∇up +

1
ρp
∇ · (pp + pe)−

1
4πρp

(∇×B)×B= 0; (3.19)

∂B
∂t
=∇× (up ×B)−

c
4πe
∇×

[
1
n
(∇×B)×B

]
+

c
e
∇×

[
1
n
∇ · pe

]
, (3.20)

and is accompanied by the parallel and perpendicular pressure equations (3.8), (3.9)
for the proton and electron species. In the induction equation (3.20), the first term
is the familiar term from the MHD induction equation and considering only this first
term yields the classical CGL model (where in addition the electrons are prescribed
to be cold to eliminate pe from the momentum equation). The second term in the
induction equation represents the Hall term, and fluid models containing this term are
generally referred to as Hall-CGL fluid models. The third term represents the electron
pressure contributions and in CGL plasmas the term is in general non-zero, since

∇ · pe = (p‖e − p⊥e)(b̂ · ∇b̂+ b̂∇ · b̂)+ b̂b̂ · ∇(p‖e − p⊥e)+∇p⊥e. (3.21)

In contrast, by prescribing the electrons to be isotropic and isothermal (a typical
assumption used in hybrid simulations) with pressure pe = peI , pe = nT (0)e , so
that ∇ · pe = ∇pe = T (0)e ∇n, eliminates the pressure term since ∇ × [(1/n)∇n] =
∇ × [∇ ln(n)] = 0. By prescribing the electrons to be isotropic but not isothermal,
with pressure pe = peI , the term initially does not disappear and it is equal to

c
e
∇×

[
1
n
∇ · pe

]
=−

c
en2

(∇n)× (∇pe). (3.22)

The term only disappears after the equation of state is prescribed, for example for
pe ∼ nγ . The term (3.22) is sometimes called the ‘battery’ term (Biermann 1950;
Kulsrud et al. 1997; Khomenko et al. 2017), since it is argued that for any deviations
from an ideal equation of state (caused for example by shocks), the term can produce
magnetic field fluctuations even if there is no magnetic field initially.

3.1. Normalized equations and definitions
As with MHD and Hall-MHD, it is often useful to work with normalized equations.
The density, velocity, magnetic field and pressure are normalized with respect to
ρ0, u0, B0, p(0)‖ . The length is normalized with respect to (for now) arbitrary x0 and
the time with respect to t0 = x0/u0. The normalized quantities are then

ρ̃ =
ρ

ρ0
; ũ=

u
u0
; B̃=

B
B0
; p̃‖ =

p‖
p(0)‖
; p̃⊥ =

p⊥
p(0)‖
; (3.23)

x̃=
x
x0
; ∇̃=∇x0; t̃= t

u0

x0
;

∂

∂ t̃
=
∂

∂t
x0

u0
. (3.24)
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Obviously ñ= ρ̃. After dropping the tilde, the normalization yields the same density
and pressure equations, whereas the normalized momentum and induction equation
become

∂up

∂t
+ up · ∇up +

p(0)‖
ρ0u2

0

1
ρp
∇ · (pp + pe)−

V2
A

u2
0

1
ρp
(∇×B)×B= 0; (3.25)

∂B
∂t
=∇× (u×B)−

V2
A

Ωpu0x0
∇×

[
1
n
(∇×B)×B

]
+

p(0)‖
Ωpρ0u0x0

∇×

[
1
n
∇ · pe

]
, (3.26)

where the Alfvén speed VA = B0/
√

4πρ0. The momentum equation implies that it is
beneficial to choose the (so far unspecified) normalizing velocity u0 to be the Alfvén
speed u0 = VA. If the second and third terms are neglected in the induction equation
(i.e. when the usual MHD induction equation is used), the CGL system is independent
of length scale x0, similarly to the MHD system. If the Hall term is considered, it is
beneficial to choose the (so far unspecified) normalizing length scale x0 to be the ion
inertial length

di =
VA

Ωp
. (3.27)

Therefore by choosing x0 = di, the normalizations that we use in all fluid models in
this paper read

ũ=
u
VA
; x̃=

x
di
; t̃= t

VA

di
= tΩp. (3.28)

The normalization also has the advantage that, when transferred to Fourier space, one
obtains the dispersion relations for normalized wavenumber k̃ and frequency ω̃ as

k̃=
kVA

Ωp
, ω̃=

ω

Ωp
. (3.29)

It is useful to define the parallel and perpendicular thermal speeds

vth‖ =

√
2T (0)‖
mp
; vth⊥ =

√
2T (0)⊥
mp

, (3.30)

and the definition of parallel and perpendicular temperatures are T‖ = p‖/n and T⊥ =
p⊥/n. We use the usual convention with the Boltzmann constant kB= 1.3 The parallel
and perpendicular plasma beta are defined according to

β‖ =
v2

th‖

V2
A
=

2p(0)‖
ρ0V2

A
=

p(0)‖
B2

0/(8π)
; β⊥ =

v2
th⊥

V2
A
=

2p(0)⊥
ρ0V2

A
=

p(0)⊥
B2

0/(8π)
= β‖

T (0)⊥
T (0)‖

, (3.31)

and later we will often use the abbreviation ap for the proton temperature anisotropy
ratio

ap =
T (0)⊥
T (0)‖
=

p(0)⊥
p(0)‖

. (3.32)

3Without this convention the temperature is defined as T‖⊥ = p‖⊥/(nkB) and the thermal speeds vth‖⊥ =√
2kBT(0)

‖⊥
/mp, so the plasma β‖, β⊥ expressions are the same as above.

https://doi.org/10.1017/S0022377819000801 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000801


Collisionless fluid models. Part 1 33

The normalized momentum and induction equations therefore read (tilde are dropped)

∂up

∂t
+ up · ∇up +

β‖

2
1
ρp
∇ · (pp + pe)−

1
ρp
(∇×B)×B= 0; (3.33)

∂B
∂t
=∇× (u×B)−∇×

[
1
n
(∇×B)×B

]
+
β‖

2
∇×

[
1
n
∇ · pe

]
. (3.34)

Another useful quantity that we will use later in the text is the proton Larmor radius
(the gyroradius) ρi, defined according to

ρi =
vth⊥

Ωp
. (3.35)

We note that normalizations do not have to be done with respect to mean values, and
normalizations with respect to fluctuating (turbulent) quantities are used for example
in the nearly incompressible models of Zank et al. (2017) and Zank & Matthaeus
(1993).

3.2. Classical CGL model with cold electrons
Here we want to consider the simplest possible CGL model for the proton species. We
assume the electrons to be massless and cold (pe = 0), and we also neglect the Hall
term in the induction equation. Since only proton species are present, for simplicity
we can drop the proton index ‘p’. Let us work in physical units for a moment. The
classical CGL model with cold electrons therefore reads (written in physical units)

∂ρ

∂t
+∇ · (ρu)= 0; (3.36)

∂u
∂t
+ u · ∇u+

1
ρ
∇ · p−

1
4πρ

(∇×B)×B= 0; (3.37)

∂p‖
∂t
+∇ · (p‖u)+ 2p‖b̂ · ∇u · b̂= 0; (3.38)

∂p⊥
∂t
+∇ · (p⊥u)+ p⊥∇ · u− p⊥b̂ · ∇u · b̂= 0; (3.39)

∂B
∂t
=∇× (u×B). (3.40)

Similarly to the usual MHD model, the CGL equations are scale invariant and do not
contain any information about the physical length scale. A length scale is introduced
by considering the Hall term in the induction equation, and we discuss the Hall-CGL
model in the next section. Also, the absence of the Hall term allows the CGL pressure
equations to be rewritten into ‘conservative’ form as

d
dt

(
p‖|B|2

ρ3

)
= 0;

d
dt

(
p⊥
ρ|B|

)
= 0, (3.41)

where d/dt is the convective derivative. This formulation is the most often cited form
of the CGL pressure equations (often the |B| is abbreviated only as B, which can
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lead to confusion on how to correctly calculate the derivatives). We want to show the
equivalence of (3.41) and (3.38), (3.39). We need the following identity,

∂

∂t
|B| =

∂

∂t
(B2

x + B2
y + B2

z )
1/2
=

1
|B|

B ·
∂B
∂t
= b̂ ·

∂B
∂t
, (3.42)

and the result is of course a scalar. Similarly for the spatial and convective derivative

∂i|B| = b̂ · (∂iB);
d
dt
|B| =

(
∂

∂t
+ ui∂i

)
|B| = b̂ ·

dB
dt
. (3.43)

Later we will need

d
dt
|B|2 =

d
dt
(B2

x + B2
y + B2

z )= 2B ·
dB
dt
. (3.44)

Now we can directly calculate

d
dt

(
p⊥
ρ|B|

)
=

1
ρ|B|

dp⊥
dt
−

p⊥
|B|ρ2

dρ
dt
−

p⊥
ρ|B|2

d|B|
dt

=
1
ρ|B|

(
dp⊥
dt
−

p⊥
ρ

dρ
dt
−

p⊥
|B|

d|B|
dt

)
, (3.45)

and, by using the density equation dρ/dt=−ρ∇ ·u and the identity (3.43), we obtain

d
dt

(
p⊥
ρ|B|

)
=

1
ρ|B|

(
dp⊥
dt
+ p⊥∇ · u−

p⊥
|B|

b̂ ·
dB
dt

)
. (3.46)

The above equation is completely general since we did not use the induction equation
so far and we will use this equation in the next section when we consider the Hall-
CGL model. In a similar way one derives a completely general identity

d
dt

(
p‖|B|2

ρ3

)
=
|B|2

ρ3

(
dp‖
dt
+

p‖
|B|2

d|B|2

dt
− 3

p‖
ρ

dρ
dt

)
=
|B|2

ρ3

(
dp‖
dt
+ 3p‖∇ · u+

2p‖
|B|

b̂ ·
dB
dt

)
. (3.47)

Now, we use the induction equation

∂B
∂t
=∇× (u×B)= u∇ ·B︸ ︷︷ ︸

=0

−B∇ · u+B · ∇u− u · ∇B, (3.48)

that allows us to calculate

dB
dt
=
∂B
∂t
+ u · ∇B=−B∇ · u+B · ∇u; (3.49)

b̂
|B|
·

dB
dt
=−∇ · u+ b̂ · ∇u · b̂, (3.50)

and which, when used in (3.47)–(3.46) yields the final result

d
dt

(
p‖|B|2

ρ3

)
=
|B|2

ρ3

(
dp‖
dt
+ p‖∇ · u+ 2p‖b̂ · ∇u · b̂

)
= 0; (3.51)
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d
dt

(
p⊥
ρ|B|

)
=

1
ρ|B|

(
dp⊥
dt
+ 2p⊥∇ · u− p⊥b̂ · ∇u · b̂

)
= 0. (3.52)

Equations (3.51)–(3.52) verify that the CGL pressure equations (3.41) written in
the ‘conservative’ form and the directly derived CGL equations (3.38)–(3.39) are
equivalent. We will see that the right-hand side of the usual CGL equations (3.41) is
non-zero if the Hall term is considered, and that it is further modified by the heat
flux contributions and by the FLR stress forces.

3.3. Linearized CGL equations
To obtain the dispersion relations, the equations need to be linearized and transformed
to Fourier space. Equations (3.36)–(3.40) are linearized with respect to mean values
ρ0; u(0) ≡ 〈u〉 = 0; p(0)‖⊥; B0 = (0, 0, B0); b̂0 = (0, 0, 1) where the magnetic field
B0 is assumed to be in the z-direction. We assume that the mean value of the
velocity is zero (the zero mean velocity value u(0) = 0 should not be confused with
the normalizing velocity as in (3.23), which is later chosen to be VA). The terms
b̂ · ∇u · b̂ are linearized as b̂ · ∇u · b̂ lin

= ∂zuz and the linearized system reads

∂ρ

∂t
+ ρ0∇ · u= 0; (3.53)

∂u
∂t
+

1
ρ0
∇ · p−

1
4πρ0

(∇×B)×B0 = 0; (3.54)

∂p‖
∂t
+ p(0)‖ ∇ · u+ 2p(0)‖ ∂zuz = 0; (3.55)

∂p⊥
∂t
+ 2p(0)⊥ ∇ · u− p(0)⊥ ∂zuz = 0; (3.56)

∂B
∂t
=∇× (u×B0). (3.57)

The divergence of the pressure tensor is

(∇ · p)i = ∂jpji = b̂ib̂j∂jp‖ + (δij − b̂ib̂j)∂jp⊥ + (p‖ − p⊥)(b̂i∂jb̂j + b̂j∂jb̂i), (3.58)

and the first step of linearization yields, by components,

(∇ · p)x
lin
= ∂xp⊥ + (p

(0)
‖ − p(0)⊥ )∂zb̂x; (3.59)

(∇ · p)y
lin
= ∂yp⊥ + (p

(0)
‖ − p(0)⊥ )∂zb̂y; (3.60)

(∇ · p)z
lin
= ∂zp‖ + (p

(0)
‖ − p(0)⊥ )(∇ · b̂+ ∂zb̂z), (3.61)

which can be conveniently written in matrix notation as

∇ · p lin
=∇ ·

p⊥ 0 0
0 p⊥ 0
0 0 p‖

+ (p(0)‖ − p(0)⊥ )∇ ·

 0 0 b̂x

0 0 b̂y

b̂x b̂y 2b̂z


∣∣∣∣∣∣∣

lin

. (3.62)

Notice that, since ∂i|B| = b̂ · (∂iB), the derivatives of unit vectors are calculated
according to

∂ib̂= ∂i
B
|B|
=

1
|B|

[
∂iB−

B
|B|
∂i|B|

]
=

1
|B|
[∂iB− b̂(b̂ · (∂iB))], (3.63)
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and in the linear approximation one has

∂ib̂
lin
=

1
B0
[∂iB− b̂0∂iBz], (3.64)

which by components reads

∂ib̂x
lin
=

1
B0
∂iBx; ∂ib̂y

lin
=

1
B0
∂iBy; ∂ib̂z

lin
=

1
B0
(∂iBz − ∂zBz), (3.65)

where, importantly, ∂zb̂z
lin
= 0. The divergence of the pressure tensor in the liner

approximation is therefore expressed as

∇ · p lin
=∇ ·

p⊥ 0 0
0 p⊥ 0
0 0 p‖

+ 1
B0
(p(0)‖ − p(0)⊥ )∇ ·

 0 0 Bx
0 0 By
Bx By 0

 , (3.66)

where the second term contributes if the temperature anisotropy is present, i.e. when
p(0)‖ 6= p(0)⊥ . The vectors (∇×B)×B0 and ∇× (u×B0) are straightforward to calculate
and are

(∇×B)×B0 = B0

−∂xBz + ∂zBx

−∂yBz + ∂zBy

0

 ; ∇× (u×B0)= B0

 ∂zux

∂zuy

−∂xux − ∂yuy

 . (3.67)

The entire set of linearized CGL equations reads

∂ρ

∂t
+ ρ0∇ · u= 0; (3.68)

∂ux

∂t
+

1
ρ0
∂xp⊥ +

1
B0ρ0

(p(0)‖ − p(0)⊥ )∂zBx −
B0

4πρ0
(−∂xBz + ∂zBx)= 0; (3.69)

∂uy

∂t
+

1
ρ0
∂yp⊥ +

1
B0ρ0

(p(0)‖ − p(0)⊥ )∂zBy −
B0

4πρ0
(−∂yBz + ∂zBy)= 0; (3.70)

∂uz

∂t
+

1
ρ0
∂zp‖ +

1
B0ρ0

(p(0)‖ − p(0)⊥ )(∂xBx + ∂yBy)= 0; (3.71)

∂Bx

∂t
= B0∂zux;

∂By

∂t
= B0∂zuy;

∂Bz

∂t
=−B0∂xux − B0∂yuy; (3.72)

∂p‖
∂t
+ p(0)‖ (∂xux + ∂yuy)+ 3p(0)‖ ∂zuz = 0; (3.73)

∂p⊥
∂t
+ 2p(0)⊥ (∂xux + ∂yuy)+ p(0)⊥ ∂zuz = 0. (3.74)

Additionally, the 3 components of the induction equation are not independent, but
satisfy the ∇ ·B= 0 constraint. In order to find the linear dispersion relations, without
any loss of generality, we consider wave propagation in the x–z plane and assume
that there is no variation with respect to the y-coordinate (i.e. one assumes that all
expressions containing ∂y are zero; alternatively, one can consider propagation in
the y–z plane, where all expressions containing ∂x would be zero). By exploring the
above system, it is noteworthy that the density equation does not play any role in
determining the dispersion relation, since no other equation contains the variable ρ.
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3.4. Alfvén mode
On considering (3.68)–(3.74) written in the x–z plane with ∂y = 0, it is apparent that
the equations for uy and By decouple from the entire system and applying ∂/∂t to the
equation for uy yields

∂2uy

∂t2
−

1
ρ0

(
B2

0

4π
− p(0)‖ + p(0)⊥

)
∂2

z uy = 0, (3.75)

which is a wave equation describing the propagation of (generally oblique) Alfvén
waves in the CGL description. The same wave equation can be obtained for the
component By. For isotropic mean pressures p(0)‖ = p(0)⊥ the equation is equivalent to
the MHD description with the usual Alfvén speed VA = B0/(4πρ0)

1/2. Since

β‖

2
=

p(0)‖
ρ0V2

A
; ap

β‖

2
=

p(0)⊥
ρ0V2

A
, (3.76)

where ap is the temperature ratio (3.32), the Alfvén wave equation can be rewritten
as

∂2uy

∂t2
− V2

A

[
1+

β‖

2
(ap − 1)

]
∂2

z uy = 0. (3.77)

Considering a wave propagating obliquely in the x–z plane with the wavevector k=
(k⊥, 0, k‖) at an angle θ with respect to the z-direction (the B0 direction), the parallel
and perpendicular wavenumbers are defined as

k‖ = k cos θ; k⊥ = k sin θ, (3.78)

and the transformation to Fourier space is performed according to (see appendix A)

∂

∂t
→−iω; ∂z→ ik‖; ∂x→ ik⊥. (3.79)

The wave equation (3.77) is then

ω2uy − V2
A

[
1+

β‖

2
(ap − 1)

]
k2 cos2 θuy = 0, (3.80)

which yields the dispersion relation for the Alfvén waves

ω=±k cos θVA

√
1+ 1

2β‖(ap − 1)=±k‖VA

√
1+ 1

2β‖(ap − 1). (3.81)

It is important to emphasize that, similarly to MHD, the Alfvén mode propagates in
all the oblique directions, with a frequency ω that is proportional to the projection
of the wavenumber k in the direction of B0, i.e. k‖ = k cos θ . If the expression
under the square root in (3.81) becomes negative, i.e. if 1 + β‖(ap − 1)/2 < 0, the
frequency ω is imaginary and the Alfvén mode becomes unstable. This instability,
that affects the obliquely propagating Alfvén mode, is known as the oblique firehose
instability. The necessary (but not sufficient) condition for the instability to develop
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is ap= T (0)⊥ /T
(0)
‖ < 1. The firehose instability criterion can be rewritten in many forms,

the most common being

1−
β‖

2
+

1
2
β‖ap < 0;

T (0)⊥
T (0)‖
+

2
β‖
− 1< 0; β‖ − β⊥ > 2; p(0)‖ − p(0)⊥ >

B2
0

4π
. (3.82)

The first expression directly implies that, if β‖ 6 2, no firehose instability can exist.
The firehose instability therefore exists only for a relatively high plasma beta β‖ > 2
and only if the parallel temperature is higher than the perpendicular temperature.
Importantly, the firehose instability criterion in the CGL model is equivalent to the
one found from linear kinetic theory in the long-wavelength limit (for example,
Rosenbluth (1956), Chandrasekhar, Kaufman & Watson (1958), Parker (1958a) and
Vedenov & Sagdeev (1958)). Alfvén wave propagation only affects components
uy and By which are decoupled from the rest of the system, and yields the other
(eigenvector) components ux, uz, Bx, Bz as zero. The uy component does not enter the
density equation and Alfvén mode fluctuations therefore do not produce any density
fluctuations or pressure fluctuations. The Alfvén mode is therefore incompressible. It
is also useful to define the magnetic compressibility χb(k‖, k⊥) in Fourier space, that
measures the relative ratio of magnetic energy in the parallel component versus the
total magnetic energy

χb(k‖, k⊥)=
|Bz|

2

|Bx|
2 + |By|

2 + |Bz|
2
. (3.83)

Since the Alfvén mode produces only By fluctuations, with Bx = Bz= 0, the magnetic
compressibility for this mode is

χb(k‖, k⊥)= 0, (3.84)

for all the propagation directions. Sometimes the magnetic compressibility is defined
as a ratio of parallel and perpendicular energies |Bz|

2/(|Bx|
2
+ |By|

2), this quantity
however has a slight disadvantage in that the values can become very large (and
actually equal to infinity), which makes plotting of this quantity problematic. In
contrast, the magnetic compressibility as defined in (3.83), has a nicely bounded
range of values between 0 and 1. A similar quantity is defined for the ratio of the
energy in velocity fluctuations

χu(k‖, k⊥)=
|uz|

2

|ux|
2 + |uy|

2 + |uz|
2
, (3.85)

and the Alfvén mode has χu = 0 for all propagation directions, since only the
perpendicular velocity component uy is non-zero.

3.5. Slow and fast modes
By applying ∂/∂t to the equations for ∂ux/∂t and ∂uz/∂t and using the evolution
equations for Bx, Bz, p‖, p⊥ one obtains

∂2ux

∂t2
−

p(0)⊥
ρ0
(2∂2

x ux + ∂x∂zuz)+

(
p(0)‖
ρ0
−

p(0)⊥
ρ0
− V2

A

)
∂2

z ux − V2
A∂

2
x ux = 0; (3.86)
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∂2uz

∂t2
−

3p(0)‖
ρ0

∂2
z uz −

p(0)⊥
ρ0
∂x∂zux = 0. (3.87)

The easiest way to solve this coupled system is to transform to Fourier space, which
yields

ω2
−

(
2p(0)⊥
ρ0
+ V2

A

)
k2
⊥
+

(
p(0)‖
ρ0
−

p(0)⊥
ρ0
− V2

A

)
k2
‖
; −

p(0)⊥
ρ0

k⊥k‖

−
p(0)⊥
ρ0

k⊥k‖; ω2
−

3p(0)‖
ρ0

k2
‖


(

ux
uz

)
=

(
0
0

)
.

(3.88)

The system has non-trivial solutions only if the determinant of the matrix is zero,
yielding the CGL dispersion relation at fourth order in frequency ω that contains the
slow and fast modes

ω4
−ω2

[(
2p(0)⊥
ρ0
+ V2

A

)
k2
⊥
+

(
2p(0)‖
ρ0
+

p(0)⊥
ρ0
+ V2

A

)
k2
‖

]

+ 3k2
‖

p(0)‖
ρ0

[(
2p(0)⊥
ρ0
−

p(0)⊥
2

3p(0)‖ ρ0
+ V2

A

)
k2
⊥
−

(
p(0)‖
ρ0
−

p(0)⊥
ρ0
− V2

A

)
k2
‖

]
= 0. (3.89)

One can proceed in several ways with the above dispersion relation.
In the specific cases of strictly parallel (k⊥ = 0) and strictly perpendicular (k‖ = 0)

propagation directions it is actually easier to work directly with the system (3.88),
because the off-diagonal components in the matrix are zero and the dynamics in the
ux and uz components decouples. For strictly parallel propagation, one solution is in
the ux component, with the dispersion relation identical to the Alfvén wave (3.81).
Since the magnetic and velocity fluctuations are only in the ux, bx components,
the compressibility χb = 0 and χu = 0 for this mode. The second solution for
parallel propagation is in the uz component, and it is called the sound mode, or the

ion-acoustic mode, with dispersion relation ω =±k‖
√

3p(0)‖ /ρ0 =±k‖VA
√

3β‖/2. The
parallel ion-acoustic mode has χu = 1 and χb = 0. Considering strictly perpendicular
propagation, the waves in the uz component vanish with the solution ω = 0. The
waves in the ux component are fast magnetosonic waves with dispersion relation

ω = ±k⊥
√

V2
A + 2p(0)⊥ /ρ0 = ±k⊥VA

√
1+ apβ‖, and χu = 0 and χb = 1. It is also

possible to define the parallel and perpendicular sound speeds C‖ =
√

3p(0)‖ /ρ0;

C⊥ =
√

2p(0)⊥ /ρ0, which yields the parallel acoustic mode dispersion ω = ±k‖C‖ and

the perpendicular fast mode dispersion ω=±k⊥
√

V2
A +C2

⊥.4

4Sometimes the parallel and perpendicular sounds speeds are defined as C‖ =
√

p(0)
‖
/ρ0; C⊥ =

√
p(0)
⊥
/ρ0,

which yields the parallel acoustic mode dispersion ω=±k‖
√

3C‖ and the perpendicular fast mode dispersion

ω=±k⊥
√

V2
A + 2C2

⊥
.
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In the general case of oblique propagation, we choose to use the normalized
frequencies and wavenumbers (3.29), and rewrite the dispersion relation as

ω̃4
− A2ω̃

2
+ A0 = 0;

A2 = k̃2
⊥
(1+ apβ‖)+ k̃2

‖

(
1+ β‖ + 1

2 apβ‖
)
;

A0 =
3
2 k̃2
‖
β‖

[
k̃2
‖

(
1− 1

2β‖ +
1
2 apβ‖

)
+ k̃2
⊥

(
1+ apβ‖ −

1
6 a2

pβ‖
)]
.

 (3.90)

It is sometimes useful to introduce the parallel Alfvén phase speed vA‖, and its
normalization ṽA‖ ≡ vA‖/VA, so that

vA‖ = VA

√
1+

β‖

2
(ap − 1); ṽ2

A‖ = 1+
β‖

2
(ap − 1), (3.91)

since ṽ2
A‖ can be used to write the CGL dispersion relation in a shorter form, as

done later in (3.193). The solution of the polynomial (3.90) is simply ω̃2
= (A2 ±√

A2
2 − 4A0)/2, and it is obvious that the coefficient A2 is always positive, since both

the plasma beta and the temperature anisotropy ratio must always be positive. It is also
possible to show that the discriminant under the square root A2

2−4A0 >0 (proof shown
a few lines below). The solution with the minus sign is called the slow mode and the
solution with the plus sign is called the fast mode. For the slow mode, ω̃2 becomes
negative (and ω̃ complex) when A0<0, implying that the slow mode becomes unstable
when [

k2
‖

(
1− 1

2β‖ +
1
2 apβ‖

)
+ k2
⊥

(
1+ apβ‖ −

1
6 a2

pβ‖
)]
< 0, (3.92)

where we suppress the tildes on the wavenumbers since the above condition is valid
for both k̃ and k forms of wavenumbers. The above condition implies that there are
two competing instabilities. The highly parallel propagation with k‖ � k⊥ yields an
instability threshold equivalent to (3.82) and the associated instability is called the
parallel firehose instability. The highly oblique propagation with k⊥ � k‖ yields the
mirror instability and the threshold in the CGL description reads5

1+ apβ‖ −
1
6

a2
pβ‖ < 0;

1
6

T (0)⊥
T (0)‖
− 1−

1
β⊥

> 0;
1
6
β2
⊥

β‖
> 1+ β⊥. (3.93)

It is well documented that the mirror instability threshold in the CGL description is
not equivalent to the one found in linear kinetic theory. In particular, the CGL mirror
threshold contains a factor of 6 error (Abraham-Shrauner 1967; Tajiri 1967; Kulsrud
1983; Ferrière & André 2002), since the correct threshold obtained from kinetic theory
reads

1+ apβ‖ − a2
pβ‖ < 0;

T (0)⊥
T (0)‖
− 1−

1
β⊥

> 0;
β2
⊥

β‖
> 1+ β⊥. (3.94)

The threshold (3.93) implies that the necessary condition for the mirror instability
to exist in the CGL description is ap = T (0)⊥ /T

(0)
‖ > 6, whereas in kinetic theory the

necessary condition is ap > 1. A very good discussion about the physical mechanism

5To obtain the mirror instability threshold, it is not possible to consider strictly perpendicular propagation
with k‖ = 0 because the coefficient A0 would be exactly zero. The mirror threshold is revealed only in the
highly oblique limit k⊥� k‖.
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of the mirror instability and the role of resonant particles can be found in Southwood
& Kivelson (1993) and Kivelson & Southwood (1996). The correct mirror instability
threshold is obtained when using the normal closure discussed later on in the text
or, more simply, its quasi-static limit (Constantinescu 2002; Chust & Belmont 2006;
Passot et al. 2006). In the opposite case where ions are cold, a similar electron
temperature anisotropy instability is obtained which is called the field-swelling
instability, see e.g. Basu & Coppi (1984).

Returning to the oblique dispersion relation, we show that indeed A2
2− 4A0 > 0. By

using (3.78) the wavenumber k can be pulled out of the A0, A2 coefficients and the
dispersion relation can be rewritten in terms of a phase speed as

(ω̃/k̃)4 − A2(ω̃/k̃)2 + A0 = 0; (3.95)
A2 = 1+ apβ‖

(
1− 1

2 cos2 θ
)
+ β‖ cos2 θ; (3.96)

A0 =
3
2β‖ cos2 θ

[
1+ apβ‖

(
1− 1

2 cos2 θ
)
−

1
2β‖ cos2 θ − 1

6 a2
pβ‖ sin2 θ

]
, (3.97)

and (after staring for a sufficiently long time) it can be shown that

A2
2 − 4A0 =

[
1+ apβ‖

(
1− 1

2 cos2 θ
)
− 2β‖ cos2 θ

]2
+ a2

pβ
2
‖

sin2 θ cos2 θ, (3.98)

which is obviously always non-negative. The dispersion relation for the slow and fast
waves in the CGL description can be written in the compact form(

ω̃

k̃

)2

sf

=

(
ω

kVA

)2

sf

=
1
2

[
1+ apβ‖

(
1−

1
2

cos2 θ

)
+ β‖ cos2 θ

]

±
1
2

√[
1+ apβ‖

(
1−

1
2

cos2 θ

)
− 2β‖ cos2 θ

]2

+ a2
pβ

2
‖ sin2 θ cos2 θ,

(3.99)

which is equivalent to the dispersion relation of Abraham-Shrauner (1967), equation
(30), here written in the convenient units of β‖ and ap = T (0)⊥ /T

(0)
‖ (for a direct

comparison with the units used in that paper, the relations are β‖ = 2S‖ and
apβ‖ = 2S⊥). The magnetic compressibility of the slow and fast modes can be
calculated easily directly from the induction equations (3.72). The slow and fast modes
generate only components Bx and Bz with the component By = 0. The transformation
of (3.72) to Fourier space yields −ωBx = B0k‖ux, and −ωBz = −B0k⊥ux, and by
applying the magnitude operator yields the magnetic compressibility

χb(k‖, k⊥)=
k2
⊥

k2
‖ + k2

⊥

= sin2 θ. (3.100)

For quasi-parallel propagation angles the magnetic compressibility χb is therefore not
a good indicator for mode recognition, since all three modes have χb close to zero.
The magnetic compressibility is, however, an excellent tool for oblique propagation
angles, because the Alfvén mode has χb = 0 regardless of the propagation direction,
whereas for the slow and fast modes χb increases with θ towards χb=1. We will leave
discussion about the CGL velocity eigenvector (the ratio χu) to a later subsection since
the discussion is a bit technical, and we instead focus now on an interesting effect that
can be directly obtained by considering the CGL dispersion relations.
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FIGURE 1. Analytic ‘hard’ thresholds of the mirror instability (blue) and the firehose
instability (red) at long wavelengths. Solid lines are solutions of the linear kinetic theory
(bi-Maxwellian) and crosses are solutions of the linear CGL model. The firehose instability
is described correctly (both the oblique firehose and the parallel firehose), whereas the
mirror instability contains an asymptotic factor of 6 error for large β‖ values. The black
dashed line is the CGL threshold (3.103), where for all oblique directions the slow mode
speed vs matches the Alfvén mode speed vA, and which separates two regions where
vs < vA and vs > vA. The green dotted curve is a special case for parallel propagation
(3.108) where vs‖ = vA‖. For parallel propagation, the slow mode speed cannot exceed
the Alfvén mode speed, but can only match it, and the green dotted curve separates two
regions where vs‖ < vA‖ and vs‖ = vA‖. For a similar plot in linear scale, see figure 1 of
Abraham-Shrauner (1967).

3.6. Slow mode can become faster than Alfvén mode
There is a very interesting phenomenon present in the CGL description that is
also observed in the kinetic description but that is absent in the MHD description.
For a sufficiently high plasma beta, the slow mode phase speed can be larger
than the Alfvén mode phase speed. To obtain the critical plasma beta when this
happens, one can write the dispersion relation for the Alfvén wave as (ω̃/k̃)2A =
(1 − β‖/2 + apβ‖/2) cos2 θ ≡ AA and using this expression with the dispersion
relation (3.95), the critical condition when the slow mode speed matches the Alfvén
speed is (A2 −

√
A2

2 − 4A0)/2 = AA, and since A2
2 − 4A0 > 0, this further yields

A2
A − A2AA + A0 = 0. It takes quite a few algebraic operations to simplify the result,

the easiest way is to collect terms with different powers of β‖ and then simplify. A
very valuable approach available now is to use mathematical software such as Maple
or Mathematica for guidance, and for example the Maple command simplify(expr,trig)
immediately simplifies the result, which can then be of course verified with pencil
and paper. The result is

A2
A − A2AA + A0 =−sin2 θ cos2 θ

[
1+ β‖

(
3
2 ap − 2

)
+ β2

‖
ap
(

3
4 ap − 2

)]
= 0. (3.101)

The expression is naturally satisfied for cases of strictly parallel and strictly
perpendicular propagation. For θ = π/2, both the slow mode and the Alfvén mode
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have zero frequency. For θ = 0, the slow mode speed can be only smaller or equal
to the speed of the Alfvén mode (never higher), depending on another condition that
will be easier to clarify later when specifically considering the parallel propagation
limit. Now, on which side of the threshold (3.101) does the speed of the slow mode
become faster than the speed of the Alfvén mode? Working with inequalities is a bit
trickier. By assuming that both modes have real frequencies (and are not firehose or
mirror unstable), the condition is derived to be

− sin2 θ cos2 θ
[
1+ β‖

(
3
2 ap − 2

)
+ β2

‖
ap
(

3
4 ap − 2

)]
> 0, (3.102)

which agrees with the result obtained by Abraham-Shrauner (1967), equation (42).
The expression (3.102) reveals that there is a condition that can be satisfied for all
directions of propagation and that reads

1+ β‖
(

3
2 ap − 2

)
+ β2

‖
ap
(

3
4 ap − 2

)
6 0. (3.103)

This is a quadratic equation in β‖ which can be solved easily for a given ap (or solved
for ap for a given β‖). To visualize this equation, the threshold is plotted in figure 1 as
a black dashed line. A particularly useful result is obtained for isotropic temperatures
(ap = 1). In this case the inequality (3.103) becomes 1 − β‖/2 − β2

‖
5/4 6 0 and the

critical plasma beta at which the slow mode speed becomes larger than the Alfvén
mode speed is

βcrit
‖

>

√
21− 1

5
≈ 0.72. (3.104)

Thus, this effect exists in the CGL description even when the temperatures are
isotropic.

3.7. CGL parallel propagation
When numerically solving the CGL dispersion relations for finite (non-zero)
propagation angles, the slow and fast mode expressions always get the correct
ordering with ωs 6 ωf . It is sometimes confusing about how the dispersion relations
hold in the limit of parallel propagation θ → 0 which we will address here. In this
limit, the dispersion relations (3.99) for the slow and fast modes can be directly
evaluated as (

ω̃

k̃

)2

sf

=
1
2

[
1+

1
2

apβ‖ + β‖

]
±

1
2

√[
1+

1
2

apβ‖ − 2β‖

]2

. (3.105)

Now, because
√

a2=|a|, for further calculation one needs to determine the sign of the
expression under the square root. For 1+ 1

2 apβ‖ − 2β‖ > 0, i.e. when β‖ < 2/(4− ap),
the above equations yield

(ω̃/k̃)2s =
3
2
β‖; (ω̃/k̃)2f = 1+

β‖

2
(ap − 1)= (ω̃/k̃)2A, (3.106)

so the slow mode is the sound/acoustic mode and the fast mode coincides with the
Alfvén mode. However, for 1 + 1

2 apβ‖ − 2β‖ < 0, i.e. when β‖ > 2/(4 − ap), the
dispersion relations yield

(ω̃/k̃)2s = 1+
β‖

2
(ap − 1)= (ω̃/k̃)2A; (ω̃/k̃)2f =

3
2
β‖, (3.107)
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so the slow mode coincides with the Alfvén mode and the fast mode is the
sound/acoustic mode. In this region, the slow mode phase speed will always stay
equal to the Alfvén mode phase speed, regardless of further increases of β‖. In the
special case when 1+ 1

2 apβ‖ − 2β‖ = 0, which is equivalent to

β‖ =
2

4− ap
; ap = 4−

2
β‖
, (3.108)

all three modes propagate with the same phase speed (ω̃/k̃)2Asf =
3
2β‖. The criterion

(3.108) can be satisfied only for β‖ > 1/2 and in the limit β‖→∞ the asymptote is
ap = 4, so the possible range of ap is [0, 4]. This curve is plotted in figure 1 as a
green dotted line. The curve separates two regions. In the first region β‖< 2/(4− ap)
and vs‖<vA‖. In the second region β‖> 2/(4− ap) and vs‖= vA‖. The interesting result
to remember is that, for isotropic temperatures (ap = 1) and parallel propagation, the
critical plasma beta at which the slow mode speed matches the Alfvén mode speed
is

βcrit
‖
(0)> 2

3 . (3.109)

3.8. CGL with T⊥ = T‖ is not equivalent to MHD
It is important to emphasize that, even for isotropic temperatures ap = 1, the CGL
dispersion (3.99) is not equivalent to the MHD dispersion for the slow and fast waves.
The MHD dispersion is usually written in the form (see (C 20) in appendix C)(ω

k

)2
=

1
2
(V2

A +C2
s )±

1
2

√
(V2

A +C2
s )

2 − 4V2
AC2

s cos2 θ, (3.110)

or alternatively(ω
k

)2
=

1
2
(V2

A +C2
s )±

1
2

√
(V2

A −C2
s )

2 + 4V2
AC2

s sin2 θ, (3.111)

which nicely shows that the expression under the square root is always greater or
equal to zero. The MHD sound speed is defined as C2

s = γ p(0)/ρ0, where γ = 5/3.
Rewritten with the parameters we use here C2

s/V
2
A = γβ‖/2 = 5β‖/6, the MHD

dispersion for the slow and fast waves reads(
ω

kVA

)2

MHD

=
1
2

(
1+

γ

2
β‖

)
±

1
2

√(
1+

γ

2
β‖

)2
− 2γβ‖ cos2 θ, (3.112)

or alternatively(
ω

kVA

)2

MHD

=
1
2

(
1+

γ

2
β‖

)
±

1
2

√(
1−

γ

2
β‖

)2
+ 2γβ‖ sin2 θ. (3.113)

In the CGL description with isotropic temperatures (ap = 1) the dispersion relation
(3.99) for slow and fast waves reads(

ω

kVA

)2

CGL

=
1
2

[
1+ β‖

(
1+

1
2

cos2 θ

)]

±
1
2

√[
1+ β‖

(
1−

5
2

cos2 θ

)]2

+ β2
‖ sin2 θ cos2 θ, (3.114)
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or alternatively(
ω

kVA

)2

CGL

=
1
2

[
1+ β‖

(
1+

1
2

cos2 θ

)]

±
1
2

√[
1+ β‖

(
1+

1
2

cos2 θ

)]2

− 6β‖ cos2 θ

(
1+

5
6
β‖ sin2 θ

)
.

(3.115)

We wrote down all major possibilities on purpose, since we wanted to clearly show
that, regardless of the choice of β‖ and γ , the MHD dispersion relation cannot match
the CGL dispersion relation simultaneously for all propagation directions θ . One
could even play with an abstract idea to make the MHD γ dependent on the angle θ ,
and possibly β‖. Even then, there is no obvious way to modify the MHD dispersion
relation so that it behaves like the CGL model. Additionally, the CGL description
leads to the development of pressure anisotropy even when the initial pressure is
isotropic.

3.9. MHD velocity eigenvector
Before we proceed with the discussion of the CGL velocity eigenvector (which can
appear to be a bit tricky), for the sake of clarity it is useful to consider the simpler
MHD case first. By following the steps outlined above, it is easy to show that again
the Alfvén mode dynamics in the uy decouples from the dynamics in the other
directions and the velocity eigenvector matrix for the slow and fast waves in MHD
is (

ω2
− (V2

Ak2
+C2

s k2
⊥
) −C2

s k‖k⊥
−C2

s k‖k⊥ ω2
−C2

s k2
‖

)(
ux
uz

)
=

(
0
0

)
, (3.116)

or alternatively(
(ω/k)2 − (V2

A +C2
s sin2 θ) −C2

s sin θ cos θ
−C2

s sin θ cos θ (ω/k)2 −C2
s cos2 θ

)(
ux
uz

)
=

(
0
0

)
. (3.117)

This yields the MHD dispersion relations for the slow and fast modes in the form of
(3.110) or alternatively (3.111). It possible to either express the ratio ux/uz or uz/ux.
We want to calculate the velocity ratio χu and we choose the first possibility that
allows us to express that for the slow and fast modes (since uy = 0)

χu(k‖, k⊥)=
|uz|

2

|ux|
2 + |uz|

2
=

1∣∣∣∣ux

uz

∣∣∣∣2 + 1

. (3.118)

The ratio ux/uz can be found for example from the second row of the matrix as

ux

uz
=
(ω/k)2 −C2

s cos2 θ

C2
s sin θ cos θ

, (3.119)
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or equivalently from the first row of the matrix as

ux

uz
=

C2
s sin θ cos θ

(ω/k)2 − (V2
A +C2

s sin2 θ)
. (3.120)

The possible range of the ratio ux/uz is from −∞ to +∞ and the possible range for
χu is from 0 to 1. Solutions can be easily divided into two categories – depending
on the behaviour for parallel propagation – and are plotted in figure 2. For the sake
of clarity, we only consider propagation with positive wavenumbers k‖ and k⊥, so the
possible range of angle θ is from 0 to π/2 and sin θ > 0, cos θ > 0. Consider first the
case Cs < VA. For parallel propagation, the dispersion relation (3.111) directly yields
that for the fast mode (ω/k)2f |θ=0=V2

A and for the slow mode (ω/k)2s |θ=0=C2
s . Using

the expression (3.119) then yields that for the fast mode (ux/uz)f |θ=0 =+∞ and for
the slow mode (ux/uz)s|θ=0 = 0. This implies that for Cs < VA, all the χu(θ) curves
start at

Cs < VA : χ f
u(θ = 0)= 0; χ s

u(θ = 0)= 1, (3.121)

regardless of the actual value of Cs/VA<1. The second case Cs>VA is straightforward,
since for parallel propagation everything is just turned around; the fast mode
dispersion relation is (ω/k)2f |θ=0 = C2

s and the slow mode dispersion relation is
(ω/k)2s |θ=0 = V2

A. Implying that for Cs > VA, all the χu(θ) curves start at

Cs > VA : χ f
u(θ = 0)= 1; χ s

u(θ = 0)= 0, (3.122)

regardless of the actual value of Cs/VA > 1. The perpendicular propagation limit is
even easier since the split into two categories is not required and for both cases the
dispersion (3.110) yields (ω/k)2f |θ=π/2 = V2

A + C2
s and (ω/k)2s |θ=π/2 = 0, implying that

for the fast mode (ux/uz)f |θ=π/2 =+∞ and that for the slow mode (ux/uz)s|θ=π/2 = 0.
All the χu(θ) curves therefore ‘end’ at

χ f
u(θ =π/2)= 0; χ s

u(θ =π/2)= 1, (3.123)

whether the ratio Cs/VA<1 or Cs/VA>1. The behaviour of the χu(θ) curves is plotted
in figure 2.

In MHD, the ratio C2
s/V

2
A is sometimes used as the definition of plasma beta, which

we will call here βMHD≡C2
s/V

2
A. As can be seen in figure 2, for βMHD approaching 1,

the curves display a ‘singular’ behaviour, and it is difficult to guess what will happen
when βMHD reaches the value of 1 exactly. This special case is addressed in the next
subsection. There are also two special cases, one for Cs� VA or βMHD� 1 and one
for Cs� VA or βMHD� 1. Both limits Cs� VA and Cs� VA are easily obtained by
rewriting the dispersion relation (3.110) to a form

(ω
k

)2
=

1
2
(V2

A +C2
s )±

1
2
(V2

A +C2
s )

√
1−

4V2
AC2

s

(V2
A +C2

s )
2

cos2 θ. (3.124)

In both limits the second term under the square root is small and the expression can
be expanded as

√
1− ε=1− ε/2, yielding the slow and fast mode dispersion relations

Cs�VA or Cs�VA :

(ω
k

)2

f
=V2

A+C2
s −

V2
AC2

s

V2
A +C2

s

cos2 θ;
(ω

k

)2

s
=

V2
AC2

s

V2
A +C2

s

cos2 θ,

(3.125)
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which further yield dispersion relations (3.126), (3.128). Note that the limit Cs� VA
can be easily obtained directly from the velocity matrix (3.117) by neglecting the off-
diagonal terms that decouple the two modes. In contrast, the limit Cs�VA is not that
obvious and one needs to calculate the determinant.

In the limit βMHD� 1, the MHD dispersion relation simplifies to

βMHD� 1 : (ω/k)2f = V2
A +C2

s sin2 θ; (ω/k)2s =C2
s cos2 θ. (3.126)

The expression (3.119) yields for the fast mode (ux/uz)f (θ)=∞ and the expression
(3.120) yields for the slow mode (ux/uz)s(θ)= 0, implying

βMHD� 1 : χ f
u(θ)= 0; χ s

u(θ)= 1. (3.127)

In the opposite limit βMHD� 1, the MHD dispersions simplify to

βMHD� 1 : (ω/k)2f =C2
s + V2

A sin2 θ; (ω/k)2s = V2
A cos2 θ. (3.128)

In this limit, the expression (3.119) yields (ux/uz)f (θ) = (1 + V2
A/C

2
s ) tan θ , that

describes the behaviour of the fast mode for large beta values and the complete
limit is (ux/uz)f (θ) = tan θ . For the slow mode the expression (3.119) yields
(ux/uz)s(θ) = −(1 − V2

A/C
2
s ) cot θ and the complete limit is (ux/uz)s(θ) = − cot θ .

The χu(θ) solutions for large beta values therefore converge to

βMHD� 1 : χ f
u(θ)= cos2 θ; χ s

u(θ)= sin2 θ, (3.129)

and these two curves are plotted in figure 2 as dashed lines.

3.9.1. MHD special case VA =Cs

Consider the very peculiar case of parallel propagation θ = 0 with VA = Cs. The
velocity eigenvector matrix (3.117), when evaluated exactly at these values reads(

0 0
0 0

)(
ux
uz

)
=

(
0
0

)
. (3.130)

It is not possible to determine the ratio ux/uz and the eigenvector must be found by
taking the limit θ→ 0. For VA=Cs the dispersion relation for the slow and fast modes
(3.111) simplifies to (ω/k)2 = V2

A ± V2
A| sin θ |. As before, for the sake of simplicity

we consider only positive wavenumbers, so the propagation angle θ is in the range
[0, π/2] and sin θ > 0, cos θ > 0. Evaluating the velocity matrix (3.117) at VA = Cs
only, it is possible to pull the sin θ out of the system so that(

±1− sin θ − cos θ
− cos θ ±1+ sin θ

)
V2

A sin θ
(

ux
uz

)
=

(
0
0

)
, (3.131)

which nicely demonstrates that for θ→ 0 the system approaches (3.130). Nevertheless,
we can now calculate the velocity ratio (for example from the second row) as

ux

uz
=
±1+ sin θ

cos θ
, (3.132)

which can be evaluated at θ = 0. For the fast mode (ux/uz)
f (0)= 1 and for the slow

mode (ux/uz)
s(0)=−1. This implies that for the peculiar case of VA=Cs, the velocity
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(a) (b)

FIGURE 2. MHD velocity ratio χu(θ)= |u‖|2/|u|2 for the slow mode (red lines) and the
fast mode (blue lines) for different ratios of C2

s /V
2
A = βMHD. Panel (a) is for βMHD < 1,

and the thickness of the lines increases with βMHD when approaching the critical value of
βMHD= 1. The plotted lines have βMHD= 0.3; 0.6; 0.8; 0.9; 0.99. Panel (b) is for βMHD > 1
and the thickness of the lines decreases with βMHD when going away from the critical
value of βMHD = 1. The plotted lines have βMHD = 1.01; 1.1; 1.2; 2.0; 10; 103. In both
figures, the dotted lines are the critical case βMHD = 1 with solutions (3.134). In (b) the
dashed lines represent the limit βMHD � 1 with solutions (3.129) and the dashed lines
nicely overlap with a thin solid line solutions obtained for βMHD= 103. The Alfvén mode
has χu(θ)= 0 regardless of the plasma beta and is not plotted.

ratio χ sf
u (0) = 1/2 for both the fast and slow modes. The expression (3.132) can of

course be directly obtained by using the result (ω/k)2=V2
A±V2

A sin θ in the expression
(3.119) and by cancelling the sin θ in the nominator and denominator. The expression
(3.132) is valid for any angle θ . However, for the slow mode it becomes singular at
θ = π/2, and has to be rearranged by multiplying and dividing with 1 + sin θ (or
equivalently, use the first row of the matrix). To have useful expression for the entire
range of θ , we therefore split the expressions for the slow and fast modes as

(ux/uz)
s
=−

cos θ
1+ sin θ

; (ux/uz)
f
=

1+ sin θ
cos θ

, (3.133)

which yields, in this peculiar case of VA =Cs, that the ratio χu for the slow and fast
modes can be expressed as

VA =Cs : χ s
u(θ)=

1
2(1+ sin θ); χ f

u(θ)=
1
2(1− sin θ). (3.134)

These solutions are plotted in figure 2 as dotted lines.

3.10. CGL velocity eigenvector
To find the ratio for velocity components χu in the CGL description, it is useful for
a moment to work with abbreviated symbols, and we write the matrix (3.88) for the
ux and uz components as(

(ω̃/k̃)2 − a; −b

−b (ω̃/k̃)2 − c

)(
ux
uz

)
=

(
0
0

)
, (3.135)
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where the coefficients are

a= 1+ apβ‖

(
1−

1
2

cos2 θ

)
−
β‖

2
cos2 θ; b=

β‖

2
ap sin θ cos θ; c=

3
2
β‖ cos2 θ.

(3.136)

The determinant must be zero, which implies (ω̃/k̃)4 − (ω̃/k̃)2(a + c) + ac − b2
= 0,

and has a solution

(ω̃/k̃)2 = 1
2(a+ c)± 1

2

√
(a+ c)2 − 4ac+ 4b2 =

1
2(a+ c)± 1

2

√
(a− c)2 + 4b2. (3.137)

The last step was actually used in obtaining (3.98) which is otherwise quite difficult
to see. Using this result in the above matrix, the eigenvector matrix becomes(
−

1
2(a− c)± 1

2

√
(a− c)2 + 4b2; −b

−b 1
2(a− c)± 1

2

√
(a− c)2 + 4b2

)(
ux
uz

)
=

(
0
0

)
,

(3.138)

where

a− c= 1+ apβ‖
(
1− 1

2 cos2 θ
)
− 2β‖ cos2 θ. (3.139)

The ratio of ux/uz can be expressed (for example from the second row) as

ux

uz
=

1
b
[(ω̃/k̃)2 − c] =

1
2b
[a− c±

√
(a− c)2 + 4b2]

=
1

β‖ap sin θ cos θ

[
1+ apβ‖

(
1−

1
2

cos2 θ

)
− 2β‖ cos2 θ

±

√(
1+ apβ‖

(
1−

1
2

cos2 θ

)
− 2β‖ cos2 θ

)2

+ a2
pβ

2
‖ sin2 θ cos2 θ

 , (3.140)

or alternatively (from the first row) as

ux

uz
=

b

(ω̃/k̃)2 − a
=

2b
−(a− c)±

√
(a− c)2 + 4b2

= β‖ap sin θ cos θ
[
−1− apβ‖

(
1−

1
2

cos2 θ

)
+ 2β‖ cos2 θ

±

√(
1+ apβ‖

(
1−

1
2

cos2 θ

)
− 2β‖ cos2 θ

)2

+ a2
pβ

2
‖ sin2 θ cos2 θ

−1

.

(3.141)

The behaviour of these solutions is plotted in figure 3, where we plot solutions for
isotropic temperatures ap = 1. Similarly to MHD, two classes of solutions can be
characterized based upon the behaviour for parallel propagation θ = 0, depending if
the quantity a − c (3.139) evaluated at θ = 0 is positive or negative. The quantity
(a− c)|θ=0= 1+ 1

2 apβ‖− 2β‖ was discussed in the section for parallel propagation and
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this quantity represents the green dotted curve in figure 1 that separates the system
into two regions. For (a− c)|θ=0 > 0, i.e. in the region β‖ < 2/(4− ap), for the slow
mode (use (3.141)) the ratio (ux/uz)

s(0)= 0 and for the fast mode (use (3.140)) the
ratio (ux/uz)

f (0)=+∞. In this region, all the χu(θ) curves start at

β‖ < 2/(4− ap) : χ s
u(0)= 1; χ f

u(0)= 0. (3.142)

For (a− c)|θ=0 < 0, i.e. in the region β‖> 2/(4− ap), for the slow mode (use (3.140))
the ratio (ux/uz)

s(0)=+∞ and for the fast mode (use (3.141)) the ratio (ux/uz)
f (0)=0.

In this region, all the χu(θ) curves start at

β‖ > 2/(4− ap) : χ s
u(0)= 0; χ f

u(0)= 1. (3.143)

For perpendicular propagation θ =π/2 the quantity (a− c)|θ=π/2= 1+ apβ‖ is always
positive and the separation into two regions is not necessary. For the slow mode
(ux/uz)

s(π/2) = 0 and for the fast mode (ux/uz)
f (π/2) = +∞. All the χu(θ) curves,

regardless of the value of β‖ therefore end at

χ s
u(π/2)= 1; χ f

u(π/2)= 0. (3.144)

This summarizes the general behaviour of the solutions. However, as can be seen from
figure 3, there is a special case when the parameters approach β‖ = 2/(4 − ap), i.e.
when (a − c)|θ=0 = 0, that will be discussed in the next subsection. One can again
consider the two limiting cases when β‖ is small or large. The β‖ � 1 case yields
dispersion relations6

β‖� 1 : (ω̃/k̃)2f = 1+ apβ‖

(
1−

1
2

cos2 θ

)
−
β‖

2
cos2 θ; (3.146)

(ω̃/k̃)2s =
3
2β‖ cos2 θ. (3.147)

Using expression (3.141) for the slow mode yields (ux/uz)
s(θ) = 0 and expression

(3.140) for the fast mode yields (ux/uz)
f (θ) = ∞, implying that, in low beta limit,

the χu(θ) solutions are

β‖� 1 : χ s
u(θ)= 1; χ f

u(θ)= 0, (3.148)

and the constant solutions approaching this limit are visible in the plot of figure 3.
The opposite β‖� 1 limit in the CGL description is not particularly revealing since
there is no obvious way to simplify the expansion, even for isotropic temperatures.
For ap = 1, the β‖� 1 expansion yields

β‖� 1 : (ω̃/k̃)2sf =
1
2

(
1+ β‖

(
1+

1
2

cos2 θ

))
±

1
2

[
β‖
√

A+
1− 5

2 cos2 θ
√

A

]
, (3.149)

A=
(
1− 5

2 cos2 θ
)2
+ sin2 θ cos2 θ, (3.150)

6One can directly work with the dispersion relation (3.137) and for β‖� 1 and ap bounded and less than
an extremely large values, the parameter (a− c) is positive and (a− c)∼ 1, on the other hand the parameters
b� 1 and c� 1, so an expansion of the square root is possible as

1
2
(a+ c)±

1
2
(a− c)

√
1+

4b2

(a− c)2
'

1
2
(a+ c)±

1
2
(a− c)

(
1+

2b2

(a− c)2

)
'

1
2
(a+ c)±

1
2

[
(a− c)+

2b2

a

]
.

(3.145)
The fast mode (ω̃/k̃)2f ' a + (b2/a) ' a, and the slow mode (ω̃/k̃)2s ' c − (b2/a) ' c, which yields low β‖

dispersion relations. With ‘less confidence’ the same result can be directly obtained from the velocity matrix
(3.135) by neglecting the off-diagonal terms.
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where we neglected a term proportional to 1/β‖. The expression results in the correct
parallel limit (ω̃/k̃)2f (0) =

3
2β‖, (ω̃/k̃)

2
s (0) = 1 and the correct perpendicular limit

(ω̃/k̃)2f (π/2) = 1 + β‖, (ω̃/k̃)2s (π/2) = 0. If the perpendicular fast mode limit is
sufficient to be (ω̃/k̃)2f (π/2)= β‖ (which is acceptable since β‖� 1), only the terms
proportional to β‖ can be retained and the fast mode dispersion relation can be
simplified to

β‖� 1 : (ω̃/k̃)2f =
1
2β‖

[
1+ 1

2 cos2 θ +

√(
1− 5

2 cos2 θ
)2
+ sin2 θ cos2 θ

]
. (3.151)

The expression (3.140) yields the velocity ratio of the fast mode as

β‖� 1 :
(

ux

uz

)f

=
1− 5

2 cos2 θ +

√(
1− 5

2 cos2 θ
)2
+ sin2 θ cos2 θ

sin θ cos θ
, (3.152)

that is independent of β‖. For the slow mode wave the dispersion relation cannot be
further simplified because if we collect only terms proportional to β‖, the resulting
expression will be non-zero everywhere except exactly at θ =0 (and also θ =π/2). For
θ =0, the entire contribution of (ω̃/k̃)2s (0)=1 comes from terms in (3.149) that are not
proportional to β‖. Nevertheless, the analytic velocity ratio (3.152) for the fast mode
is sufficiently simple and to obtain analytic χ s

u(θ) for the slow mode, it is actually
possible to cheat a little by realizing that the slow and fast mode curves are always
symmetric and that χ s

u(θ)+ χ
f
u(θ)= 1. Our final large beta results therefore are

χ f
u(θ)=

1+

1− 5
2 cos2 θ +

√(
1− 5

2 cos2 θ
)2
+ sin2 θ cos2 θ

sin θ cos θ

2
−1

; (3.153)

χ s
u(θ)= 1− χ f

u(θ). (3.154)

Solutions are plotted in figure 3 as dashed lines and fit the solutions of the full
dispersion relations with β‖ = 103 very nicely.

3.10.1. CGL special case β‖ = 2/(4− T⊥/T‖)
In this peculiar case when all 3 modes propagate in the parallel direction with

the same phase speed, one again faces complications when calculating the velocity
eigenvector, as with the MHD peculiar case when VA = Cs. This CGL special
case can be encountered only for β‖ > 1/2 because the temperature anisotropy
must be ap > 0. We start with the velocity eigenvector matrix (3.138) and for the
special case considered 1 + 1

2 apβ‖ − 2β‖ = 0, the expression (3.139) simplifies to
a − c = (4β‖ − 1) sin2 θ . One can already see that for strictly parallel propagation
the entire matrix will be zero and it will not be possible to evaluate the eigenvector.
Similarly to the MHD case, the sin θ can be pulled out of the matrix or alternatively
one can use (3.140), (3.141) and calculate the limit. For the special case considered
here, the parameter b= 1

2(4β‖ − 2) sin θ cos θ . Considering again for simplicity only
positive wavenumbers, the expression (3.140) yields in this particular case

ux

uz
=

4β‖ − 1
4β‖ − 2

tan θ ±

√(
4β‖ − 1
4β‖ − 2

)2

tan2 θ + 1. (3.155)
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(a) (b)

FIGURE 3. CGL velocity ratio χu(θ) = |u‖|2/|u|2 for the slow mode (red lines) and the
fast mode (blue lines) for different values of β‖, with isotropic temperature T⊥ = T‖ (or
the temperature anisotropy ratio ap= 1). Panel (a) is for β‖< 2/3, and the thickness of the
lines increases with β‖ when approaching the critical value of β‖= 2/3. The plotted lines
have β‖ = 0.5; 0.6; 0.64; 0.66; 0.666. Panel (b) is for β‖ > 2/3 and the thickness of the
lines decreases with β‖ when going away from the critical value of β‖= 2/3. The plotted
lines have β‖= 0.67; 0.7; 0.8; 1.0; 10, 103. In both figures, the dotted lines are the critical
case β‖ = 2/3 with solutions (3.155). In (b) the dashed lines represent the limit β‖� 1
with solutions (3.153), (3.154) and the dashed lines nicely overlap with a thin solid line
solutions obtained for β‖= 103. The Alfvén mode has χu(θ)= 0 regardless of the plasma
beta and is not plotted.

The expression can be evaluated at θ = 0, which yields for the slow mode
(ux/uz)

s(0) = −1 and for the fast mode (ux/uz)
f (0) = +1, implying that both modes

start at

β‖ = 2/(4− ap) : χ s
u(0)=

1
2 ; χ f

u(0)=
1
2 . (3.156)

For the perpendicular propagation the discussion is unchanged from the previous
general case and yields χ s

u(π/2)= 1 and χ f
u(π/2)= 0.

3.11. Empirical models with polytropic indices γ‖, γ⊥
The differences between MHD and CGL can be further clarified with polytropic
indices. The linearized MHD pressure equation reads

∂p
∂t
+ γ p(0)(∂xux + ∂yuy + ∂zuz)= 0. (3.157)

One can introduce the concept of polytropic indices γ‖ and γ⊥ to the CGL pressure
equations (3.73), (3.74) and write

∂p‖
∂t
+ p(0)‖ (∂xux + ∂yuy)+ γ‖p

(0)
‖ ∂zuz = 0; (3.158)

∂p⊥
∂t
+ γ⊥p(0)⊥ (∂xux + ∂yuy)+ p(0)⊥ ∂zuz = 0, (3.159)
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where for the CGL model γ‖ = 3 and γ⊥ = 2.7 The reasoning for such a construction
is to enable a smooth transition between two extreme cases – the CGL model on one
side, and the isothermal model γ‖ = 1 and γ⊥ = 1 on the other side. The important
observation is that in the parallel pressure equation the γ‖ acts only on the parallel
velocity component uz, and in the perpendicular pressure equation the γ⊥ acts only
on the perpendicular velocity components ux, uy. In MHD, the γ acts on all three
components ux, uy, uz. The values of polytropic indices are directly related to the
number of degrees of freedom i, through the well-known relation γ = (i + 2)/i. In
the MHD description the number of degrees of freedom is i= 3 and so γ = 5/3. In
contrast, the CGL description can be interpreted as being composed of a (strongly
coupled) mixture of one-dimensional and two-dimensional dynamics, where for the
parallel direction i = 1 and γ‖ = 3 and for the perpendicular direction i = 2 and
γ⊥=2. The apparently subtle, but nevertheless fundamental difference between (3.157)
and (3.158), (3.159) is the core of many differences between the MHD and CGL
descriptions, such as for example the effect of the slow mode becoming faster than
the Alfvén mode. The two systems remain different even if the mean CGL pressures
(or temperatures) are prescribed to be isotropic p(0)‖ = p(0)⊥ and equal to the mean MHD
pressure p(0). This means that the MHD does not match the CGL description even if
the distribution function is isotropic, as for example Maxwellian.

We briefly consider models with polytropic indices γ‖, γ⊥ that are based on
the linearized pressure equations (3.158), (3.159). If these pressure equations are
‘un-linearized’, i.e. if one performs a ‘reverse engineering’ procedure to obtain
nonlinear equations (a procedure that is possible to do because of the known guidance
by the CGL model), the nonlinear equations read

dp‖
dt
+ p‖∇ · u+ (γ‖ − 1)p‖b̂ · ∇u · b̂= 0; (3.160)

dp⊥
dt
+ γ⊥p⊥∇ · u− (γ⊥ − 1)p⊥b̂ · ∇u · b̂= 0, (3.161)

which can be rewritten as

d
dt

(
p‖|B|γ‖−1

ργ‖

)
= 0;

d
dt

(
p⊥

ρ|B|γ⊥−1

)
= 0. (3.162)

Empirical fluid models of this type were studied for example by Hau & Sonnerup
(1993) and Hau et al. (1993) with the motivation that spacecraft observations in the
Earth’s magnetosheath often show behaviour that cannot be explained by the CGL
values of γ‖ = 3, γ⊥ = 2 or by the isothermal values of γ‖ = 1, γ⊥ = 1, but can be
fitted by the values that lie somewhere in between (and actually quite close to the
isothermal case). For a direct comparison with the CGL model, the equations (3.162)
can be rewritten to a form

d
dt

(
p‖|B|2

ρ3

)
=−(γ‖ − 3)

(
p‖|B|2

ρ3

)
ρ

|B|
d
dt

(
|B|
ρ

)
; (3.163)

7One can then define the parallel and perpendicular sound speeds as C‖ =
√
γ‖p

(0)
‖
/ρ0 and C⊥ =√

γ⊥p(0)
⊥
/ρ0, since in this model the parallel acoustic mode will have a dispersion ω = ±C‖k‖ and the

perpendicular fast mode ω=±k⊥
√

V2
A +C2

⊥
, as can be easily verified.
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d
dt

(
p⊥
ρ|B|

)
= (γ⊥ − 2)

(
p⊥
ρ|B|

)
1
|B|

d
dt
|B|, (3.164)

or to an interesting alternative form

d
dt

ln
(

p‖|B|2

ρ3

)
=−(γ‖ − 3)

d
dt

ln
(
|B|
ρ

)
; (3.165)

d
dt

ln
(

p⊥
ρ|B|

)
= (γ⊥ − 2)

d
dt

ln |B|. (3.166)

Obviously, for CGL values of γ‖ = 3, γ⊥ = 2 the right-hand sides disappear and one
obtains the classical CGL expressions. The right-hand sides of the above expressions
can be compared with equations of Chew et al. (1956) equations (2.82), (2.83) which
contain the gyrotropic heat flux contributions. Therefore, the deviations from the CGL
values of γ‖ = 3, γ⊥ = 2 can be considered to offer a very simple empirical model
(perhaps too simple) that shows how the heat flux contributions modify the CGL
dynamics. The dispersion relations for this fluid model can be found in Hau et al.
(1993) and also in Abraham-Shrauner (1973), who studied an even more general
empirical model with four polytropic indices (essentially, the γ‖, γ⊥ acting on |B|
and ρ in (3.162) can be further split to two independent parameters). Interestingly,
complex polytropic indices have been suggested to model Landau damping (Belmont
& Mazelle 1992). Considering the linearized CGL equations (3.68)–(3.72) and
linearized polytropic pressure equations (3.158)–(3.159) written in the x–z plane
yields the dispersion relations for this model. The Alfvén wave is still decoupled
from the rest of the system and the Alfvén wave dispersion relation is unaffected
by the different pressure equations, therefore also yielding the same oblique firehose
instability threshold. What is modified is the dispersion relation of the slow and fast
waves. The velocity equations read

∂2ux

∂t2
−

p(0)⊥
ρ0
(γ⊥∂

2
x ux + ∂x∂zuz)+

(
p(0)‖
ρ0
−

p(0)⊥
ρ0
− V2

A

)
∂2

z ux − V2
A∂

2
x ux = 0; (3.167)

∂2uz

∂t2
− γ‖

p(0)‖
ρ0
∂2

z uz −
p(0)⊥
ρ0
∂x∂zux = 0, (3.168)

and the transformation to Fourier space yields the velocity matrix
ω2
−

(
γ⊥

p(0)⊥
ρ0
+ V2

A

)
k2
⊥
+

(
p(0)‖
ρ0
−

p(0)⊥
ρ0
− V2

A

)
k2
‖
; −

p(0)⊥
ρ0

k⊥k‖

−
p(0)⊥
ρ0

k⊥k‖; ω2
− γ‖

p(0)‖
ρ0

k2
‖


(

ux
uz

)
=

(
0
0

)
,

(3.169)

or alternativelyω̃
2
−

(
γ⊥ap

β‖

2
+ 1
)

k̃2
⊥
−

(
1+

β‖

2
(ap − 1)

)
k̃2
‖
; −

1
2

apβ‖k̃⊥k̃‖

−
1
2

apβ‖k̃⊥k̃‖; ω̃2
− γ‖

β‖

2
k̃2
‖

(ux
uz

)
=

(
0
0

)
.

(3.170)
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Calculating the determinant yields a dispersion relation for the slow and fast modes
in the form

ω̃4
− A2ω̃

2
+ A0 = 0; (3.171)

A2 = k̃2
⊥

(
1+

γ⊥

2
apβ‖

)
+ k̃2
‖

(
1+

1
2
β‖(γ‖ − 1)+

1
2

apβ‖

)
; (3.172)

A0 =
γ‖

2
k̃2
‖
β‖

[
k̃2
‖

(
1−

1
2
β‖ +

1
2

apβ‖

)
+ k̃2
⊥

(
1+

γ⊥

2
apβ‖ −

1
2γ‖

a2
pβ‖

)]
. (3.173)

Solutions for parallel propagation (k⊥ = 0) are the usual CGL Alfvén mode and the
ion-acoustic mode ω̃ = ±

√
(γ‖/2)β‖k̃‖, and for perpendicular propagation (k‖ = 0)

the fast mode ω̃=±
√

1+ (γ⊥/2)apβ‖k̃⊥. Similarly to the CGL description it can be
shown that A2

2 − 4A0 > 0 because of the trick (3.137), implying that the slow mode
becomes unstable when A0 < 0, i.e. when[

k2
‖

(
1−

1
2
β‖ +

1
2

apβ‖

)
+ k2
⊥

(
1+

γ⊥

2
apβ‖ −

1
2γ‖

a2
pβ‖

)]
< 0. (3.174)

The two competing instabilities are again the parallel firehose instability and the highly
oblique mirror instability. The parallel firehose instability has the same threshold as
obtained previously. However, the mirror instability threshold reads

1+
γ⊥

2
apβ‖ −

1
2γ‖

a2
pβ‖ < 0, (3.175)

which is consistent with the result of Hau & Sonnerup (1993), their equation (14),
written in the form8

γ‖β‖ <
β2
⊥

2+ γ⊥β⊥
. (3.176)

For γ‖ = 3, γ⊥ = 2, the condition (3.175) is naturally equivalent to the CGL mirror
threshold. However, the condition offers a temptingly simple result to keep the
perpendicular polytropic index unchanged γ⊥ = 2 and modifies the parallel polytropic
index to γ‖ = 1/2. In this way, the mirror threshold matches the correct kinetic
threshold (3.94). Nevertheless, this is just an interesting empirical concept, it fixes
the highly oblique mirror threshold but at the same time moves the slow and fast
mode dispersion relations in other directions, for example the parallel sound speed
in such a model is C2

‖
=

1
2 p(0)‖ /ρ0, which appears to be unrealistically low. Such a

‘tuning’ of models with free parameters – only in one particular direction and only at
the level of the dispersion relations – can be sometimes useful for interpretation of
observational data, however, such models will usually lead to unphysical situations.
We will not consider models with polytropic indices further in this text. Instead, to
obtain a better match with kinetic description, it is advisable to use the correct CGL
values of γ‖ = 3, γ⊥ = 2 and focus on fluid models that derive the correct heat flux
contributions q‖ and q⊥.

8Note that the equation in the cited paper has the opposite sign, which is not a typo, the authors just
call the mirror threshold a condition when a mode is stable – opposite to the more usual condition when a
mode becomes unstable. Similarly, the authors write the condition for the firehose-stable region as β‖ 6 2+ β⊥.
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3.12. CGL and radially expanding solar wind
Similarly to MHD, the CGL fluid model can be very useful for understanding the
evolution of temperature in the radially expanding solar wind. A good discussion can
be found for example in Matteini et al. (2007), Matteini et al. (2013) and references
therein. Let us first consider the MHD case. Combining the pressure equation dp/dt+
γ∇ · u= 0 with the density equation dρ/dt+ ρ∇ · u= 0 yields

MHD :
d
dt

(
p
ργ

)
= 0; ⇒

d
dt

(
T
ργ−1

)
= 0, (3.177)

which in a steady state (or co-moving with the convective derivative) implies T∼ργ−1.
By considering simple radially expanding solar wind, one prescribes that the density
ρ evolves with the heliocentric distance r as ρ ∼ 1/r2, and by using γ = 5/3, the
ideal MHD model yields (in the absence of any dissipation and associated turbulent
heating)

T ∼ r−4/3. (3.178)

In contrast, the CGL equations (3.41) are rewritten as

CGL :
d
dt

(
T‖|B|2

ρ2

)
= 0;

d
dt

(
T⊥
|B|

)
= 0, (3.179)

which in a steady state implies

T‖ ∼
ρ2

|B|2
; T⊥ ∼ |B|;

T⊥
T‖
=
|B|3

ρ2
. (3.180)

For the magnetic field it is possible to consider profiles of roughly |B| ∼ 1/r2, or
|B| ∼ 1/r (one can be more precise and consider the Parker spiral profile). The first
magnetic field profile yields

|B| ∼ 1/r2
; ⇒ T‖ ∼ const.; T⊥ ∼ 1/r2

;
T⊥
T‖
∼ 1/r2. (3.181)

The second magnetic field profile yields

|B| ∼ 1/r; ⇒ T‖ ∼ 1/r2
; T⊥ ∼ 1/r;

T⊥
T‖
∼ r. (3.182)

There is also a curious case when the magnetic field profile is prescribed to be |B| ∼
r−4/3, i.e. a profile between two cases of 1/r and 1/r2, that yields

|B| ∼ r−4/3
; ⇒ T‖ ∼ r−4/3

; T⊥ ∼ r−4/3
;

T⊥
T‖
∼ const., (3.183)

and the temperature anisotropy stays constant. The estimations are of course valid only
until a firehose threshold or a mirror threshold is reached. For example, evolution
according to (3.181) will lead the system to a firehose threshold, and evolution
according to (3.182) will lead the system to a mirror threshold. In general, if we
fix the density profile to ρ ∼ 1/r2, any magnetic field profile steeper than r−4/3 will
evolve the system towards a firehose threshold, and a magnetic field profile shallower
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than r−4/3 will evolve the system towards a mirror threshold. The estimations do not
reveal the presence of the firehose instability or the mirror instability in the CGL
model, since the solutions are written in a steady state, and concern only evolution
of mean temperatures (i.e. the solutions should be written with T (0)‖ , T (0)⊥ ). To find
an instability, one of course needs to consider evolution equations for fluctuating
variables and to analyse the associated dispersion relations, since it is the fluctuations
that become unstable. Further discussion can be found in Hunana & Zank (2017).

From a linear perspective, the CGL model has to be accompanied by the Hall term
and FLR corrections, so that the instabilities are stabilized at small spatial scales.
However, considering nonlinear evolution with finite amplitudes of fluctuations,
even the non-dispersive CGL model is stabilized. For example, considering parallel
propagation, Tenerani, Velli & Hellinger (2017) has shown that the firehose instability
criterion reads (see (9) in that paper)

V2
A +

1
ρ0

p(0)⊥ − p(0)‖

1+
∣∣∣∣B⊥B0

∣∣∣∣2
< 0; ⇒ 1+

β‖

2
ap − 1

1+
∣∣∣∣B⊥B0

∣∣∣∣2
< 0, (3.184)

i.e. for infinitely small amplitudes of the magnetic field, the usual firehose criterion
is obtained. However, when the CGL system reaches firehose-unstable regime and
the amplitude of the fluctuations starts to grow, the firehose criterion is modified
according to (3.184). Therefore, the amplitude of the fluctuations cannot grow without
bounds, and beyond some critical amplitude, the system becomes again stabilized.
The condition (3.184) nicely demonstrates how the CGL system is stabilized during
nonlinear evolution, once the firehose instability is reached. For further discussion,
see Tenerani et al. (2017), Tenerani & Velli (2018).

To finish this subsection, the heuristically generalized CGL model with polytropic
indices γ‖, γ⊥ yields that, in the steady state, the mean temperatures evolve according
to

T‖ =
(
ρ

|B|

)γ‖−1

; T⊥ = |B|γ⊥−1
;

T⊥
T‖
=
|B|γ‖+γ⊥−2

ργ‖−1
, (3.185)

and such heuristic models can yield a wide array of possible temperature profiles.

3.13. CGL model – summary
The usual ‘combining’ of evolution equations (by performing ∂/∂t and substituting
one equation into another) is very useful to gain insight into the linear eigenmodes of
a considered system. However, for more advanced fluid models, such a procedure can
become very analytically involved, and it is much easier to calculate the determinant
of the entire system with analytic software, such as Maple or Mathematica. Therefore,
for more advanced fluid models we often do not write down the final dispersion
relation for arbitrary propagation angle (which might be uneconomically large to
write down), and we only provide normalized, linearized in the x–z plane and Fourier
transformed equations. For easy comparison with more advanced fluid models, it is
beneficial to write the final CGL equations in the same form. It is useful to work
in normalized units, and we drop writing the tilde. The normalized, linearized in the
x–z plane, and Fourier transformed CGL equations read
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−ωρ + k⊥ux + k‖uz = 0; (3.186)

−ωux +
β‖

2
k⊥p⊥ − v2

A‖k‖Bx + k⊥Bz = 0; (3.187)

−ωuy − v
2
A‖k‖By = 0; (3.188)

−ωuz +
β‖

2
k‖p‖ +

β‖

2
(1− ap)k⊥Bx = 0; (3.189)

−ωBx − k‖ux = 0; −ωBy − k‖uy = 0; −ωBz + k⊥ux = 0; (3.190)
−ωp‖ + k⊥ux + 3k‖uz = 0; (3.191)
−ωp⊥ + 2apk⊥ux + apk‖uz = 0, (3.192)

where we have introduced the normalized parallel Alfvén speed v2
A‖≡ 1+ (β‖/2)(ap− 1)

(the tilde on vA‖ is dropped too). The determinant can be easily calculated and
factorized in Maple, yielding the CGL dispersion relation in normalized units (tilde
are dropped)

(ω2
− k2
‖
v2

A‖)(ω
4
− A2ω

2
+ A0)= 0; (3.193)

A2 = k2
⊥
(1+ apβ‖)+ k2

‖

(
v2

A‖ +
3
2β‖
)
; (3.194)

A0 =
3
2 k2
‖
β‖
[
k2
‖
v2

A‖ + k2
⊥

(
1+ apβ‖ −

1
6 a2

pβ‖
)]
, (3.195)

which of course agrees with the previously obtained CGL solutions for the Alfvén
mode (3.81), and the slow and fast modes (3.90).

4. Hall-CGL model
Here we consider a slightly generalized CGL model when the Hall term is

included in the induction equation. Concerning the isotropic Hall-MHD model, a
good comparison with solutions of kinetic theory can be found for example in Howes
(2009). Before we proceed with the discussion of dispersion relations, we want to
point out how the Hall term and the electron pressure contributions and the electron
inertia contributions modify the usual ‘CGL conservation equations’ for protons.
The general electric field was already written down in (3.15). For a moment it is
beneficial to consider this most general form including the electron inertia and the
electron pressure contributions and separate the electric field into two parts

E=−
1
c

up ×B+EH (4.1)

EH =
1

4πen
(∇×B)×B−

1
en
∇ · pe −

me

e

(
∂ue

∂t
+ ue · ∇ue

)
. (4.2)

The notation EH is perhaps slightly misleading since only the first term in (4.2) is
usually called the Hall electric field. Note that the first term in EH still has to be
used in the proton momentum equation even for the simplest CGL (or MHD) models.
The induction equation then reads

∂B
∂t
=∇× (up ×B)− c∇×EH, (4.3)

which is then rewritten with the use of the convective derivative as

dB
dt
=−B∇ · up +B · ∇up − c∇×EH; (4.4)
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b̂
|B|
·

dB
dt
=−∇ · up + b̂ · ∇up · b̂−

cb̂
|B|
· (∇×EH). (4.5)

The last expression is then used in the completely general equations (3.46), (3.47),
which yields

d
dt

(
p‖p|B|2

ρ3
p

)
=
|B|2

ρ3
p

(
dp‖p
dt
+ p‖p∇ · up + 2p‖pb̂ · ∇up · b̂− 2p‖p

cb̂
|B|
· (∇×EH)

)
;

(4.6)

d
dt

(
p⊥p

ρp|B|

)
=

1
ρp|B|

(
dp⊥p

dt
+ 2p⊥p∇ · up − p⊥pb̂ · ∇up · b̂+ p⊥p

cb̂
|B|
· (∇×EH)

)
.

(4.7)

By cancelling pressure equations (3.3), (3.4), that are also the pressure equations of
the Hall-CGL model, one obtains that for a general Hall-CGL model the electric field
EH modifies the conservation laws according to

d
dt

(
p‖p|B|2

ρ3
p

)
=

p‖p|B|2

ρ3
p

[
−2

cb̂
|B|
· (∇×EH)

]
; (4.8)

d
dt

(
p⊥p

ρp|B|

)
=

p⊥p

ρp|B|

[
cb̂
|B|
· (∇×EH)

]
, (4.9)

implying the Hall term breaks the first and second adiabatic invariants.

4.1. Hall-CGL model with cold electrons
Here, we want to study the simplest Hall-CGL model for the proton species. We
neglect the electron inertia and we make the electrons cold with pe=0. The full model
is described by the usual CGL equations (3.36)–(3.39), but the induction equation now
reads

∂B
∂t
=∇× (up ×B)−

c
4πe
∇×

(
1
n
(∇×B)×B

)
. (4.10)

The induction equation is linearized as

∂B
∂t

lin
=∇× (up ×B0)−

c
4πen0

∇× ((∇×B)×B0). (4.11)

By using (3.67), direct calculation of the second term yields

∇× ((∇×B)×B0)= B0

 ∂y∂zBz − ∂
2
z By

−∂x∂zBz + ∂
2
z Bx

∂x∂zBy − ∂y∂zBx

 , (4.12)

and by using c/(4πen0)= V2
A/(ΩpB0), the Hall-term contributions are

c∇×EH
lin
=

V2
A

Ωp

 ∂y∂zBz − ∂
2
z By

−∂x∂zBz + ∂
2
z Bx

∂x∂zBy − ∂y∂zBx

 . (4.13)
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The entire linearized induction equation reads

∂B
∂t

lin
= B0

 ∂zux
∂zuy

−∂xux − ∂yuy

− V2
A

Ωp

 ∂y∂zBz − ∂
2
z By

−∂x∂zBz + ∂
2
z Bx

∂x∂zBy − ∂y∂zBx

 , (4.14)

which when written in the x–z plane (all ∂y = 0) yields

∂Bx

∂t
= B0∂zux +

V2
A

Ωp
∂2

z By; (4.15)

∂By

∂t
= B0∂zuy +

V2
A

Ωp
(∂x∂zBz − ∂

2
z Bx); (4.16)

∂Bz

∂t
=−B0∂xux −

V2
A

Ωp
∂x∂zBy. (4.17)

These equations replace the ∂B/∂t equations in the linearized CGL system written in
the x–z plane. And the trouble is immediately apparent. In contrast to the CGL system,
we are no longer able to separate the Alfvén mode which was before exclusively in
the By, uy components. Now, all the components are coupled and all three modes, the
Alfvén mode, the slow mode and the fast mode are coupled. This is not surprising,
since the same situation is in the Hall-MHD. In this case, we have no other choice
and we have to calculate the dispersion relation for all three modes. The dispersion
relation can be solved analytically only for special cases and, in general, the dispersion
relation has to be solved numerically. Let us quickly consider the two special cases
of parallel and perpendicular propagation that can be solved analytically.

4.2. Parallel propagation
For propagation parallel to the mean magnetic field, all ∂x= 0 and the familiar sound
mode/ion-acoustic mode decouples in the uz, p‖ components as

∂2uz

∂t2
−

3p(0)‖
ρ0

∂2
z uz = 0, (4.18)

with the familiar dispersion relation ω2
= C2

‖
k2
‖
. The dispersion relation of this mode

does not depend on the Hall term. However, the other two modes are now coupled
through

∂ux

∂t
−

1
B0

(
V2

A −
p(0)‖
ρ0
+

p(0)⊥
ρ0

)
∂zBx = 0; (4.19)

∂uy

∂t
−

1
B0

(
V2

A −
p(0)‖
ρ0
+

p(0)⊥
ρ0

)
∂zBy = 0; (4.20)

∂Bx

∂t
= B0∂zux +

V2
A

Ωp
∂2

z By; (4.21)

∂By

∂t
= B0∂zuy −

V2
A

Ωp
∂2

z Bx. (4.22)
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If the last terms in the B-field equations are neglected, i.e. if the Hall term is
neglected, the two modes decouple and one naturally recovers the CGL parallel
propagating Alfvén modes, both propagating with the phase speed

v2
A‖ = V2

A −
p(0)‖
ρ0
+

p(0)⊥
ρ0
= V2

A

(
1+

β‖

2
(ap − 1)

)
. (4.23)

Applying ∂t to the B-field equations yields

∂2Bx

∂t2
= v2

A‖∂
2
z Bx +

V2
A

Ωp
∂2

z
∂By

∂t
; (4.24)

∂2By

∂t2
= v2

A‖∂
2
z By −

V2
A

Ωp
∂2

z
∂Bx

∂t
, (4.25)

which when transformed to Fourier space read
ω2
− v2

A‖k
2
‖
; +i

V2
A

Ωp
k2
‖
ω

−i
V2

A

Ωp
k2
‖
ω; ω2

− v2
A‖k

2
‖


(

Bx
By

)
=

(
0
0

)
, (4.26)

and the zero determinant requirement implies

ω4
−ω2k2

‖

(
2v2

A‖ + k2
‖

V4
A

Ω2
p

)
+ k4
‖
v4

A‖ = 0. (4.27)

The solutions of the dispersion relation (quadratic polynomial in ω2) is simply

ω2
W = k2

‖
V2

A

[
1+

β‖

2
(ap − 1)+

k2
‖
V2

A

2Ω2
p

+
|k‖|VA

Ωp

√
1+

β‖

2
(ap − 1)+

k2
‖V2

A

4Ω2
p

]
; (4.28)

ω2
IC = k2

‖
V2

A

[
1+

β‖

2
(ap − 1)+

k2
‖
V2

A

2Ω2
p

−
|k‖|VA

Ωp

√
1+

β‖

2
(ap − 1)+

k2
‖V2

A

4Ω2
p

]
, (4.29)

where, importantly,
√

k2
‖ = |k‖| was used. The solution (4.28) is the whistler mode,

and the solution (4.29) is the ion-cyclotron mode. For isotropic temperatures (ap= 1),
the result is equal to the Hall-MHD dispersion relation. At long wavelengths (k‖→ 0)
the solutions become non-dispersive and connect to the usual CGL Alfvén modes. For
parallel propagation, the Hall term is therefore responsible for splitting the two modes
that otherwise would propagate at the same speed, while it does not influence the
ion-acoustic mode. Or in another words, using the vocabulary of slow, Alfvén, fast,
depending on plasma β‖ and temperature anisotropy ap, the Hall term either splits the
parallel propagating Alfvén and fast mode, or the slow and Alfvén mode. At very
short spatial scales (k‖� 1), the limits are9

k‖→±∞ : ω2
IC =Ω

2
p

(
1+

β‖

2
(ap − 1)

)2

; ω2
W = k4

‖

V4
A

Ω2
p

. (4.30)

9Note that the limit for the ion-cyclotron mode has to be calculated with a trick a− b= (a2
− b2)/(a+ b)

since both a, b go to ∞.
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For isotropic temperatures ap= 1 the frequency of the ion-cyclotron mode (that should
be actually called the proton-cyclotron mode) converges towards the proton-cyclotron
frequency ±Ωp. For anisotropic temperatures, the frequency of the mode starts to be
β‖ dependent and will converge to frequencies that can be higher or lower than Ωp.
The frequency of the whistler mode is not bounded and technically goes to infinity,
which is a consequence of neglecting the electron inertia. Importantly, both modes are
stable for high wavenumbers. The solutions (4.28), (4.29) are analytically correct, but
similarly to the Hall-MHD, the solutions can be rewritten to a more useful form, by
realizing that the dispersion equation (4.27) can be decomposed as10

(
ω2
+

k2
‖
V2

A

Ωp
ω− k2

‖
v2

A‖

)(
ω2
−

k2
‖
V2

A

Ωp
ω− k2

‖
v2

A‖

)
= 0. (4.31)

The first bracket yields two solutions

ωIC,1 = −
k2
‖
V2

A

2Ωp
+ |k‖|VA

√
1+

β‖

2
(ap − 1)+

k2
‖V2

A

4Ω2
p

; −Green line; (4.32)

ωW,1 = −
k2
‖
V2

A

2Ωp
− |k‖|VA

√
1+

β‖

2
(ap − 1)+

k2
‖V2

A

4Ω2
p

; −dashed Magenta line, (4.33)

and the second bracket yields two solutions

ωW,2 = +
k2
‖
V2

A

2Ωp
+ |k‖|VA

√
1+

β‖

2
(ap − 1)+

k2
‖V2

A

4Ω2
p

; −Blue line; (4.34)

ωIC,2 = +
k2
‖
V2

A

2Ωp
− |k‖|VA

√
1+

β‖

2
(ap − 1)+

k2
‖V2

A

4Ω2
p

; −dashed Cyan line. (4.35)

It is straightforward to check that (ω−ωW,1)(ω−ωW,2)= 0 yields the whistler mode
solution (4.28), and (ω−ωIC,1)(ω−ωIC,2)= 0 yields the ion-cyclotron mode solution
(4.29). Often, solutions (4.32)–(4.35) are written in an alternative form where the
absolute value on k‖ is removed (which obviously can be done), and the solutions are
just slightly re-arranged. Additionally, for more complicated fluid models, we want
to write solution in one line instead of four lines. In this example, we just write a
shortcut that two solutions are

ω=±
k2
‖
V2

A

2Ωp
+ k‖VA

√
1+

β‖

2
(ap − 1)+

k2
‖V2

A

4Ω2
p

, (4.36)

with another two solutions obtained by substituting ω with −ω.

10One can double check the result by working with quantities B± = iBx ±By, yielding (ω2
± (k2
‖

V2
A/Ωp)ω−

k2
‖
v2

A‖)B
∓
= 0.
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(a) (b)

FIGURE 4. Dispersion relations for the Hall-CGL model (with cold electrons), for parallel
propagation θ = 0. The colour coding of lines is according to (4.32)–(4.35). (a) Isotropic
temperatures ap = T⊥/T‖ = 1.0. The dispersion relations do not depend on the value of
β‖, which is a consequence of neglecting the FLR pressure corrections, etc. The figure is
actually equivalent to the Hall-MHD model. (b) the value of β‖ is fixed with the value
β‖ = 4.0 and the temperature anisotropy is varied as ap = 2.0; 1.0; 0.5. The thickness of
the curves increases with decreasing ap as we approach the firehose threshold at ap= 0.5.
All the curves have purely real frequency ω.

4.2.1. Firehose instability
Now we can discuss the firehose instability. If the quantity 1+ (β‖/2)(ap − 1) > 0,

then all the solutions (4.32)–(4.35) have frequencies that are purely real for the entire
range of wavenumbers. For isotropic temperatures ap = 1, the dispersion relations
do not depend on the value of β‖, which is a consequence of neglecting the FLR
pressure corrections, as will be discussed later, and all solutions are equivalent to
the Hall-MHD dispersion relations. Solutions (4.32)–(4.35) with ap = 1 are plotted in
figure 4(a), where we plotted both positive and negative wavenumbers and positive
and negative frequencies to clearly understand how the modes are connected to each
other. The magenta and cyan lines are plotted as dashed lines, so that the growth
rates in the firehose-unstable regime (plotted in figure 5) are clearly visible. For
anisotropic temperatures ap 6= 1, the solutions are naturally β‖ dependent. To show
solutions in a firehose unstable regime, one has to choose β‖> 2 since the instability
does not exist for lower values of β‖. In figure 4(b), we have chosen a value of
β‖ = 4 and varied the temperature anisotropy from ap = 2 down to a critical value of
ap = 0.5. In this regime, all the modes have purely real frequencies.

Importantly, if the temperature anisotropy parameter ap is further decreased, the
frequencies of all the modes will become complex numbers (with a real and imaginary
part) in the region where

1+
β‖

2
(ap − 1)+

k2
‖
V2

A

4Ω2
p

< 0, (4.37)

which can be viewed as a modified Hall-CGL firehose instability threshold that is now
length-scale dependent. At long spatial scales (k‖→ 0), the above criterion is naturally
equivalent to the CGL firehose criterion. The term proportional to k2

‖
in (4.37) is

always positive and as k‖ increases, after some critical wavenumber the frequency
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(a) (b)

FIGURE 5. Dispersion relations for the Hall-CGL model (with cold electrons), for parallel
propagation θ = 0, with fixed β‖ = 4, after crossing the firehose threshold ap = T⊥/T‖ <
0.5. The colour coding of lines is according to (4.32)–(4.35). The thickness of the lines
decreases as going away from the threshold ap = 0.5. (a) Real frequency and the curves
have ap = 0.49; 0.2; 0.0. (b) Imaginary frequency and the curves have ap = 0.4; 0.2; 0.0.
The mode with ap = 0.49, shown in (a), has an imaginary part of the frequency which
is very close to zero for the entire range of k‖. For this reason this mode is not plotted
in (b), where instead a mode with ap=0.4 is plotted. A mode that has Imω>0 is unstable
and growing in time. A mode that has Imω < 0 is stable and damped. According to the
figure, whistler modes with ωr > 0 are unstable, and ion-cyclotron modes with ωr < 0 are
unstable. It is assumed that

√
−1=+i. The solutions for ωr < 0 are here non-causal, and

(b) should be re-plotted with causal solutions (4.43)–(4.46), so that whistler modes are
always unstable, and ion-cyclotron modes stable.

of modes will become purely real. The Hall term is therefore responsible for the
stabilization of the firehose instability at sufficiently high wavenumbers (small spatial
scales). The solutions in this firehose-unstable regime are plotted in figure 5, where
again β‖ = 4 and the temperature anisotropy is varied from ap = 0.49 to the lowest
possible value of ap = 0.0. Figure 5(a) shows real frequencies and the (b) shows
imaginary frequencies.

It is of interest to determine which mode becomes unstable. According to our
Fourier transform (see appendix A), a mode with positive imaginary frequency is
unstable and growing, and a mode with negative imaginary frequency is stable and
damped. If the firehose threshold (4.37) is satisfied, for some range of k‖ the second
terms in solutions (4.32)–(4.35) become purely imaginary and the first terms stay
purely real. Consider one of the four possible quadrants in figure 5(a), for example
the quadrant with k‖> 0;ωr > 0. Up to some critical k‖ where the Hall-CGL firehose
criterion is satisfied, both the blue mode and the cyan mode propagate with the same
real frequency ωr = +k2

‖
V2

A/(2Ωp). The differences are in the imaginary frequency,
see figure 5(b), where in this quadrant the blue mode is unstable and the cyan mode
is stable (and damped). After a critical k‖ (for example for ap= 0 it is k‖VA/Ωp= 2),
both modes become purely real and evolve with different real frequencies, here the
blue mode is obviously the whistler mode and the cyan mode is the ion-cyclotron
mode. The same situation is in the quadrant k‖ < 0; ωr > 0. We can therefore
conclude that for positive real frequencies, ωr > 0, the whistler mode is unstable and
the ion-cyclotron mode is stable and damped.
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Now we could say that considering both positive and negative wavenumbers and
frequencies is redundant, and that we are finished. However, from a perspective of
this guide, we consider useful to show that one might easily come into contradictions,
if negative frequencies are not handled with sufficient care. Importantly, according
to figure 5, for negative real frequencies ωr < 0, the whistler mode is stable and the
ion-cyclotron mode is unstable. This is indeed contradictory. Keeping the k‖ > 0, a
change from positive to negative ωr represents a change of direction of propagation
along B0. One can argue, that in a homogeneous system (e.g. excluding propagation
in a stratified fluid), a change of direction of propagation should not yield a change of
stability. Additionally, kinetic theory and simulations show, that it is the whistler mode
that is firehose unstable for both ωr > 0 and ωr < 0, and the ion-cyclotron mode is
stable. It is important to emphasize that, from a perspective of solutions (4.32)–(4.35),
at the range of wavenumbers where the firehose instability is present, the whistler and
ion-cyclotron modes propagate (in a given quadrant) with the same real frequency.
Moreover, both modes have the same polarization of electric and magnetic field
(see § 4.2.3). Both modes are completely degenerate, and not distinguishable. Thus,
how the modes are continued for higher wavenumbers once the firehose instability
disappears, is not obvious (since

√
−1 can be possibly both +i or −i). One should

consider all the possible solutions and verify, which solutions are physically plausible.
Therefore, after the firehose threshold is crossed, the analytic solutions (4.32)–(4.35)
are not correctly separated. Obviously, more ‘physical information’ is needed to
distinguish between the ion-cyclotron and whistler modes in the firehose-unstable
regime, and to determine which solutions are causal and which are non-causal.

4.2.2. Generalization to causal (correct) solutions
The mind boggling puzzle as why the Hall-CGL solutions (4.32)–(4.35) are in

contradiction to kinetic theory and to common sense (a discrepancy found by one
of the referees of this text), was beautifully solved by Paul Cally. The easiest way
to obtain correct solutions is to introduce a very small ‘causal’ dissipation into the
system, and remove it later. Alternatively, it should be possible to obtain the same
result by using Laplace–Fourier transforms on temporal-spatial scales and considering
an initial value problem.

We introduce causality, by adding a tiny amount of dissipation on the right-hand
sides of momentum equations (4.19)–(4.20), in the following form

∂ux

∂t
− v2

A‖∂z
Bx

B0
=+ε

2V2
A

Ωp
∂2

z ux; (4.38)

∂uy

∂t
− v2

A‖∂z
By

B0
=+ε

2V2
A

Ωp
∂2

z uy, (4.39)

where ε is a dimensionless real small positive number, for example ε = 10−8. The
dissipation will be later completely removed by the limit limε→0+ . The V2

A/Ωp is there
so that the parameter ε is indeed dimensionless (since here we usually normalize
with respect to VA and Ωp, but other normalizations can be of course considered).
The factor of 2 is there for pure convenience, so that the final dispersion relations
(4.43)–(4.46) are of the utmost beauty, and that we do not have to later redefine ε. The
momentum equations are accompanied by the induction equations (4.21)–(4.22). The
reader is encouraged to verify the calculations by switching to normalized variables
k̃‖ = k‖VA/Ωp, ω̃=ω/Ωp, ṽ2

A‖ = 1+ (β‖/2)(ap − 1), we continue in physical units.
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By adding the dissipation, the dispersion relation (4.31) is modified to the following
form [

ω2
+

k2
‖
V2

A

Ωp
ω(1+ 2iε)− k2

‖
v2

A‖ + 2iε
k4
‖
V4

A

Ω2
p

]
(iBx − By)= 0; (4.40)[

ω2
−

k2
‖
V2

A

Ωp
ω(1− 2iε)− k2

‖
v2

A‖ − 2iε
k4
‖
V4

A

Ω2
p

]
(iBx + By)= 0. (4.41)

It is useful to define the Hall-CGL firehose threshold

∆≡ 1+
β‖

2
(ap − 1)+

k2
‖
V2

A

4Ω2
p

, (4.42)

and similar generalizations can be done for models with FLR corrections. Then, since
ε is small, it is easy to show that the non-causal solutions (4.32)–(4.35) are ‘corrected’
by the tiny dissipation to the following causal form

ωIC,1 = −
k2
‖
V2

A

2Ωp
+ |k‖|VA lim

ε→0+

√
∆− iε; −Green line; (4.43)

ωW,1 = −
k2
‖
V2

A

2Ωp
− |k‖|VA lim

ε→0+

√
∆− iε; −dashed Magenta line; (4.44)

ωW,2 = +
k2
‖
V2

A

2Ωp
+ |k‖|VA lim

ε→0+

√
∆+ iε; −Blue line; (4.45)

ωIC,2 = +
k2
‖
V2

A

2Ωp
− |k‖|VA lim

ε→0+

√
∆+ iε; −dashed Cyan line. (4.46)

The reader is encouraged to plot these solutions, for example with ε=10−8, and verify
that figure 5(b), is indeed corrected, i.e. that the whistler is unstable for both ωr > 0
and ωr < 0. We want to further address the limits. For clarity, let us first consider the
following simplest case

lim
ε→0+

√
−1± iε =

ε

2
± i, (4.47)

where one can further suppress the small real ε/2 on the right-hand side. The limit
(4.47) provides an answer, when

√
−1 is equal to +i or −i. The result (4.47) can be

easily generalized, and limits in expressions (4.43)–(4.46) are calculated according to

lim
ε→0+

√
∆± iε =


√
∆, ∆> 0;

0, ∆= 0;
±i
√
−∆, ∆< 0.

(4.48)

Obviously, the whistler solutions (4.44), (4.45) are unstable, and the ion-cyclotron
solutions (4.43), (4.46) are damped. Only now we can conclude with confidence, that
the parallel firehose instability as an instability of the whistler mode.

We note that if instead of the momentum equations, we added the dissipation
(diffusivity) to the induction equations, the solutions (4.43)–(4.46) are recovered with
ε→−ε. In other words, by adding dissipation to the induction equations, the whistler
mode would be always damped and the ion-cyclotron mode unstable. The result makes
sense with respect to kinetic theory, since the ion-cyclotron resonances enter through
the velocity moment (by integration over the perturbation of the distribution function
f (1)), or more precisely through the current j=

∑
r qrnrur, see Part 2.
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4.2.3. Polarization
The polarization of the magnetic field can be easily checked, actually without

plugging any dispersion relations into the matrix (4.26), since the matrix can be
represented simply as (

a +ib
−ib a

)(
Bx
By

)
=

(
0
0

)
, (4.49)

where a=ω2
− v2

A‖k
2
‖

and b= V2
Ak2
‖
ω/Ωp. It is useful to define the polarization as the

angle between the complex Bx and By components, which is calculated as Arg(By/Bx).
If the result is smaller than zero, the wave is left polarized. If the result is larger than
zero, the wave is right polarized. The determinant of the matrix (4.49) is a2

− b2
= 0,

so a=±b. The case a=−b (which is directly equal to the first bracket in (4.31) with
solutions (4.32), (4.33)) yields that By =−iBx, so that

By

Bx
=−i= e−i(π/2)

; ⇒ Arg
By

Bx
=−

π

2
< 0 (left polarized). (4.50)

The second case a=+b (which is equal to the second bracket in (4.31) with solutions
(4.34), (4.35)) yields that By =+iBx, so that

By

Bx
=+i= e+i(π/2)

; ⇒ Arg
By

Bx
=+

π

2
> 0 (right polarized). (4.51)

Similarly, one can calculate the polarization of electric field E, and (when not
specified that the B field is considered), the words left/right polarized are usually
meant for the E field. The ratio Ey/Ex can be easily calculated, for example
from equations (4.74), (4.75) (written there in the normalized form), which when
multiplied by ω and use of momentum equations, yields for the special case of
parallel propagation considered here

Ey

Ex
=

−ṽ2
A‖ + iω̃

By

Bx

ṽ2
A‖

By

Bx
+ iω̃

. (4.52)

When plotting many solutions, it is useful to additionally divide the angle by π, and
define the B and E field polarizations as

PB =
1
π

Arg
By

Bx
; PE =

1
π

Arg
Ey

Ex
. (4.53)

Electric field polarization defined this way was used for example by Hunana
et al. (2013) to investigate properties of (highly oblique) kinetic Alfvén waves in
various fluid models and the kinetic description; and also by Camporeale & Burgess
(2017), who compared various linear modes in hybrid, gyrokinetic and fully kinetic
descriptions.11 When PE < 0 the wave is called left polarized and when PE > 0, the
wave is called right polarized. For the first group (4.50) this yields Ey/Ex = −i and

11Similar definition was used by Sahraoui, Belmont & Goldstein (2012), who however plot a somewhat
confusing Arg(Ey)/π, since in the WHAMP code the electric field is normalized so that Arg(Ex)= 0.
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PE=−1/2< 0 (left polarized wave), and for the second group (4.51) Ey/Ex=+i and
PE =+1/2> 0 (right polarized wave).

Finally, it is of interest to note another possible definition of polarization, that is
defined with respect to positive real frequency, i.e. the electric field polarization (4.53)
is redefined to

PE =
sign(ωr)

π
Arg

Ey

Ex
. (4.54)

A similar definition of polarization with sign(ωr) is used for example in the book
by Gary (1993), page 91. With such a definition, the whistler mode is always right
polarized, both in the firehose-stable and firehose-unstable regimes, since for the
whistler mode ((4.34), blue line) the real frequency remains ωr > 0, and for the
whistler mode ((4.33), magenta line) ωr < 0. The situation is more confusing for
the ion-cyclotron mode, where the firehose-stable and firehose-unstable regimes have
to be considered separately. (i) In the firehose-stable regime, both ion-cyclotron
modes are left polarized, since for the mode ((4.32), green line) ωr > 0, and for
the mode ((4.35), cyan line) ωr < 0. (ii) In contrast, in the firehose-unstable regime,
both ion-cyclotron modes are right polarized, since for the mode ((4.32), green line)
ωr < 0, and for the mode ((4.35), cyan line) ωr > 0.

4.2.4. Simplest ion-cyclotron resonances
When talking about ‘resonances’, one often expects to see expressions with

a denominator that becomes zero. Generally speaking, the simplest ‘singular’
expressions representing resonances just arise from a technique used in deriving
the dispersion relations. If one eliminates the electric field E from the beginning
and expresses the fluid model through a matrix multiplied by a vector (ρ, ux, uy, uz,
bx, by, bz, p‖, p⊥), leads to dispersion relations that are not singular explicitly. In
contrast, expressing the model through a matrix multiplied by a vector (Ex, Ey, Ez),
yields equivalent dispersion relations where the resonances are shown explicitly. The
dispersion equation (4.31) can be easily rewritten as

k2
‖

ω2
=−

Ωp/V2
A

ω−Ωp

(
1+

β‖

2
(ap − 1)

) ; k2
‖

ω2
=+

Ωp/V2
A

ω+Ωp

(
1+

β‖

2
(ap − 1)

) , (4.55)

which, in the cold plasma limit (β‖= 0) or in this case also for isotropic temperatures
(ap = 1), simplifies to

k2
‖

ω2
=−

Ωp/V2
A

ω−Ωp
;

k2
‖

ω2
=+

Ωp/V2
A

ω+Ωp
, (4.56)

making it more evident that we have the simplest ion-cyclotron resonances here too.
Indeed, for k→∞ the frequency ω→Ωp (first case) and ω→−Ωp (second case).
For a plasma with finite β‖ and non-isotropic temperatures, the k→∞ limit yields
more general ion-cyclotron resonances (4.30).

To better understand what effects are present and what effects are absent in the
Hall-CGL model, we plot fully kinetic solutions obtained with the WHAMP code
in figure 6. The proton temperature is prescribed to be isotropic T⊥/T‖ = 1 and the
electrons are prescribed to be cold with Te/Tp = 0 (in the WHAMP code, the value
is chosen to be 10−8). In the WHAMP code it is necessary to prescribe the ratio of
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(a) (b)

FIGURE 6. (a) Comparison of solutions of full kinetic theory obtained with the WHAMP
code (solid lines) and the simple dispersion of the Hall-CGL model (dashed lines) for
the whistler mode (blue) and the ion-cyclotron mode (green). The proton temperatures are
isotropic T⊥/T‖= 1, electrons are cold and the angle of propagation θ = 0. Real frequency
is plotted. The β‖ is varied as β‖ = 10−4

; 0.1; 1; 2; 4. The kinetic solutions show that
while the frequency of whistler mode is not very β‖ dependent (only the case β‖ = 4
is slightly different), the frequency of the ion-cyclotron mode is strongly β‖ dependent
since the mode experiences strong damping. The Hall-CGL model has only the simplest
ion-cyclotron resonance, and the Hall-CGL ion-cyclotron mode matches the kinetic ion-
cyclotron mode only for the lowest β‖= 10−4. (b) Solutions of the Hall-CGL-FLR2 model
are plotted. Note that the real frequency of the ion-cyclotron mode is crudely reproduced.

the parallel proton thermal speed to the speed of light, and we choose vth‖/c= 10−4.
The solid lines are kinetic solutions with different β‖ = 10−4

; 0.1; 1; 2; 4. The blue
curve is the whistler mode and the green curve is the ion-cyclotron mode. Solutions
of the Hall-CGL model are shown in figure 6(a) and, for isotropic temperatures, the
solutions are completely β‖ independent and are represented with two dashed curves.
It is shown that the kinetic solutions for the whistler mode are almost β‖ independent
and only the mode with β‖ = 4 deviates from the other whistler solutions, and only
between kdi = 0.1 − 2.0. For comparison, in figure 6(b) we plot solutions of the
Hall-CGL-FLR2 model (the model is discussed later in the text).

4.3. Hall-CGL dispersion relation for arbitrary propagation angle
To make everything as clear as possible, let us write down one more time the
normalized equations we are solving, including the linearized and Fourier transformed
equations in the x–z plane. The nonlinear Hall-CGL equations with cold electrons are
(dropping the tilde)

∂ρp

∂t
+∇ · (ρup)= 0; (4.57)

∂up

∂t
+ up · ∇up +

β‖

2
1
ρp
∇ · pp −

1
ρp
(∇×B)×B= 0; (4.58)

∂B
∂t
−∇× (up ×B)+∇×

[
1
ρp
(∇×B)×B

]
= 0; (4.59)

∂p‖p
∂t
+∇ · (p‖pup)+ 2p‖pb̂ · ∇up · b̂= 0; (4.60)
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∂p⊥p

∂t
+∇ · (p⊥pup)+ p⊥p∇ · up − p⊥pb̂ · ∇up · b̂= 0. (4.61)

Linearizing in normalized units is even easier, because (temporarily introducing back
the tilde for clarity) p̃(0)‖p = 1; p̃(0)⊥p = ap; ρ̃0 = 1; B̃0 = 1. Linearizing these equations,
writing them in the x–z plane and Fourier transforming yields (dropping also the
proton index ‘p’)

−ωρ + k⊥ux + k‖uz = 0; (4.62)

−ωux +
β‖

2
k⊥p⊥ − v2

A‖k‖Bx + k⊥Bz = 0; (4.63)

−ωuy − v
2
A‖k‖By = 0; (4.64)

−ωuz +
β‖

2
k‖p‖ +

β‖

2
(1− ap)k⊥Bx = 0; (4.65)

−ωBx − k‖ux − ik2
‖
By = 0; (4.66)

−ωBy − k‖uy − ik‖k⊥Bz + ik2
‖
Bx = 0; (4.67)

−ωBz + k⊥ux + ik‖k⊥By = 0; (4.68)
−ωp‖ + k⊥ux + 3k‖uz = 0; (4.69)
−ωp⊥ + 2apk⊥ux + apk‖uz = 0, (4.70)

where the normalized v2
A‖ = 1 + (β‖/2)(ap − 1). Alternatively, it is sometimes

illuminating to work with the general induction equation where the electric field
is used

−ωBx − k‖Ey = 0; (4.71)
−ωBy − k⊥Ez + k‖Ex = 0; (4.72)
−ωBz + k⊥Ey = 0, (4.73)

and in this case with cold electrons the electric field components are

Ex =−uy − ik⊥Bz + ik‖Bx; (4.74)
Ey = ux + ik‖By; (4.75)

Ez = 0. (4.76)

The induction equation (4.71)–(4.73) with the above electric field components is of
course equivalent to the induction equation (4.66)–(4.68). All equations are normalized,
the tilde are dropped, and the electric field Ẽ= E/E0, where E0 = VAB0/c. The Hall-
CGL dispersion relation reads

ω6
− A4ω

4
+ A2ω

2
− A0 = 0; (4.77)

A4 = k2
‖

(
3
2β‖ + 2v2

A‖

)
+ k2
⊥
(1+ apβ‖)+ k2k2

‖
; (4.78)

A2 = k2
‖

[
k2
‖
v2

A‖(v
2
A‖ + 3β‖)+ k2

⊥

(
v2

A‖(1+ apβ‖)+
3
2β‖
(
1+ apβ‖ −

1
6 a2

pβ‖
))]

+ k2k2
‖
β‖
(

3
2 k2
‖
+ apk2

⊥

)
; (4.79)

A0 =
3
2β‖k

4
‖
v2

A‖

[
k2
‖
v2

A‖ + k2
⊥

(
1+ apβ‖ −

1
6 a2

pβ‖
)]
+ k2k4

‖
k2
⊥

5
4 apβ

2
‖
, (4.80)
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where the wavenumber k2
= k2

‖
+ k2

⊥
. Perhaps the nicest form is to keep the CGL

contributions on the left-hand side (so the terms can be factorized to form the CGL
dispersion relation) and put the Hall term contributions on the right-hand side, which
yields the Hall-CGL dispersion relation

(ω2
− k2
‖
v2

A‖)(ω
4
− A2ω

2
+ A0)= k2k2

‖

[
ω4
− β‖

(
3
2 k2
‖
+ apk2

⊥

)
ω2
+ k2
‖
k2
⊥

5
4 apβ

2
‖

]
; (4.81)

A2 = k2
⊥
(1+ apβ‖)+ k2

‖

(
v2

A‖ +
3
2β‖
)
; (4.82)

A0 =
3
2 k2
‖
β‖
[
k2
‖
v2

A‖ + k2
⊥

(
1+ apβ‖ −

1
6 a2

pβ‖
)]
. (4.83)

Solutions for the parallel propagation (k⊥= 0) are of course the whistler and the ion-
cyclotron mode

ω=±
k2
‖

2
+ k‖

√
v2

A‖ +
k2
‖

4
, (4.84)

with other two solutions obtained by exchanging ω with −ω. By bringing back the
tilde to the normalized solution (4.84), the result (4.36) in physical units is easily
recovered. The other parallel solution is the ion-acoustic mode ω=±

√
3β‖/2k‖. For

perpendicular propagation (k‖ = 0), the fast mode solution is ω = ±k⊥
√

1+ apβ‖,
which is equivalent to CGL since the Hall term disappears.

We investigated solutions of the Hall-CGL model in much greater detail in our
paper ‘On the Parallel and Oblique Firehose Instability in Fluid Models’ (Hunana &
Zank 2017), a paper which was essentially pulled out of this guide. We do not want
to repeat the discussion with many associated figures here, and a reader who is further
interested in the Hall-CGL firehose instability can find much more information in that
paper.

5. FLR corrections to the pressure tensor
The finite Larmor radius corrections to the pressure tensor can be derived at several

levels of approximation. The pressure tensor equation (2.50) can be rewritten as

b̂×Π + (b̂×Π)T =−
1
Ω

B0

|B|

[
∂p
∂t
+∇ · (up+ q)+ p · ∇u+ (p · ∇u)T

]
. (5.1)

This equation is exact and since p= pg
+Π, the FLR tensor Π is described implicitly.

5.1. Fully nonlinear FLR corrections
If preservation of all nonlinearities is desired, this implicit equation can be further
rewritten by the following procedure that can be found for example in Hsu et al.
(1986), Passot & Sulem (2004) and Ramos (2005) as a brief note. By applying b̂×
to the left-hand side, the first term calculates as

[b̂× (b̂×Π)]ij = εiklb̂k(b̂×Π)lj = εiklb̂kεlrsb̂rΠsj = (δirδks − δisδkr)b̂kb̂rΠsj

= b̂kb̂iΠkj − b̂kb̂k︸︷︷︸
=1

Πij = b̂ib̂kΠkj −Πij, (5.2)

where we have used that εiklεlrs= δirδks− δisδkr. The second term on the left-hand side
of (5.1) calculates quite differently and we will need an identity

εiklεjrs = δij(δkrδls − δksδlr)− δir(δkjδls − δksδlj)+ δis(δkjδlr − δkrδlj). (5.3)
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Let us also remind ourselves that in the index notation Πss= TrΠ = 0 and b̂kb̂lΠkl =

Π : b̂b̂= 0. The second term calculates as

[b̂× (b̂×Π)T]ij = εiklb̂k(b̂×Π)Tlj = εiklb̂k(b̂×Π)jl = εiklb̂kεjrsb̂rΠsl = εiklεjrsb̂kb̂rΠsl

= δij(b̂kb̂k Πss︸︷︷︸
=0

− b̂kb̂lΠkl︸ ︷︷ ︸
=0

)− (b̂jb̂i Πss︸︷︷︸
=0

−b̂kb̂iΠkj)+ (b̂jb̂lΠil − b̂kb̂kΠij)

= b̂ib̂kΠkj + b̂jΠilb̂l −Πij. (5.4)

The entire left-hand side therefore reads

[b̂× (b̂×Π)+ b̂× (b̂×Π)T]ij =−2Πij + 2b̂ib̂lΠlj + b̂jΠilb̂l. (5.5)

Performing a usual matrix (single) dot product of this result with matrix b̂b̂ yields

[[b̂× (b̂×Π)+ b̂× (b̂×Π)T] · (b̂b̂)]ij = [b̂× (b̂×Π)+ b̂× (b̂×Π)T]ik(b̂b̂)kj

= [−2Πik + 2b̂ib̂lΠlk + b̂kΠilb̂l]b̂kb̂j =−2Πikb̂kb̂j + 2b̂ib̂j Πlkb̂lb̂k︸ ︷︷ ︸
=0

+Πilb̂lb̂j b̂kb̂k︸︷︷︸
=1

=−2Πikb̂kb̂j +Πilb̂lb̂j =−2Πikb̂kb̂j +Πikb̂kb̂j =−Πikb̂kb̂j. (5.6)

This further yields that

[[b̂× (b̂×Π)+ b̂× (b̂×Π)T] · (I + 3b̂b̂)]ij = −2Πij + 2b̂ib̂kΠkj + b̂jΠikb̂k − 3Πikb̂kb̂j

= −2Πij + 2b̂ib̂kΠkj − 2Πikb̂kb̂j, (5.7)

and adding this result together with its transpose implies

[[b̂× (b̂×Π)+ b̂× (b̂×Π)T] · (I + 3b̂b̂)]Sij
=−2Πij + 2b̂ib̂kΠkj − 2Πikb̂kb̂j − 2Πji + 2b̂jb̂kΠki − 2Πjkb̂kb̂i =−4Πij, (5.8)

where we have used that the Πij=Πji. One therefore derives that the FLR tensor can
be extracted from the left-hand side of (5.1) by performing an ‘inversion’ procedure

Π =− 1
4 [[b̂× (b̂×Π)+ b̂× (b̂×Π)T] · (I + 3b̂b̂)]S. (5.9)

We can introduce matrix κ that will represent the right-hand side of (5.1) as

b̂×Π + (b̂×Π)T =−κ; (5.10)

κ =
1
Ω

B0

|B|

[
∂p
∂t
+∇ · (up+ q)+ p · ∇u+ (p · ∇u)T

]
. (5.11)

By performing operations (5.9) in this equation yields the FLR tensor in the following
form

Π = 1
4 [(b̂× κ) · (I + 3b̂b̂)]S. (5.12)

The expression (5.12) is completely general since no simplifications were introduced,
the expression is exact. However, the equation is still implicit, since on the right-
hand side the tensor κ contains the full pressure tensor p= pg

+Π. Nevertheless, the
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equation is extremely useful, once the expansion of the right-hand side is performed,
as we will do below. Note that the brackets are not unique, since

(b̂× κ) · (I + 3b̂b̂)= b̂× [κ · (I + 3b̂b̂)] = b̂× κ · (I + 3b̂b̂), (5.13)

where the last choice leaves the brackets unspecified (since both options are allowed),
similarly to b̂ · ∇u. Alternatively, one can get rid of the operator ·I (which acting on
a matrix yields the same matrix), and split the result into two parts

Π = 1
4(b̂× κ)

S
+

3
4(b̂× κ · b̂b̂)S. (5.14)

Another possible form can be obtained by subtracting the evolution equations for the
gyrotropic pressure components ∂p‖/∂t and ∂p⊥/∂t. The scalar pressure equations
were derived by applying : b̂b̂ and : (I − b̂b̂)/2 to the pressure tensor equation. The
subtraction can be formally represented by introducing ‘overbar’ projection operator
ā that projects any (3× 3) matrix a to

ā= a− [a : b̂b̂]b̂b̂− [a : (I − b̂b̂)/2](I − b̂b̂). (5.15)

The definition is of course motivated by the pressure decomposition (2.46). By
applying this operator to (5.10), the left-hand side remains the same, yielding
(b̂×Π)S =−κ̄ . The solution (5.12) for the FLR tensor therefore rewrites

Π = 1
4 [(b̂× κ̄) · (I + 3b̂b̂)]S. (5.16)

The subtraction of scalar pressure equations is motivated by the observation that when
working in the linear approximation directly with (5.10), i.e. without performing the
inversion procedure, the scalar pressure equations have to be subtracted at the end.
However, by performing the inversion procedure, the scalar pressure equations are
subtracted ‘automatically’ during calculations, and it is actually easier to work directly
with (5.12) instead of (5.16).

Therefore, let us work with (5.12). The leading-order nonlinear FLR corrections are
obtained by neglecting the non-gyrotropic contributions Π and qng on the right-hand
side of (5.12), i.e. by prescribing

Π = 1
4 [(b̂× κ

(1)) · (I + 3b̂b̂)]S; (5.17)

κ (1) =
1
Ω

B0

|B|

[
∂pg

∂t
+∇ · (upg

+ qg)+ pg
· ∇u+ (pg

· ∇u)T
]
. (5.18)

Therefore, the only non-gyrotropic quantities that were retained on the right-hand side
of (5.12), are the perpendicular components of the velocity u. The slightly unappealing
factors B0/|B| in all the expressions can be removed, by redefining the cyclotron
frequency with |B| instead of B0, so that Ω|B| = e|B|/(mc). Let us calculate (5.17)
step by step. For the brevity of the calculations, it is useful to introduce convective
derivative d/dt= ∂/∂t+ u · ∇ and work with

κ (1) =
1
Ω|B|

[
dpg

dt
+ pg
∇ · u+∇ · qg

+ pg
· ∇u+ (pg

· ∇u)T
]
. (5.19)
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We want to present complete derivation with the least amount of algebra involved, and
we first want to obtain the form of Schekochihin et al. (2010). Let us first write each
term in κ (1) in the index notation. By using

pg
ij = (p‖ − p⊥)b̂ib̂j + p⊥δij; (5.20)

qg
ijk = (q‖ − 3q⊥)b̂ib̂jb̂k + q⊥(δijb̂k + δjkb̂i + δikb̂j), (5.21)

in the following form(
dpg

dt

)
ij

= b̂ib̂j
d
dt
(p‖ − p⊥)+ (p‖ − p⊥)

d
dt
(b̂ib̂j)+ δij

dp⊥
dt
; (5.22)

(pg
∇ · u)ij = ((p‖ − p⊥)b̂ib̂j + δijp⊥)∇ · u; (5.23)

(pg
· ∇u)ij = (p‖ − p⊥)b̂ib̂ · ∇uj + p⊥∂iuj; (5.24)

(pg
· ∇u)Tij = (p‖ − p⊥)b̂jb̂ · ∇ui + p⊥∂jui; (5.25)

(∇ · qg)ij = b̂ib̂j∇ · ((q‖ − 3q⊥)b̂)+ (q‖ − 3q⊥)b̂ · ∇(b̂ib̂j)

+ δij∇ · (q⊥b̂)+ ∂i(q⊥b̂j)+ ∂j(q⊥b̂i) (5.26)

and grouping similar terms in κ (1) together yields

κ
(1)
ij =

1
Ω|B|

{
p⊥(∂iuj + ∂jui)+ ∂i(q⊥b̂j)+ ∂j(q⊥b̂i)

+ (p‖ − p⊥)
[

d
dt
(b̂ib̂j)+ b̂ib̂ · ∇uj + b̂jb̂ · ∇ui

]
+ (q‖ − 3q⊥)b̂ · ∇(b̂ib̂j)

+b̂ib̂j

[
d
dt
(p‖ − p⊥)+ (p‖ − p⊥)∇ · u+∇ · ((q‖ − 3q⊥)b̂)

]
+ δij

[
dp⊥
dt
+ p⊥∇ · u+∇ · (q⊥b̂)

]}
. (5.27)

The first line in the above expression is left unchanged, since it is the final result,
defined below as a matrix W ij = p⊥(∂iuj + ∂jui) + ∂j(q⊥b̂i) + ∂i(q⊥b̂j), that can be
written as W = p⊥∇u+∇(q⊥b̂)+ (p⊥∇u+∇(q⊥b̂))T = (p⊥∇u+∇(q⊥b̂))S. However,
calculating the rest of the expression according to (5.17) simplifies several terms, and
for example all terms in the third line of (5.27) vanish. The terms in the third line
containing b̂ib̂j vanish after applying b̂×, since (b̂× (b̂b̂))ij = εiklb̂kb̂lb̂j = 0. The terms
in the third line containing δij vanish after applying the symmetric operator since

[(b̂× I) · (I + 3b̂b̂)]Sij = [(b̂× I)im(I + 3b̂b̂)mj]
S
= [εiklb̂kδlm(δmj + 3b̂mb̂j)]

S

= [εikjb̂k + 3 εiklb̂kb̂l︸ ︷︷ ︸
=0

b̂j]
S
= εikjb̂k + εjkib̂k = εikjb̂k − εikjb̂k = 0.

(5.28)

We therefore need to concentrate only on the second line of (5.27), and slightly rewrite
that one. For example, the first term in the second line of (5.27), the term d/dt(b̂ib̂j),
calculates as
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b̂×

d
dt
(b̂b̂)

)
· (I + 3b̂b̂)

]S

ij

=

[(
b̂×

d
dt
(b̂b̂)

)
im

(I + 3b̂b̂)mj

]S

=

[
εiklb̂k

d
dt
(b̂lb̂m)(δmj + 3b̂mb̂j)

]S

=

[
εiklb̂k

(
�

�
�

b̂l
db̂m

dt
+ b̂m

db̂l

dt

)
(δmj + 3b̂mb̂j)

]S

=

[
εiklb̂k

db̂l

dt
(b̂j + 3b̂j)

]S

= 4

[(
b̂×

db̂
dt

)
i

b̂j

]S

= 4

[(
b̂×

db̂
dt

)
b̂

]S

ij

. (5.29)

The second term in the second line of (5.27), the term b̂ib̂ · ∇uj, vanishes after
applying b̂×, since

[b̂× (b̂(b̂ · ∇u))]ij = εiklb̂k(b̂(b̂ · ∇u))lj = εiklb̂kb̂l︸ ︷︷ ︸
=0

(b̂ · ∇u)j = 0. (5.30)

The third term in the second line of (5.27), the term b̂jb̂ ·∇ui however does not vanish.
Note that bjb̂ · ∇ui = ((b̂ · ∇u)b̂)ij and the third term calculates as

[(b̂× ((b̂ · ∇u)b̂)) · (I + 3b̂b̂)]Sij = [(b̂× ((b̂ · ∇u)b̂))im(I + 3b̂b̂)mj]
S

= [εiklb̂k((b̂ · ∇u)b̂)lm(δmj + 3b̂mb̂j)]
S
= [εiklb̂k(b̂ · ∇ul)b̂m(δmj + 3b̂mb̂j)]

S

= 4[εiklb̂k(b̂ · ∇ul)b̂j]
S
= 4[(b̂× (b̂ · ∇u))ib̂j]

S
= 4[(b̂× (b̂ · ∇u))b̂]Sij. (5.31)

The fourth term in the second line of (5.27), calculates in the same fashion than the
second and third terms since b̂ · ∇(b̂ib̂j)= b̂i(b̂ · ∇b̂j)+ (b̂ · ∇b̂i)b̂j, yielding

[(b̂× (b̂ · ∇(b̂b̂))) · (I + 3b̂b̂)]Sij = 4[(b̂× (b̂ · ∇b̂))b̂]Sij. (5.32)

Collecting all the results together yields the FLR tensor

Π =
1

4Ω|B|
[(b̂×W ) · (I + 3b̂b̂)]S +

1
Ω|B|
[(b̂×w)b̂]S; (5.33)

W = [p⊥∇u+∇(q⊥b̂)]S; (5.34)

w= (p‖ − p⊥)

(
db̂
dt
+ b̂ · ∇u

)
+ (q‖ − 3q⊥)b̂ · ∇b̂, (5.35)

where W is a matrix and w is a vector. The result is equivalent to (5)–(8) of
Schekochihin et al. (2010), derived in the Appendix of that paper in a somewhat
simpler way. In Schekochihin et al. (2010), instead of our notation for matrix W and
vector w, the symbols S and σ are used, where S=W and σ =−w. We wanted to
avoid the use of S and σ , since these symbols are typically used when decomposing
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the heat flux tensor. For a reader who just jumped to this result, the symmetric
operator is defined as AS

ij = Aij + Aji. For clarity, for any vector w and any matrix W ,
the following identities hold

[(b̂×w)b̂]S = (b̂×w)b̂+ b̂(b̂×w); (5.36)

[b̂×W · (I + 3b̂b̂)]S = b̂×W · (I + 3b̂b̂)− (I + 3b̂b̂) ·W T
× b̂. (5.37)

The last identity follows from an identity for general matrix A, that reads (b̂×A)T=
−AT
× b̂, and for a matrix A = B · C the AT

= CT
· BT, implying (b̂ × B · C)T =

−CT
· BT
× b̂.

The result (5.33)–(5.35) can be slightly simplified. The matrix W in the index
notation reads

W ij = p⊥(∂iuj + ∂jui)+ q⊥(∂ib̂j + ∂jb̂i)+ (∂iq⊥)b̂j + (∂jq⊥)b̂i, (5.38)

and by applying b̂× eliminates only the last term

(b̂×W )ij = εiklb̂kW lj = εiklb̂k[p⊥(∂luj + ∂jul)+ q⊥(∂lb̂j + ∂jb̂l)+ (∂lq⊥)b̂j +����(∂jq⊥)b̂l ],

(5.39)

implying that the matrix W could possibly be redefined to

W = [p⊥∇u+ q⊥∇b̂]S + (∇q⊥)b̂. (5.40)

However, now the matrix is not symmetric. Note that the brackets in the expression
(5.33) are not unique, and one can for example pull the b̂× out, so that the expression
reads

Π =
1
Ω|B|

{
b̂×

[
1
4

W · (I + 3b̂b̂)+wb̂
]}S

. (5.41)

Let us multiply the last term in (5.40) by ·(I + 3b̂b̂), it calculates as

((∇q⊥)b̂) · (I + 3b̂b̂)= 4(∇q⊥)b̂. (5.42)

Obviously, it is beneficial to move this term to the vector w. Therefore, redefining W
and w, the solution reads

Π =
1

4Ω|B|
[(b̂×W ) · (I + 3b̂b̂)]S +

1
Ω|B|
[(b̂×w)b̂]S;

W = [p⊥∇u+ q⊥∇b̂]S;

w= (p‖ − p⊥)

(
db̂
dt
+ b̂ · ∇u

)
+∇q⊥ + (q‖ − 3q⊥)b̂ · ∇b̂.

(5.43)

(5.44)

(5.45)

Now the matrix W is again symmetric, and w is just a vector. This solution with
matrix (5.44) is slightly nicer than the solution with matrix (5.34). Alternatively, one
can write the solution in its full form
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Π =
1
Ω|B|

{
b̂×

[
1
4
[p⊥∇u+ q⊥∇b̂]S · (I + 3b̂b̂)+ (p‖ − p⊥)

(
db̂
dt
+ b̂ · ∇u

)
b̂

+ (∇q⊥)b̂+ (q‖ − 3q⊥)(b̂ · ∇b̂)b̂

]}S

. (5.46)

The nonlinear solution for the FLR tensor Π can be further re-arranged. For
example, to obtain the form reported by Ramos (2005), one needs to separate a part
that is obtained by performing Π · b̂. The solution (5.43) in the index notation reads

Πij =
1
Ω|B|

{
εiklb̂k

[
1
4

W lm(δmj + 3b̂mb̂j)+wlb̂j

]
+ εjklb̂k

[
1
4

W lm(δmi + 3b̂mb̂i)+wlb̂i

]}
, (5.47)

and direct calculation yields

Πijb̂j =
1
Ω|B|

{
εiklb̂k

[
1
4

W lm(δmj + 3b̂mb̂j)+wlb̂j

]
b̂j

}
=

1
Ω|B|

εiklb̂k(W lmb̂m +wl);

(5.48)

Π · b̂=
1
Ω|B|

b̂× (W · b̂+w)≡
1
Ω|B|

b̂× h, (5.49)

where it was useful to define the new vector h≡W · b̂+w, by adding the quantity

W · b̂= p⊥((∇u) · b̂+ b̂ · ∇u)+ q⊥b̂ · ∇b̂ (5.50)

to the vector w. By separating the Π · b̂ part, the solution (5.43) for Π is therefore
re-arranged to the following form

Π =
1

4Ω|B|
[(b̂×W ) · (I − b̂b̂)]S +

1
Ω|B|
[(b̂× h)b̂]S;

W = [p⊥∇u+ q⊥∇b̂]S;

h= p‖

(
db̂
dt
+ b̂ · ∇u

)
− p⊥

(
db̂
dt
− (∇u) · b̂

)
+∇q⊥ + (q‖ − 2q⊥)b̂ · ∇b̂.

(5.51)

(5.52)

(5.53)

The solution (5.51) has a nice advantage in that it is decomposed with respect to the
magnetic field lines. In other words, projecting Π along the field lines by performing
Π · b̂ cancels the first term, and directly yields vector b̂×h/Ω|B|, that could be defined
as vector EΠz.

5.1.1. Employing a non-dispersive induction equation
Considering the long-wavelength low-frequency limit, the solution (5.45) for vector

w and the solution (5.53) for vector h can be further simplified, by using the usual
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non-dispersive CGL/MHD induction equation, that can be written in the following
form (see later in the text)

db̂
dt
= b̂ · ∇u− b̂[b̂ · (∇u) · b̂]. (5.54)

By further applying b̂× to the induction equation, the last term on the right-hand side
disappears

b̂×
db̂
dt
= b̂× (b̂ · ∇u), (5.55)

and vectors (5.45), (5.53) simplify to

w= 2(p‖ − p⊥)b̂ · ∇u+∇q⊥ + (q‖ − 3q⊥)b̂ · ∇b̂; (5.56)

h= 2p‖b̂ · ∇u− p⊥(b̂ · ∇u− (∇u) · b̂)+∇q⊥ + (q‖ − 2q⊥)b̂ · ∇b̂. (5.57)

The result (5.57) can be further rewritten with vorticity ω=∇× u, by using identity
(∇u) · b̂− b̂ · ∇u= b̂× (∇× u)= b̂×ω, finally yielding

h= 2p‖b̂ · ∇u+ p⊥b̂×ω+∇q⊥ + (q‖ − 2q⊥)b̂ · ∇b̂. (5.58)

Results (5.51), (5.52), (5.58) are equivalent to equations (49)–(51) of Ramos (2005)
(see also (11)–(13) of Macmahon (1965)). Further evaluation of nonlinear FLR
corrections to higher precision is out of the scope of this simple guide, and the
interested reader is referred to Ramos (2005). We will continue in a much simpler
linear approximation.

5.2. Simplest FLR corrections (FLR1)
We could continue by evaluating the obtained nonlinear results in the linear
approximation. However, the nonlinear FLR calculations were quite complicated
and it is very useful to clarify how we derive the simplest FLR corrections directly
in the linear approximation. Let us start again, and work with the general equation
(5.1). To derive the simplest finite Larmor radius corrections to the pressure tensor,
one has to cancel the Π contributions on the right-hand side of equation (5.1) and
also neglect the heat flux contributions, which yields

b̂×Π + (b̂×Π)T =−
1
Ω

B0

|B|

[
∂pg

∂t
+ u · ∇pg

+ pg
∇ · u+ pg

· ∇u+ (pg
· ∇u)T

]
.

(5.59)

Considering complete linearization (so that we can easily go to Fourier space), this
is equivalent to performing expansion to the first order in frequency ω/Ω and to the
first order in wavenumber rLk. We do not want to perform complete linearization
just yet. However, to move further, we introduce simplification by not evaluating the
FLR corrections along the magnetic field lines, but along the ambient magnetic field
B0 that is prescribed to be in the z-direction, and therefore b̂ = (0, 0, 1) ≡ b̂0. This
simplification, typically used in numerical simulations, is appropriate if the magnetic
field lines are not too distorted with respect to the mean magnetic field. Here, we
will distinguish between complete linearization and evaluation along b̂0. However,
it is important to note that the procedure of evaluating some terms with b̂0, while
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other nonlinearities are kept, is of course not a fully consistent procedure. With
the approach presented here, the only fully consistent procedure that simplifies the
general equation (5.1), is complete linearization. Additionally, as discussed by Passot
et al. (2014), neglecting magnetic field line distortion may in some instances lead to
spurious instabilities.

Let us evaluate (5.59) along b̂0. On the left-hand side we calculate each component
in the matrix separately. Since (b̂ × Π)ij = εiklb̂kΠlj, it is obvious that non-zero
contributions are obtained only if b̂k= b̂z= 1, so the index k= z, and (b̂×Π)ij= εizlΠlj.
Now, for example, the ′xx′ component calculates as (b̂×Π)xx = εxzlΠlx and the only
non-zero contribution is obtained for index l= y, which yields (b̂×Π)xx = εxzyΠyx =

−εxyzΠyx = −Πyx = −Πxy, where in the last step we used that the FLR tensor is
symmetric. The entire left-hand side [b̂ ×Π + (b̂ ×Π)T]ij = εizlΠlj + εjzlΠli and it is
straightforward to calculate each component, which yields

b̂×Π + (b̂×Π)T|b̂=b̂0
=

 −2Πxy, Πxx −Πyy, −Πyz
Πxx −Πyy, +2Πxy, Πxz
−Πyz, Πxz, 0

 . (5.60)

The gyrotropic pressure tensor is of course

pg
|b̂=b̂0
=

p⊥ 0 0
0 p⊥ 0
0 0 p‖

 . (5.61)

The first term on the right-hand side of (5.59) calculates as

∂

∂t
pg

ij = b̂ib̂j
∂

∂t
p‖ + (δij − b̂ib̂j)

∂

∂t
p⊥ + (p‖ − p⊥)

(
b̂i
∂

∂t
b̂j + b̂j

∂

∂t
b̂i

)
, (5.62)

and using the matrix notation

(
∂

∂t
pg

)∣∣∣∣
b̂=b̂0

=
∂

∂t

p⊥ 0 0
0 p⊥ 0
0 0 p‖

+ (p‖ − p⊥)


0 0 ∂ b̂x

∂t

0 0 ∂ b̂y

∂t

∂ b̂x
∂t

∂ b̂y

∂t 2 ∂ b̂z
∂t


∣∣∣∣∣∣∣∣

b̂=b̂0

. (5.63)

The second term in (5.63) contributes because of the induction equation ∂B/∂t =
−c∇ × E. For now, we will not use the induction equation and keep our FLR
calculations in the above form. Let us continue with the second term on the right-hand
side of (5.59). When completely linearized this term does not contribute, but for now
we will keep it and combine it with the first term into a convective derivative
∂pg/∂t+ u · ∇pg

= dpg/dt, so that ∂/∂t in (5.63) is replaced by d/dt. The remaining
terms on the right-hand side of (5.59) are straightforward to evaluate since no
derivatives of b̂ are encountered, and the third term pg∇ · u|b̂=b̂0

is equal to matrix
(5.61) multiplied by ∇ · u. The last two terms of (5.59) are together evaluated as

pg
· ∇u+ (pg

· ∇u)T|b̂=b̂0
=

 2p⊥∂xux; p⊥(∂xuy + ∂yux); p⊥∂xuz + p‖∂zux
p⊥(∂yux + ∂xuy); 2p⊥∂yuy; p⊥∂yuz + p‖∂zuy
p‖∂zux + p⊥∂xuz; p‖∂zuy + p⊥∂yuz; 2p‖∂zuz

 .
(5.64)
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Now we need to subtract the scalar CGL pressure equations obtained previously. Since
b̂ · ∇u · b̂|b̂=b̂0

= ∂zuz, the scalar pressure equations read

dp‖
dt
+ p‖∇ · u+ 2p‖∂zuz = 0;

dp⊥
dt
+ 2p⊥∇ · u− p⊥∂zuz = 0. (5.65)

By cancelling terms coming from these two equations (affecting only the diagonal
components), the entire equation (5.59) rewrites

 −2Πxy, Πxx −Πyy, −Πyz
Πxx −Πyy, +2Πxy, Πxz
−Πyz, Πxz, 0

=− 1
Ω
(p‖ − p⊥)


0 0 db̂x

dt

0 0 db̂y

dt

db̂x
dt

db̂y

dt
db̂z
dt


∣∣∣∣∣∣∣∣

b̂=b̂0

−
1
Ω

p⊥(∂xux − ∂yuy); p⊥(∂xuy + ∂yux); p⊥∂xuz + p‖∂zux
p⊥(∂yux + ∂xuy); p⊥(∂yuy − ∂xux); p⊥∂yuz + p‖∂zuy
p‖∂zux + p⊥∂xuz; p‖∂zuy + p⊥∂yuz; 0

 . (5.66)

The identity Π : b̂b̂ = 0 evaluated for b̂ = b̂0 implies that Πzz = 0 and the identity
TrΠ = 0 further implies that Πxx = −Πyy. The components of the pressure tensor
therefore read

Πxx =−Πyy =−
p⊥
2Ω

(∂xuy + ∂yux); Πxy =
p⊥
2Ω

(∂xux − ∂yuy); Πzz = 0;

Πxz =−
1
Ω

(
(p‖ − p⊥)

db̂y

dt
+ p‖∂zuy + p⊥∂yuz

)
;

Πyz =
1
Ω

(
(p‖ − p⊥)

db̂x

dt
+ p‖∂zux + p⊥∂xuz

)
.


(5.67)

Finally, the time derivative of the unit vector

d
dt

b̂=
d
dt

B
|B|
=

1
|B|

dB
dt
−

B
|B|2

d|B|
dt
=

1
|B|

[
dB
dt
− b̂

d|B|
dt

]
=

1
|B|

[
dB
dt
− b̂

(
b̂ ·

dB
dt

)]
,

(5.68)

which evaluated for b̂= b̂0 = (0, 0, 1), |B| = B0 yields

db̂x

dt

∣∣∣∣∣
b̂=b̂0

=
1
B0

dBx

dt

∣∣∣∣
b̂=b̂0

;
db̂y

dt

∣∣∣∣∣
b̂=b̂0

=
1
B0

dBy

dt

∣∣∣∣
b̂=b̂0

;

db̂z

dt

∣∣∣∣∣
b̂=b̂0

=
1
B0

(
dBz

dt
−

dBz

dt

)
= 0.


(5.69)

The general induction equation reads

dB
dt
=−B∇ · u+B · ∇u− c∇×EH, (5.70)
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which evaluates in the b̂= b̂0 approximation as

dBx

dt

∣∣∣∣
b̂=b̂0

= B0∂zux − c(∇×EH)x;
dBy

dt

∣∣∣∣
b̂=b̂0

= B0∂zuy − c(∇×EH)y;

dBz

dt

∣∣∣∣
b̂=b̂0

=−B0∇ · u+ B0∂zuz − c(∇×EH)z.

 (5.71)

These expressions are used in the FLR tensor components Πxz and Πyz, and the FLR
tensor reads

Πxx =−Πyy =−
p⊥
2Ω

(∂xuy + ∂yux); Πxy =
p⊥
2Ω

(∂xux − ∂yuy); Πzz = 0;

Πxz =−
1
Ω

[
(p‖ − p⊥)

(
∂zuy −

c
B0
(∇×EH)y

)
+ p‖∂zuy + p⊥∂yuz

]
;

Πyz =
1
Ω

[
(p‖ − p⊥)

(
∂zux −

c
B0
(∇×EH)x

)
+ p‖∂zux + p⊥∂xuz

]
.


(5.72)

However, since the FLR tensor was derived with a precision to only first order in
wavenumber k, to make everything consistent, the Hall contributions in the induction
equation are usually (but not always) neglected. We therefore have db̂x/dt= ∂zux and
db̂y/dt= ∂zuy which yields the leading-order FLR pressure tensor evaluated along the
magnetic field b̂= (0, 0, 1) in the form

Πxx =−Πyy =−
p⊥
2Ω

(∂xuy + ∂yux); Πxy =
p⊥
2Ω

(∂xux − ∂yuy); Πzz = 0;

Πxz =−
1
Ω
((2p‖ − p⊥)∂zuy + p⊥∂yuz); Πyz =

1
Ω
((2p‖ − p⊥)∂zux + p⊥∂xuz),

 (5.73)

which is equivalent to equation (5) of Yajima (1966). Perhaps surprisingly, the result
is also equivalent to the highly collisional equations (2.20)–(2.24) of Braginskii (1965),
after one prescribes p‖ = p⊥ and after terms containing the collisional time τ are
‘ignored’ (τ ∼ 1/ν where ν is the usual collisional frequency). A proper collisionless
limit τ→∞ cannot be obtained from the expressions of Braginskii (1965), since the
results are proportional to τ (and also 1/τ ).

Furthermore, evaluation along b̂= (0, 0, 1) basically means that the magnetic field
terms of the system were linearized and other parts of the system were not. The
expansion procedure preserved some nonlinearities, but other nonlinearities that are
of the same order were implicitly neglected. Therefore, the only fully consistent
procedure is to evaluate the FLR tensor in the linear approximation, yielding

Π (1)
xx =−Π

(1)
yy =−

p(0)⊥
2Ω

(∂xuy + ∂yux); Π (1)
xy =

p(0)⊥
2Ω

(∂xux − ∂yuy); Π (1)
zz = 0;

Π (1)
xz =−

1
Ω
((2p(0)‖ − p(0)⊥ )∂zuy + p(0)⊥ ∂yuz); Π (1)

yz =
1
Ω
((2p(0)‖ − p(0)⊥ )∂zux + p(0)⊥ ∂xuz).


(5.74)

Notably, the tensor is very different from (3.10)–(3.13) of Oraevskii et al. (1968). The
FLR corrections to the pressure tensor (these ones or more complicated ones) were
used in a number of direct numerical simulations, see for example Borgogno et al.
(2009), Hunana et al. (2011), Kobayashi et al. (2017) and Perrone et al. (2018), or for
the isotropic case see for example Ghosh & Parashar (2015), and references therein.
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5.3. Hall-CGL-FLR1 fluid model
The normalized, linearized, Fourier transformed system of equations written in the x–z
plane reads (dropping the tilde everywhere)

−ωρ + k⊥ux + k‖uz = 0; (5.75)

−ωux +
β‖

2
k⊥p⊥ − v2

A‖k‖Bx + k⊥Bz +
β‖

2
(k⊥Πxx + k‖Πxz)= 0; (5.76)

−ωuy − v
2
A‖k‖By +

β‖

2
(k⊥Πxy + k‖Πyz)= 0; (5.77)

−ωuz +
β‖

2
k‖p‖ +

β‖

2
(1− ap)k⊥Bx +

β‖

2
k⊥Πxz = 0; (5.78)

−ωBx − k‖ux − ik2
‖
By = 0; (5.79)

−ωBy − k‖uy − ik‖k⊥Bz + ik2
‖
Bx = 0; (5.80)

−ωBz + k⊥ux + ik‖k⊥By = 0; (5.81)
−ωp‖ + k⊥ux + 3k‖uz = 0; (5.82)
−ωp⊥ + 2apk⊥ux + apk‖uz = 0, (5.83)

where v2
A‖ = 1+ (β‖/2)(ap − 1), and the first-order FLR tensor Π =Π(1) is

Π (1)
xx =−

ap

2
ik⊥uy; Π (1)

xy =
ap

2
ik⊥ux; Π (1)

zz = 0;

Π (1)
xz =−(2− ap)ik‖uy; Π (1)

yz = (2− ap)ik‖ux + apik⊥uz.

 (5.84)

The dispersion relation for the Hall-CGL-FLR1 fluid model can be written as

(ω2
− k2
‖
v2

A‖)(ω
4
− A2ω

2
+ A0) = k2k2

‖

[
ω4
− β‖

(
3
2 k2
‖
+ apk2

⊥

)
ω2
+ k2
‖
k2
⊥

5
4 apβ

2
‖

]
+PFLR

; (5.85)

A2 = k2
⊥
(1+ apβ‖)+ k2

‖

(
v2

A‖ +
3
2β‖
)
; (5.86)

A0 =
3
2 k2
‖
β‖
[
k2
‖
v2

A‖ + k2
⊥

(
1+ apβ‖ −

1
6 a2

pβ‖
)]
, (5.87)

where the polynomial on the right-hand side

PFLR
= A′4ω

4
− A′2ω

2
+ A′0; (5.88)

A′4 = β
2
‖

[
k4
‖

(
1−

ap

2

)2
+ k4
⊥

a2
p

16
+ k2
‖
k2
⊥

ap

(
1−

ap

2

)]
; (5.89)

A′2 = β‖k2
‖

{
k6
‖
β‖

(
1−

ap

2

)2
+ k4
‖

[
3
2
β2
‖

(
1−

ap

2

)2
+ k2
⊥
β‖

(
1−

a2
p

4

)
+ v2

A‖(ap − 2)

]
+ k2
‖
k2
⊥

[
−1+

ap

2
+ β‖

ap

4

(
1− ap + β‖

(
1−

ap

2

))
− v2

A‖

(
1− β‖

ap

2

(
1−

ap

2

))
+ k2
⊥

apβ‖

(
1−

7
16

ap

)]
+ k4

⊥

ap

4

[
−1+ 2β‖ − v2

A‖ − apβ‖

(
1+ β‖

(
ap −

15
8

)
−

1
4

k2
⊥

)]}
; (5.90)
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A′0 = β2
‖
k4
‖

{
k6
‖

3
2
β‖

(
1−

ap

2

)2
+ k4
‖

(
1−

ap

2

) [
−3v2

A‖ + k2
⊥
β‖

3
2

(
1−

ap

2
+

a2
p

6

)]

+ k2
‖
k2
⊥

[
k2
⊥
β‖a2

p

(
21
32
−

5
16

ap

)
− v2

A‖
3
2

(
1−

ap

2
+

1
6

a2
p

)
−

(
1−

ap

2

) 3
2

(
1+

1
6

apβ‖ −
1
6

a2
pβ‖

)]
+ k4

⊥
ap

[
k2
⊥

apβ‖

(
13
32
−

3
16

ap

)
+
v2

A‖

8
(1− 2ap)−

1
8
+

3
16

apβ‖(1− ap)

]}
.

(5.91)

The solution for strictly parallel propagation is

ω=±
k2
‖

2

(
1+ β‖

(
1−

ap

2

))
+ k‖

√
1+

β‖

2
(ap − 1)+

k2
‖

4

(
1− β‖

(
1−

ap

2

))2
. (5.92)

For strictly perpendicular propagation the solution is

ω=±k⊥

√
1+ apβ‖ +

k2
⊥β

2
‖a2

p

16
, (5.93)

and the result is consistent with equation (17) of Yajima (1966), after neglecting the
electron inertia in that paper (by ω0→∞). The strictly perpendicular propagation is an
excellent example to point out the deficiencies of the Hall-CGL-FLR1 fluid model, or
actually the CGL-FLR1 model, since the Hall contributions are zero for k‖ = 0. The
result (5.93) is also equal to equation (34) of Del Sarto et al. (2017), who discuss
in detail that, compared to solutions of a truncated kinetic Vlasov system, and also
of a fluid model with more precise FLR corrections, the solution (5.93) actually has
the opposite sign in front of the FLR term ∼k2

⊥
. For further refinement with FLR2,

see (5.117) and the subsequent discussion.

5.4. CGL-FLR1 fluid model (no Hall term)
If the Hall term is neglected, the general dispersion relation of the CGL-FLR1 fluid
model reads

(ω2
− k2
‖
v2

A‖)(ω
4
− A2ω

2
+ A0)=PFLR-only, (5.94)

where the CGL parameters A2, A0 are (5.87) and the FLR1 polynomial on the right-
hand side has the form

PFLR-only
=ω2β2

‖
(A′′2ω

2
− A′′0); (5.95)

A′′2 = k4
‖

(
1−

ap

2

)2
+ k4
⊥

a2
p

16
+ k2
‖
k2
⊥

ap

(
1−

ap

2

)
; (5.96)

A′′0 = k2
‖

{
k4
‖

3
2
β‖

(
1−

ap

2

)2
+ k2
‖
k2
⊥

ap

2

(
v2

A‖ +
β‖

2

)(
1−

ap

2

)
+ k4

⊥

ap

2

[
1−

ap

2
+ apβ‖

(
15
16
−

ap

2

)]}
, (5.97)
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where v2
A‖ = 1+ (β‖/2)(ap − 1). For strictly parallel propagation, the solution for the

whistler and ion-cyclotron waves reads

ω=±k2
‖

β‖

2

(
1−

ap

2

)
+ k‖

√
v2

A‖ +
k2
‖β

2
‖

4

(
1−

ap

2

)2
. (5.98)

For strictly perpendicular propagation the solution is equivalent to (5.93) since the
Hall contributions vanish.

5.5. Second-order FLR corrections (FLR2)
If more precise FLR corrections are desired, it is relatively easy to increase the
precision to the second order in frequency ω/Ω while keeping the precision in
wavenumber krL at first order. The pressure tensor equation (5.1) is simplified to

b̂×Π + (b̂×Π)T =−
1
Ω

B0

|B|

[
∂

∂t
(pg
+Π)+∇ · (upg

+ qg)+ pg
· ∇u+ (pg

· ∇u)T
]
.

(5.99)

For clarity, let us first consider the case with the heat flux q=0. Compared to the first-
order FLR corrections in the previous section, we just have one more matrix present,
(∂/∂t)Π. As before, the FLR tensor must be symmetric and also satisfy conditions
Πzz = 0 and Πyy = −Πxx. Following the previous derivation, the system (5.66) now
includes also the time derivative of the FLR tensor on the right-hand side. Let us
write down the system directly in the linear approximation. The system reads−2Πxy, 2Πxx, −Πyz

2Πxx, 2Πxy, Πxz
−Πyz, Πxz, 0

=− 1
Ω

∂

∂t

Πxx Πxy Πxz
Πxy −Πxx Πyz
Πxz Πyz 0



−
1
Ω
(p(0)‖ − p(0)⊥ )


0 0 ∂ b̂x

∂t

0 0 ∂ b̂y

∂t

∂ b̂x
∂t

∂ b̂y

∂t 0


−

1
Ω

 p(0)⊥ (∂xux − ∂yuy); p(0)⊥ (∂xuy + ∂yux); p(0)⊥ ∂xuz + p(0)‖ ∂zux

p(0)⊥ (∂yux + ∂xuy); p(0)⊥ (∂yuy − ∂xux); p(0)⊥ ∂yuz + p(0)‖ ∂zuy

p(0)‖ ∂zux + p(0)⊥ ∂xuz; p(0)‖ ∂zuy + p(0)⊥ ∂yuz; 0

 . (5.100)

There are only four FLR components that have to be considered and which can be
rewritten separately as

∂

∂t
Πxx − 2ΩΠxy + p(0)⊥ (∂xux − ∂yuy)= 0; (5.101)

∂

∂t
Πxy + 2ΩΠxx + p(0)⊥ (∂xuy + ∂yux)= 0; (5.102)

∂

∂t
Πxz −ΩΠyz + p(0)⊥ ∂xuz + p(0)‖ ∂zux + (p

(0)
‖ − p(0)⊥ )

∂ b̂x

∂t
= 0; (5.103)

∂

∂t
Πyz +ΩΠxz + p(0)⊥ ∂yuz + p(0)‖ ∂zuy + (p

(0)
‖ − p(0)⊥ )

∂ b̂y

∂t
= 0. (5.104)
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The FLR components could be considered as independent fluid quantities described
by the time-dependent equations as written above. However, from a linear perspective
this introduces additional linear modes, and from a direct numerical simulation
perspective it is preferred not to introduce an additional four time-dependent
equations (nevertheless, numerical simulations with the full pressure tensor equation
are sometimes performed, see e.g. Wang et al. (2015), Del Sarto, Pegoraro & Califano
(2016) and Ng et al. (2017)). The above equations are therefore typically simplified
by expanding the FLR tensor to the first and second orders as Π =Π(1)

+Π(2) and
the time derivative of the second-order tensor is neglected, i.e. (∂/∂t)Π(2)

= 0 and
the system reads

∂

∂t
Π (1)

xx − 2Ω(Π (1)
xy +Π

(2)
xy )+ p(0)⊥ (∂xux − ∂yuy)= 0; (5.105)

∂

∂t
Π (1)

xy + 2Ω(Π (1)
xx +Π

(2)
xx )+ p(0)⊥ (∂xuy + ∂yux)= 0; (5.106)

∂

∂t
Π (1)

xz −Ω(Π
(1)
yz +Π

(2)
yz )+ p(0)⊥ ∂xuz + p(0)‖ ∂zux

+ (p(0)‖ − p(0)⊥ )
(
∂zux −

c
B0
(∇×EH)x

)
= 0; (5.107)

∂

∂t
Π (1)

yz +Ω(Π
(1)
xz +Π

(2)
xz )+ p(0)⊥ ∂yuz + p(0)‖ ∂zuy

+ (p(0)‖ − p(0)⊥ )
(
∂zuy −

c
B0
(∇×EH)y

)
= 0, (5.108)

where we also used the linearized induction equation in the last two equations. Now,
there are two possibilities to handle the Hall-term contributions coming from the
induction equation. It is possible to either define Π(1) to be equal to set (5.74) and
move the Hall term to Π(2), or it is possible to keep the Hall term in Π(1) that is
equal to linearized set (5.72). The first choice, i.e. if Π(1) is set, (5.74) yields the
second-order components

Π (2)
xx =−

1
2Ω

∂

∂t
Π (1)

xy ; Π (2)
xy =

1
2Ω

∂

∂t
Π (1)

xx ;

Π (2)
xz =−

1
Ω

∂

∂t
Π (1)

yz +
1
Ω
(p(0)‖ − p(0)⊥ )

c
B0
(∇×EH)y;

Π (2)
yz =

1
Ω

∂

∂t
Π (1)

xz −
1
Ω
(p(0)‖ − p(0)⊥ )

c
B0
(∇×EH)x.


(5.109)

The second choice, i.e. when Π(1) is equal to linearized set (5.72), yields

Π (2)
xx =−

1
2Ω

∂

∂t
Π (1)

xy ; Π (2)
xy =

1
2Ω

∂

∂t
Π (1)

xx ; Π (2)
xz =−

1
Ω

∂

∂t
Π (1)

yz ; Π (2)
yz =

1
Ω

∂

∂t
Π (1)

xz .

(5.110)

The difference between the two approaches therefore is that the first approach
neglects the time derivative of the Hall term. It is noted that the second approach
is not necessarily better or more accurate than the first approach. For example, for
parallel propagation, the frequency of the whistler mode seems to be better described
by the first approach and the solutions are closer to kinetic theory.
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5.6. Hall-CGL-FLR2 fluid model
The second-order FLR tensor (5.109) is normalized and written in Fourier space
according to

Π (2)
xx =+

i
2
ωΠ (1)

xy ; Π (2)
xy =−

i
2
ωΠ (1)

xx ; Π (2)
zz = 0;

Π (2)
xz =+iωΠ (1)

yz + (1− ap)(∇×EH)y; Π (2)
yz =−iωΠ (1)

xz − (1− ap)(∇×EH)x,


(5.111)

where for cold (and massless) electrons in the x–z plane

(∇×EH)x =+k2
‖
By; (∇×EH)y = k‖k⊥Bz − k2

‖
Bx; (∇×EH)z =−k‖k⊥By. (5.112)

We purposely wrote the equations with EH so that the generalization to a more
elaborate electric field will be straightforward. Note that the Hall contributions (5.112)
in the FLR tensor completely vanish for isotropic temperatures ap = 1, regardless of
the form of EH , i.e. regardless if the electrons are cold or not.

To write down the solution for parallel propagation (k⊥= 0) it is useful for brevity
to introduce the following quantity

vb ≡ β‖

(
1−

ap

2

)
, (5.113)

and the parallel propagating whistler and ion-cyclotron modes factorize as

ω2(1+ vbk2
‖
)∓ωk2

‖
(1+ vb(1+ k2

‖
))− k2

‖

(
v2

A‖ −
β‖

2
k2
‖

)
= 0, (5.114)

and the two solutions are

ω =
1

1+ vbk2
‖

[
±

k2
‖

2
(1+ vb(1+ k2

‖
))

+ k‖

√(
1+

β‖

2
(ap − 1)−

β‖

2
k2
‖

)
(1+ vbk2

‖)+
k2
‖

4
(1+ vb(1+ k2

‖))
2

 , (5.115)

with two further solutions corresponding to −ω on the left-hand side. It is perhaps
useful to rewrite expression (5.114) to the ‘ion-cyclotron’ resonance form

k2
‖

ω2
=

1+ vbk2
‖

±ω(1+ vb(1+ k2
‖))+

(
v2

A‖ −
β‖

2
k2
‖

) , (5.116)

that clearly shows that the ion-cyclotron resonances (in the parallel direction) become
more and more complicated. For strictly perpendicular propagation (k‖ = 0), where
notably the Hall contributions (5.112) vanish, the solution of the model is

ω=±
k⊥

1+ k2
⊥

ap

8
β‖

√
1+ apβ‖ + k2

⊥

ap

8
β‖

(
1+

3
2

apβ‖

)
. (5.117)
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It is useful to compare this result with the solution obtained for FLR1 corrections,
equation (5.93). For direct comparison, expanding the solution (5.117) for small
|k⊥| � 1 yields

ω=±k⊥

√
1+ apβ‖ − k2

⊥

ap

8
β‖

(
1+

ap

2
β‖

)
. (5.118)

Importantly, in comparison to the FLR1 solution (5.93), the FLR2 solution (5.118) has
the opposite sign in front of the FLR term ∼ k2

⊥
. The equation (5.118) is equivalent

to (32) of Del Sarto et al. (2017), obtained by solving the pressure tensor equation
without the expansion to Π(1) and Π(2), and by expanding for small wavenumber
afterwards. The difference between the FLR1 solution (5.93) and the FLR2 solution
(5.118) is perhaps even more clear, when written in physical units for ω and k, and
by using the gyroradius ρi = vth⊥/Ωp, in the following form

FLR1 : ω2
= k2
⊥

[
V2

A + v
2
th⊥

(
1+

k2
⊥
ρ2

i

16

)]
; (5.119)

FLR2 : ω2
= k2
⊥

[
V2

A

(
1−

k2
⊥
ρ2

i

8

)
+ v2

th⊥

(
1−

k2
⊥
ρ2

i

16

)]
; (5.120)

Kinetic : ω2
= k2
⊥

[
V2

A

(
1−

k2
⊥
ρ2

i

8

)
+ v2

th⊥

(
1−

5
16

k2
⊥
ρ2

i

)]
. (5.121)

Equations (5.119), (5.120), (5.121) are equations (34), (32), (56) of Del Sarto et al.
(2017). As discussed in that paper, the FLR1 model not only fails to capture the
correction to the Alfvén velocity, it also introduces a correction to the thermal velocity
with the incorrect sign. The kinetic result can be obtained for example from (2.10)
of Mikhailovskii & Smolyakov (1985), when written for cold electrons (βe = 0), and
rewritten to our notation (thermal speed in that paper does not have a factor of 2, so
(ρ2

i )
(MS)
= ρ2

i /2).
Coming back to the generally oblique propagation, the second approach to writing

the FLR2 tensor, i.e. when the time derivative of the Hall term is not neglected and
kept in the first-order tensor Π(1) with components

Π (1)
xx =−

ap

2
ik⊥uy; Π (1)

xy =
ap

2
ik⊥ux; Π (1)

zz = 0;

Π (1)
xz =−(2− ap)ik‖uy + (1− ap)(∇× EH)y;

Π (1)
yz = (2− ap)ik‖ux + apik⊥uz − (1− ap)(∇× EH)x,

 (5.122)

yields the second-order tensor

Π (2)
xx =+

i
2
ωΠ (1)

xy ; Π (2)
xy =−

i
2
ωΠ (1)

xx ;

Π (2)
xz =+iωΠ (1)

yz ; Π (2)
yz =−iωΠ (1)

xz ; Π (2)
zz = 0.

 (5.123)

The resulting dispersion relation for strictly parallel propagation is slightly different

ω2(1+ vbk2
‖
)∓ωk2

‖

(
1+ vb +

β‖

2
k2
‖

)
− k2
‖

(
v2

A‖ −
β‖

2
k2
‖

)
= 0, (5.124)
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with explicit solutions

ω =
1

1+ vbk2
‖

[
±

k2
‖

2

(
1+ vb +

β‖

2
k2
‖

)

+ k‖

√(
1+

β‖

2
(ap − 1)−

β‖

2
k2
‖

)
(1+ vbk2

‖)+
k2
‖

4

(
1+ vb +

β‖

2
k2
‖

)2
 . (5.125)

For isotropic temperatures (ap = 1) the result is equivalent to (5.115) since the Hall-
term contributions for the FLR tensor disappear for all propagation directions. Also,
for perpendicular propagation, the dispersion relation is naturally equal to (5.117).

5.7. FLR corrections with gyrotropic heat flux
The equation (5.99) contains the divergence of the gyrotropic heat flux, ∇ · qg, which
in the index notation calculates as

(∇ · qg)ij = ∂kq
g
kij = ∂kq

g
ijk = ∂k[q‖b̂ib̂jb̂k + q⊥(δijb̂k + δjkb̂i + δkib̂j − 3b̂ib̂jb̂k)]

= ∂k[(q‖ − 3q⊥)b̂ib̂jb̂k + q⊥(δijb̂k + δjkb̂i + δkib̂j)]

= b̂ib̂jb̂k∂k(q‖ − 3q⊥)+ (q‖ − 3q⊥)(b̂jb̂k∂kb̂i + b̂ib̂k∂kb̂j + b̂ib̂j∂kb̂k)

+ (δijb̂k∂k + b̂i∂j + b̂j∂i)q⊥ + q⊥(δij∂kb̂k + ∂jb̂i + ∂ib̂j). (5.126)

Evaluation along magnetic field b̂= b̂0 = (0, 0, 1) yields b̂k∂k→ ∂z and the matrix is
evaluated as

(∇ · qg)xx = ∂zq⊥ + q⊥(∇ · b̂+ 2∂xb̂x); (5.127)

(∇ · qg)xy = q⊥(∂yb̂x + ∂xb̂y)= (∇ · qg)yx; (5.128)

(∇ · qg)xz = (q‖ − 2q⊥)∂zb̂x + ∂xq⊥ + q⊥∂xb̂z = (∇ · qg)zx; (5.129)

(∇ · qg)yz = (q‖ − 2q⊥)∂zb̂y + ∂yq⊥ + q⊥∂yb̂z = (∇ · qg)zy; (5.130)

(∇ · qg)yy = ∂zq⊥ + q⊥(∇ · b̂+ 2∂yb̂y); (5.131)

(∇ · qg)zz = ∂zq‖ + (q‖ − 2q⊥)∇ · b̂, (5.132)

where in the last ‘zz’ component we also used ∂zb̂z = 0, but for brevity we left the
divergence ∇ · b̂= ∂xb̂x + ∂yb̂y intact in all expressions. Note that (∇ · qg)yy 6= −(∇ ·
qg)xx, which is not a problem as will be described below. The pressure tensor equation
is here approximated as

∂(pg
+Π)

∂t
+∇ · (upg

+qg)+pg
·∇u+ (pg

·∇u)T+Ω[b̂×Π+ (b̂×Π)T]=0, (5.133)

and evaluated with respect to b̂ = b̂0 = (0, 0, 1). All components were already
evaluated and the calculation is straightforward, however, we need to subtract from
diagonal components the scalar pressure equations that contain the gyrotropic heat
flux contributions and that evaluated along b̂0 read

dp‖
dt
+ p‖∇ · u+ 2p‖∂zuz + ∂zq‖ + (q‖ − 2q⊥)∇ · b̂= 0; (5.134)
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dp⊥
dt
+ 2p⊥∇ · u− p⊥∂zuz + ∂zq⊥ + 2q⊥∇ · b̂= 0. (5.135)

The requirement again is that Πzz = 0 and Πyy =−Πxx. Direct calculation yields

∂

∂t
Πxx − 2ΩΠxy + p⊥(∂xux − ∂yuy)+ q⊥(∂xb̂x − ∂yb̂y)= 0; (5.136)

∂

∂t
Πxy + 2ΩΠxx + p⊥(∂xuy + ∂yux)+ q⊥(∂xb̂y + ∂yb̂x)= 0; (5.137)

∂

∂t
Πxz −ΩΠyz + p⊥∂xuz + p‖∂zux + (p‖ − p⊥)

db̂x

dt
+ (q‖ − 2q⊥)∂zb̂x + q⊥∂xb̂z + ∂xq⊥ = 0; (5.138)

∂

∂t
Πyz +ΩΠxz + p⊥∂yuz + p‖∂zuy + (p‖ − p⊥)

db̂y

dt
+ (q‖ − 2q⊥)∂zb̂y + q⊥∂yb̂z + ∂yq⊥ = 0. (5.139)

Note that after subtraction of the perpendicular pressure equation, the ′xx′ and ′yy′

components are again anti-symmetric, i.e. (∇ · qg)yy − ∂zq⊥ − 2q⊥∇ · b̂=−q⊥(∂xb̂x −

∂yb̂y), and the system indeed satisfies that Πyy = −Πxx. Also, considering the ′zz′
component, after subtraction of the parallel pressure equation all the terms cancel, i.e.
(∇ · qg)zz − ∂zq‖ − (q‖ − 2q⊥)∇ · b̂= 0 and the system indeed satisfies Πzz = 0.

Finally, expressing the above system in the linear approximation, with the
assumption that mean heat flux values are zero, i.e. q(0)‖ = 0, q(0)⊥ = 0, the only
gyrotropic heat flux contributions that remain are ∂xq⊥ and ∂yq⊥, in equations (5.138),
(5.139). The FLR tensor is again separated to Π(1)

+ Π(2) and similarly to the
Hall-term contributions, it is again a matter of choice if the heat flux contributions
are pushed to Π(2) or kept in Π(1). We prefer the first choice, i.e. when Π(1) is
equivalent to (5.74), which yields the second-order tensor

Π (2)
xx =−

1
2Ω

∂

∂t
Π (1)

xy ; Π (2)
xy =

1
2Ω

∂

∂t
Π (1)

xx ;

Π (2)
xz =−

1
Ω

∂

∂t
Π (1)

yz +
1
Ω
(p(0)‖ − p(0)⊥ )

c
B0
(∇×EH)y −

1
Ω
∂yq⊥;

Π (2)
yz =

1
Ω

∂

∂t
Π (1)

xz −
1
Ω
(p(0)‖ − p(0)⊥ )

c
B0
(∇×EH)x +

1
Ω
∂xq⊥.


(5.140)

Note that we could have derived the contributions ∂xq⊥ and ∂yq⊥ in a much quicker
way, if the expression (5.126) was linearized from the beginning. However, we
wanted to demonstrate that if nonlinear FLR corrections are considered, the heat flux
nonlinearities can significantly complicate the dynamics, even if simplified evaluation
along b̂0 is performed. Right now, we cannot use these FLR corrections to obtain a
dispersion relation, since we have no means to determine a closure for the gyrotropic
heat flux q⊥. We would have to consider CGL2 fluid model or more complicated
Landau fluid models, that contains evolution equations for q‖ and q⊥. Additionally, the
perpendicular propagating fast mode, as well as the parallel propagating ion-cyclotron
and whistler modes, are not influenced by the gyrotropic heat flux. Instead, as the
last step, we will consider contributions of the non-gyrotropic heat flux.
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5.8. FLR corrections with non-gyrotropic heat flux vectors (FLR3)
It is possible to further increase precision of the FLR corrections by considering non-
gyrotropic heat flux contributions. Detailed calculations with the non-gyrotropic heat
flux vectors S‖⊥ and S⊥

⊥
are presented in appendix D. At the linear level, these non-

gyrotropic heat flux vectors contribute to the linearized pressure equations

∂p‖
∂t
+ p(0)‖ ∇ · u+ 2p(0)‖ ∂zuz + ∂zq‖ + ∂x(S

‖

⊥)x + ∂y(S
‖

⊥)y = 0; (5.141)

∂p⊥
∂t
+ 2p(0)⊥ ∇ · u− p(0)⊥ ∂zuz + ∂zq⊥ + ∂x(S⊥⊥)x + ∂y(S⊥⊥)y = 0, (5.142)

and also to the linearized equations for the FLR tensor

∂

∂t
Πxx − 2ΩΠxy + p(0)⊥ (∂xux − ∂yuy)+

1
2
[∂x(S⊥⊥)x − ∂y(S⊥⊥)y] = 0; (5.143)

∂

∂t
Πxy + 2ΩΠxx + p(0)⊥ (∂xuy + ∂yux)+

1
2
[∂y(S⊥⊥)x + ∂x(S⊥⊥)y] = 0; (5.144)

∂

∂t
Πxz −ΩΠyz + p(0)⊥ ∂xuz + p(0)‖ ∂zux + (p

(0)
‖ − p(0)⊥ )

∂ b̂x

∂t
+ ∂xq⊥ + ∂z(S

‖

⊥)x = 0; (5.145)

∂

∂t
Πyz +ΩΠxz + p(0)⊥ ∂yuz + p(0)‖ ∂zuy + (p

(0)
‖ − p(0)⊥ )

∂ b̂y

∂t
+ ∂yq⊥ + ∂z(S

‖

⊥)y = 0. (5.146)

These equations are equivalent to (18)–(21) of Goswami et al. (2005) (by noting that
the vector S⊥ = q⊥b̂ + S⊥

⊥
, so at the linear level S⊥z = q⊥). The non-gyrotropic heat

flux vectors are separated to the first and second order

S‖⊥ = S‖(1)⊥ + S‖(2)⊥ ; S⊥
⊥
= S⊥(1)⊥ + S⊥(2)⊥ . (5.147)

By using the nonlinear results for the first-order vectors derived in appendix D, (D 37),
(D 60), yields that, at the linear level,

S‖(1)⊥ =
1
Ω

b̂0 ×

[
p(0)⊥ ∇

(
p‖
ρ

)
+ 2

p(0)‖
ρ0
(p(0)‖ − p(0)⊥ )∂zb̂

]
; (5.148)

S⊥(1)⊥ =
1
Ω

b̂0 ×

[
2p(0)⊥ ∇

(
p⊥
ρ

)]
, (5.149)

where the gradients are meant to be further linearized. Nevertheless, the above form is
useful to point out that the non-gyrotropic heat fluxes are proportional to the gradients
of the temperature. For clarity, partially linearized expressions are also written down
by components in appendix D, see (D 24), (D 25) and (D 61), (D 62). It is important
to emphasize that the expressions (5.148), (5.149) were derived for a bi-Maxwellian
distribution function. As discussed later in the text, this is achieved by prescribing
closures for the gyrotropic fourth-order moment in the form r‖‖ = 3p2

‖
/ρ + r̃‖‖, r‖⊥ =

p‖p⊥/ρ + r̃‖⊥, and r⊥⊥ = 2p2
⊥
/ρ + r̃⊥⊥. In (5.148), (5.149), we additionally neglected

the perturbations r̃ (since right now we do not want to consider models where these
perturbations are evaluated from linear kinetic theory). Therefore, the FLR corrections
with the non-gyrotropic heat flux, that we call here FLR3, are distribution function
specific. Nevertheless, as discussed later in the text, very similar closures can be also
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obtained for the bi-kappa distribution function, just with additional coefficients ακ =
(κ − 3/2)/(κ − 5/2), and expressions similar to (5.148), (5.149) can be derived.

The second-order vectors are also derived in appendix D, this time directly in the
linear approximation, equations (D 88), (D 89) and the vectors read

(S‖⊥)
(2)
k =

1
Ω

b̂0 ×

[
∂

∂t
(S‖⊥)

(1)
k + 2

p(0)‖
ρ0
∂zΠ

(1)
kz

]
; (5.150)

(S⊥
⊥
)
(2)
k =

1
Ω

b̂0 ×

[
∂

∂t
(S⊥
⊥
)
(1)
k +

p(0)⊥
ρ0

(
∂xΠ

(1)
xk + ∂yΠ

(1)
yk

)]
. (5.151)

As a reminder, Πij=Πji. For clarity, we wrote the expressions above explicitly in the
index notation. The non-gyrotropic heat flux vectors are perpendicular to b̂0= (0, 0, 1),
and the non-zero components are for index k = x, y. The expressions can be written
in a more elegant vector form, by defining vector EΠz ≡ (Πxz, Πyz, Πzz = 0), vector
∇⊥ = (∂x, ∂y, 0) and matrix

Π⊥ ≡

Πxx, Πxy, 0
Πyx, Πyy, 0
0, 0, 0

 , (5.152)

so that ∇⊥ ·Π⊥ = (∂xΠxx + ∂yΠyx, ∂xΠxy + ∂yΠyy), yielding

S‖(2)⊥ =
1
Ω

b̂0 ×

[
∂

∂t
S‖(1)⊥ + 2

p(0)‖
ρ0
∂z EΠ

(1)
z

]
; (5.153)

S⊥(2)⊥ =
1
Ω

b̂0 ×

[
∂

∂t
S⊥(1)⊥ +

p(0)⊥
ρ0
∇⊥ ·Π

(1)
⊥

]
, (5.154)

which are equations (53) and (54) of Passot et al. (2012).
Normalizing the equations (dropping the tilde), Fourier transforming, and writing

them in the x–z plane (with ∂y = 0) yields

−iωΠxx − 2Πxy + apik⊥ux +
1
2 ik⊥(S⊥⊥)x = 0; (5.155)

−iωΠxy + 2Πxx + apik⊥uy +
1
2 ik⊥(S⊥⊥)y = 0; (5.156)

−iωΠxz −Πyz + apik⊥uz + ik‖ux + (1− ap)(ik‖ux − (∇×EH)x)

+ ik⊥q⊥ + ik‖(S
‖

⊥)x = 0; (5.157)

−iωΠyz +Πxz + ik‖uy + (1− ap)(ik‖uy − (∇×EH)y)+ ik‖(S
‖

⊥)y = 0, (5.158)

where the terms with Hall electric field components are specified in (5.112). At this
moment we do not consider higher-order fluid models with gyrotropic heat fluxes such
as CGL2 or Landau fluids (see later in the text) and to have a closed model, here we
prescribe q⊥= 0, q‖= 0. It is useful to briefly explore what fluid models are obtained,
if we decide to keep only the first-order vectors S‖(1)⊥ , S⊥(1)⊥ , and ignore the second-
order corrections S‖(2)⊥ , S⊥(2)⊥ . By considering only the S‖(1)⊥ , S⊥(1)⊥ contributions, we can
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either put them into to Π(1) or Π(2). However, it can be shown that both options yield
dispersion relation for the perpendicular fast mode (long-wavelength, in physical units)

ω2
= k2
⊥

[
V2

A

(
1−

k2
⊥
ρ2

i

8

)
+ v2

th⊥

(
1+

k2
⊥
ρ2

i

16

)]
. (5.159)

Rather amusingly, in comparison to the FLR2 result (5.120), the wrong sign in the
correction of the thermal speed is back!

5.9. Hall-CGL-FLR3 fluid model
Obviously, if matching with kinetic theory for the fast perpendicular mode is of
upmost importance (for small wavenumbers), we have no other choice and we have
to keep the second-order non-gyrotropic heat flux contributions S‖(2)⊥ , S⊥(2)⊥ . We call
this FLR pressure tensor as FLR3, and as stated previously, the FLR3 pressure tensor
is distribution function specific. This model is very important to us and especially for
the following discussion of the firehose instability. In order to be completely clear on
which equations we are solving and also so that our results can be easily reproduced,
let us state the entire model in all of its beauty. The linearized, normalized, Fourier
transformed equations written in the x–z plane read

−ωρ + k⊥ux + k‖uz = 0;

−ωux +
β‖

2
k⊥p⊥ − v2

A‖k‖Bx + k⊥Bz +
β‖

2
(k⊥Πxx + k‖Πxz)= 0;

−ωuy − v
2
A‖k‖By +

β‖

2
(k⊥Πxy + k‖Πyz)= 0;

−ωuz +
β‖

2
k‖p‖ +

β‖

2
(1− ap)k⊥Bx +

β‖

2
k⊥Πxz = 0;

−ωBx − k‖ux − ik2
‖
By = 0;

−ωBy − k‖uy − ik‖k⊥Bz + ik2
‖
Bx = 0;

−ωBz + k⊥ux + ik‖k⊥By = 0;

−ωp‖ + k⊥ux + 3k‖uz +���k‖q‖ + k⊥(S
‖

⊥)x = 0;

−ωp⊥ + 2apk⊥ux + apk‖uz +���k‖q⊥ + k⊥(S⊥⊥)x = 0,



(5.160)

where each component of the (FLR) pressure tensor Π, and each component of the
(FLR) heat flux vectors S‖⊥, S⊥

⊥
, is separated to

Π =Π(1)
+Π(2)

; S‖⊥ = S‖(1)⊥ + S‖(2)⊥ ; S⊥
⊥
= S⊥(1)⊥ + S⊥(2)⊥ . (5.161)

The components of the Π tensor are given by

Π (1)
xx =−

ap

2
ik⊥uy; Π (2)

xx =+i
ω

2
Π (1)

xy − i
k⊥
4
(S⊥
⊥
)(1)+(2)y ;

Π (1)
xy =

ap

2
ik⊥ux; Π (2)

xy =−i
ω

2
Π (1)

xx + i
k⊥
4
(S⊥
⊥
)(2)x ;

Π (1)
xz =−(2− ap)ik‖uy; Π (2)

xz =+iωΠ (1)
yz + (1− ap)(∇×EH)y − ik‖(S

‖

⊥)
(1)+(2)
y ;

Π (1)
yz = (2− ap)ik‖ux + apik⊥uz;

Π (2)
yz =−iωΠ (1)

xz − (1− ap)(∇×EH)x +���ik⊥q⊥ + ik‖(S
‖

⊥)
(1)+(2)
x ,


(5.162)
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where the Hall electric field contributions for cold massless electrons read

(∇×EH)x =+k2
‖
By; (∇×EH)y = k‖k⊥Bz − k2

‖
Bx, (5.163)

and the components of the non-gyrotropic (FLR) heat fluxes are given by

(S‖⊥)
(1)
x =−β‖(1− ap)ik‖By; (S‖⊥)

(2)
x =+iω(S‖⊥)

(1)
y − β‖ik‖Π

(1)
yz ;

(S‖⊥)
(1)
y = ap

β‖

2
ik⊥(p‖ − ρ)+ β‖(1− ap)ik‖Bx; (S‖⊥)

(2)
y =−iω(S‖⊥)

(1)
x + β‖ik‖Π

(1)
xz ;

(S⊥
⊥
)(1)x = 0; (S⊥

⊥
)(2)x =+iω(S⊥

⊥
)(1)y − ap

β‖

2
ik⊥Π (1)

xy ;

(S⊥
⊥
)(1)y = β‖apik⊥(p⊥ − apρ); (S⊥

⊥
)(2)y =−�����iω(S⊥

⊥
)(1)x + ap

β‖

2
ik⊥Π (1)

xx .


(5.164)

Importantly, the Π(2) expressions contain both the first- and second-order contributions
from the heat flux vectors S‖⊥, S⊥

⊥
. To explicitly see where the closure for the

gyrotropic heat fluxes q‖= 0, q⊥= 0 was performed, we scratched the terms involving
these quantities. Additionally, we also scratched contributions from (S⊥

⊥
)(1)x , which are

here zero at the linear level.
Let us check the solution of the Hall-CGL-FLR3 fluid model for the perpendicular

propagation (k‖ = 0), which in this case reads

ω2
=

k2
⊥(

1+ k2
⊥

ap

8
β‖

)
(1+ apβ‖k2

⊥
)

[
1+ apβ‖ + k2

⊥
apβ‖

(
1+

13
16

apβ‖ +
9

128
a2

pβ
2
‖
k2
⊥

)]
.

(5.165)
As a ‘sanity check’, since the solution stays always positive for all the wavenumbers
and we do not have any instability, the model appears to be good. For small
wavenumbers, the expansion yields

ω2
= k2
⊥

[
1+ apβ‖ − k2

⊥
apβ‖

(
1
8 +

5
16 apβ‖

)
+ · · ·

]
, (5.166)

and in physical units

FLR3: ω2
= k2
⊥

[
V2

A

(
1−

k2
⊥
ρ2

i

8

)
+ v2

th⊥

(
1−

5
16

k2
⊥
ρ2

i

)]
. (5.167)

Therefore, the Hall-CGL-FLR3 fluid model finally matches the analytic result from
kinetic theory! We note that if the Π contributions are neglected in the second-order
heat flux expressions (5.164), instead of the correct −5/16 FLR correction to the
thermal speed, one obtains −7/16. The necessity to keep the second-order heat
flux contributions to recover the kinetic result for the perpendicular fast mode was
discovered by Mikhailovskii & Smolyakov (1985).

Checking the solution for the parallel propagating (k⊥ = 0) ion-cyclotron and
whistler modes yields the following dispersion relation

ω2(1+ vbk2
‖
)∓ωk2

‖

[
1+ vb(1+ k2

‖
)+ k2

‖
β2
‖

(
3
2
− ap

)]
− k2
‖

[
v2

A‖ −
β‖

2
k2
‖
(1+ β‖(1− ap))+

β2
‖

2
(ap − 2)k4

‖

]
= 0, (5.168)
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where the quantities vb = β‖(1− ap/2) and v2
A‖ = 1+ (β‖/2)(ap − 1). We will use this

dispersion relation to study the firehose instability. For a general oblique propagation
direction, the dispersion relation is obviously way too large to write down, and we
recommend using analytic software such as Maple or Mathematica.

Moving the Hall term to Π(1)

For completeness, just in case we want to investigate later the influence of the
Hall term, moving it to Π(1) yields the following dispersion relation for the parallel
propagation

ω2(1+ vbk2
‖
)∓ωk2

‖

[
1+ vb + k2

‖

β‖

2
+ k2
‖
β2
‖

(
3
2
− ap

)]
−k2
‖

[
v2

A‖ −
β‖

2
k2
‖
(1+ β‖(1− ap))−

β2
‖

2
k4
‖

]
= 0. (5.169)

6. Parallel and oblique firehose instability
6.1. Parallel propagation

For clarity, it is useful to summarize all 3 major models that describe the parallel
propagating ion-cyclotron and whistler modes. By prescribing k⊥= 0 in the equations
of the Hall-CGL-FLR3 fluid model, the model greatly simplifies. The parallel
magnetic field Bz = 0, the ion-acoustic mode decouples, and both the first- and
second-order contributions to Πxx = 0, Πxy = 0, S⊥

⊥
= 0. The normalized, Fourier

transformed equations written in the x–z plane read

−ωux − v
2
A‖k‖Bx +

β‖

2
k‖Πxz = 0;

−ωuy − v
2
A‖k‖By +

β‖

2
k‖Πyz = 0;

−ωBx − k‖ux − ik2
‖
By = 0;

−ωBy − k‖uy + ik2
‖
Bx = 0,


(6.1)

where the components of the non-gyrotropic (FLR) pressure tensor Π are given by

Π (1)
xz =−(2− ap)ik‖uy; Π (2)

xz =+iωΠ (1)
yz − (1− ap)k2

‖
Bx − ik‖(S

‖

⊥)
(1)+(2)
y ;

Π (1)
yz =+(2− ap)ik‖ux; Π (2)

yz =−iωΠ (1)
xz − (1− ap)k2

‖
By + ik‖(S

‖

⊥)
(1)+(2)
x ,

}
(6.2)

and the components of the non-gyrotropic (FLR) heat flux S‖⊥ read

(S‖⊥)(1)x =−β‖(1− ap)ik‖By; (S‖⊥)(2)x =+iω(S‖⊥)(1)y − β‖ik‖Π
(1)
yz ;

(S‖⊥)(1)y =+β‖(1− ap)ik‖Bx; (S‖⊥)(2)y =−iω(S‖⊥)(1)x + β‖ik‖Π
(1)
xz .

}
(6.3)

When the entire Π is neglected, yields the Hall-CGL solution

ω=±
k2
‖

2
+ k‖

√
v2

A‖ +
k2
‖

4
. (6.4)
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Neglecting the Π(2) contributions yields the Hall-CGL-FLR1 solution

ω=±
k2
‖

2
(1+ vb)+ k‖

√
v2

A‖ +
k2
‖

4
(1− vb)2, (6.5)

and neglecting the heat flux S‖⊥ yields the Hall-CGL-FLR2 solution

ω =
1

1+ vbk2
‖

[
±

k2
‖

2
(1+ vb(1+ k2

‖
))

+ k‖

√(
v2

A‖ −
β‖

2
k2
‖

)
(1+ vbk2

‖)+
k2
‖

4
(1+ vb(1+ k2

‖))
2

 . (6.6)

Finally, the full model yields Hall-CGL-FLR3 solution

ω =
1

1+ vbk2
‖

± k2
‖

2

[
1+ vb(1+ k2

‖
)+ k2

‖
β2
‖

(
3
2
− ap

)]

+ k‖

√√√√[v2
A‖ −

β‖

2
k2
‖
(1+ β‖(1− ap))+

β2
‖

2
(ap − 2)k4

‖

]
(1+ vbk2

‖
)+

k2
‖

4

[
1+ vb(1+ k2

‖
)+ k2

‖
β2
‖

(
3
2
− ap

)]2
 .

(6.7)

The quantities vb and v2
A‖ used in the solutions are defined as

vb = β‖

(
1−

ap

2

)
; v2

A‖ = 1+
β‖

2
(ap − 1). (6.8)

Importantly, the solutions are written here for ω (and not ω2), and all the models
of course yield 4 solutions, the other two solutions are obtained by substituting ω
with −ω. For a reader who just jumped to this section, and is confused on how
the solutions were split, see § 4.2 where the Hall-CGL model is discussed with final
equation (4.36). The solutions can be written in various forms, and one possibility is
to keep |k‖| in front of the square roots.

The (parallel and oblique) firehose instability was studied in detail by Hunana &
Zank (2017), who focused on the Hall-CGL and Hall-CGL-FLR1 models. One of
the conclusions reached in that paper was that the main reason for the relatively
large discrepancy between the usual fluid models and the kinetic description is the
appearance of a huge ‘bump’ in the imaginary phase speed, when close to the
firehose threshold. The situation is demonstrated in figure 7, where kinetic solutions
obtained by the WHAMP code (blue solid lines) are compared to solutions of the
Hall-CGL-FLR2 model (a, blue dashed lines) and the Hall-CGL-FLR3 fluid model
(b, black dashed lines). The plasma β‖= 4, so the long-wavelength firehose threshold,
that we call the ‘hard threshold’, is at ap = 0.5. The temperature anisotropy is varied
from ap = 0 to ap = 0.501. For solutions with the Hall-CGL and Hall-CGL-FLR1
models see figures 3 and 4 of Hunana & Zank (2017). In the WHAMP code the
value of ap = 0 cannot be used, and ap = 10−4 was chosen instead. Also, since here
we concentrate on proton dynamics, the influence of electrons in the WHAMP code
was eliminated by making the electrons cold (with Te/Tp = 10−8).
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(a) (b)

FIGURE 7. Imaginary phase speed (growth rate normalized to the wavenumber) of the
parallel firehose instability. The value of β‖ = 4, and the temperature anisotropy is varied
so that the whistler mode is in the firehose-unstable regime. Solid lines (blue) are kinetic
solutions, obtained with the WHAMP code. Dashed lines are fluid solutions. (a) FLR2
solutions (blue), (b) FLR3 solutions (black). It is shown that in contrast to the FLR2
model, the FLR3 model reproduces the large ‘bump’ when close to the long-wavelength
‘hard’ firehose threshold T⊥/T‖ = 0.5.

(a) (b)

FIGURE 8. Same parameters as in figure 7, but the growth rate is plotted, and a linear
scale is used for the x-axis. Notice the excellent precision of the FLR3 model for small
wavenumbers up to kdi = 0.1–0.2. In comparison to kinetic theory, the fluid solutions
are stabilized much more ‘rapidly’. Nevertheless, the value of the maximum growth rate,
and the wavenumber where the maximum growth rate is achieved, is surprisingly close
to kinetic theory. This is an excellent result for a fluid model, which does not contain
collisionless ion-cyclotron damping.

Very surprisingly, figure 7 shows that the large ‘bump’ is reproduced by the FLR3
model, and the precision is quite good! The situation is further analysed in figure 8,
where instead of the imaginary phase speed, the growth rate is plotted. The same
conclusion is obtained. For the temperature anisotropy ap = 0.501, all simpler fluid
models (Hall-CGL, FLR1, FLR2) are fully stable for all ranges of wavenumbers. In
contrast, the FLR3 model still develops a strong firehose instability. Therefore, it is
the non-gyrotropic heat flux S‖⊥ of the FLR3 model that is responsible for the ‘bump’
(for the case of strictly parallel propagation). The appearance of the ‘bump’ can be
understood analytically, by evaluating the fluid dispersion relations exactly at the ‘hard’
firehose threshold ap = 1− 2/β‖, where the quantities v2

A‖ = 0 and vb = 1+ β‖/2. At
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the hard firehose threshold, the expression under the square root of the FLR2 solution
(6.6) can be factorized as

k2
‖

[
1−

β‖

4
+

k2
‖

2

(
1+

β‖

2

)]2

+ k2
‖

β‖

2
, (6.9)

implying that the FLR2 model is always stable for all values of k‖ and β‖. Such
a factorization cannot be achieved for the FLR3 model, and the solution (6.7) still
becomes unstable at some range of wavenumbers, where[

v2
A‖ −

β‖

2
k2
‖
(1+ β‖(1− ap))+

β2
‖

2
(ap − 2)k4

‖

]
(1+ vbk2

‖
)

+
k2
‖

4

[
1+ vb(1+ k2

‖
)+ k2

‖
β2
‖

(
3
2
− ap

)]2

< 0, (6.10)

which is the (strictly parallel) firehose instability criterion of the FLR3 model. We
note that the model can become unstable also for the temperature anisotropy ap >

1. This can be perhaps considered as some remnant of the ion-cyclotron anisotropy
instability, but we did not study the situation further since the instability should not
be reproduced correctly. The parallel firehose instability for high plasma beta value
β‖ = 100 is shown in figure 9. The left figure is from Hunana & Zank (2017), and
it shows solutions of the Hall-CGL model (blue dashed lines) and of the Hall-CGL-
FLR1 model (green dashed lines). The kinetic solutions are blue solid lines. It is
shown that the FLR corrections are crucial for the correct stabilization of the firehose
instability. Figure 9(b) shows refinement with FLR2 (blue dashed lines) and FLR3
tensors (black dashed lines). Obviously, for high plasma beta values, the maximum
growth rate of the (strictly) parallel firehose instability is captured very precisely by
the Hall-CGL-FLR3 model. The maximum growth rate (for parallel propagation) can
be easily found analytically only for the Hall-CGL and Hall-CGL-FLR1 models. For
models with the FLR2 and FLR3 tensors it is easier to find the maximum growth
rate numerically. For example, let us consider the Hall-CGL model. Assuming the
firehose-unstable regime, the frequency of the Hall-CGL solution (6.4) can be split

into ω = ωr + iωi, where the imaginary part ωi = k‖
√
−v2

A‖ − k2
‖/4. Then, calculating

∂ωi/∂k‖ = 0, yields the wavenumber k‖max and the maximum growth rate γmax in the
following form

k2
‖max =−2v2

A‖; γmax =−v
2
A‖ =−

(
1+

β‖

2
(ap − 1)

)
. (6.11)

Similarly, the Hall-CGL-FLR1 model yields

k2
‖max =−

2v2
A‖

(1− vb)2
; γmax =

v2
A‖

v2
A‖ −

β‖

2

=

1+
β‖

2
(ap − 1)

1+
β‖

2
(ap − 2)

. (6.12)
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(a) (b)

FIGURE 9. Growth rate of the parallel firehose instability for β‖ = 100. Kinetic solutions
are solid blue lines. The temperature anisotropy is varied as ap = 0.95; 0.96; 0.97; 0.979
(the hard firehose threshold is at ap= 0.98). Four different fluid models are plotted, and all
fluid solutions have dashed lines. (a) Hall-CGL (blue), Hall-CGL-FLR1 (green). (b) Hall-
CGL-FLR2 (blue), Hall-CGL-FLR3 (black).

6.2. Oblique propagation
Here, we briefly investigate the parallel and oblique firehose instability for oblique
propagation directions. Contour plots of the growth rate in the k− θ plane are shown
in figure 10. The plasma β‖ = 4 and the temperature anisotropy ap = 0.49, so all
the fluid models are in the firehose-unstable regime. We compare four different fluid
models, Hall-CGL (a), and enhancement with FLR1 (b), FLR2 (c) and FLR3 (d). The
FLR2 solution shows an additional instability at higher wavenumbers that we did not
study further. Note the large differences between the four solutions. Importantly, the
FLR3 solution shows large enhancement of the growth rate. We use the WHAMP code
for kinetic calculations, and we do not provide a contour plot for the kinetic theory.
Instead, we plot the growth rate for several propagation angles, so that the comparison
with the contour plots can be made easily. The figure (e) is the FLR3 model, and ( f )
is the kinetic result. It is noted that, similarly to other fluid models with higher-order
FLR corrections, the FLR3 model can develop secondary instabilities at scales below
the proton gyroscale.

6.3. Hellinger’s contours for the Hall-CGL-FLR3 model

Here, we prescribe a fixed value for the maximum growth rate, γmax=10−3
;10−2

;10−1,
and plot solutions in the β‖ − ap plane, which is shown in figure 11. (a,c) Show the
parallel firehose instability, and (b,d) show the oblique firehose instability. Panels
(a,b) are plotted with the usual logarithmic scales, and (c,d) with linear scales.
Additionally, only solutions with β‖ < 6 are shown at the bottom panels. Solutions
for the Hall-CGL-FLR3 fluid model are black dashed lines, and kinetic solutions are
solid blue lines (a,c) and solid red lines (b,d). The kinetic solutions were provided
to us by P. Hellinger (private communication) and are identical to solutions shown
in figure 1 of Hellinger et al. (2006). It is shown that the γmax = 10−3

; 10−2 contours
clearly lie below the hard firehose threshold, i.e. the firehose instability in the FLR3
fluid model develops at some range of wavenumbers, even if the model is stable in
the long-wavelength limit. Importantly, the kinetic contours of Hellinger et al. (2006)
were not calculated for cold electrons, but for isotropic electrons with βe = 1. This
does not matter for the parallel propagation, since the isotropic electron pressure
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(a) (b)

(e) (f)

(c) (d)

FIGURE 10. The growth rate plotted in the k− θ plane, with fixed β‖ = 4 and ap = 0.49
(the hard firehose threshold is at ap = 0.5), showing the parallel and oblique firehose
instability. Four different fluid models are plotted. (a) Hall-CGL; (b) Hall-CGL-FLR1;
(c) Hall-CGL-FLR2, (d) Hall-CGL-FLR3. We do not provide a contour plot for kinetic
theory. Nevertheless, the bottom figures show solutions for several propagation angles.
(e) Hall-CGL-FLR3 model, ( f ) kinetic.

does not influence the dispersion relations for the parallel propagating whistler and
ion-cyclotron modes. Only the effect of electron inertia will enter, however, the effect
should be negligible at the scales considered here. Unfortunately, the solution for
the parallel firehose instability cannot be further improved by currently developed
fluid models. The oblique case is different, since even isotropic electron pressure
will influence the dynamics. The contours for the oblique firehose instability should
be therefore recalculated by using a proper proton–electron two fluid model. The
oblique case could be further improved, by considering FLR contributions from the
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(a) (b)

(c) (d)

FIGURE 11. (a,b) Solutions for the parallel (a,c) and oblique (b,d) firehose instability in
the β‖ − ap plane for a prescribed maximum growth rate γmax = 10−3

; 10−2
; 10−1. Solid

blue and red lines are kinetic solutions from Hellinger et al. (2006). Black dashed lines are
solutions of the Hall-CGL-FLR3 model. The magenta line is the ‘hard’ (long-wavelength
limit) firehose threshold. (c,d) Same as top panels, but with linear scales for both axes,
and only showing results for β‖ < 6.

non-gyrotropic heat flux tensor σ that were neglected here (contributions for parallel
propagation are zero). For the oblique case, one can also use higher-order fluid
models with the gyrotropic heat flux fluctuations q‖, q⊥ (such as the CGL2 model
discussed later), or even Landau fluid models. The main reason for the relatively large
discrepancies found in the contours for the parallel firehose instability is demonstrated
in figure 12.

7. Heat flux tensor equation

Multiply the Vlasov equation by mcicjck and integrate over the velocity space.
Naturally, the other possibilities are to multiply by mcicjvk, mcivjvk or mvivjvk,
although none of them is more revealing and we will use the first choice. It is
convenient to define the symmetric operator S that acts on a tensor of third rank
according to

AS
ijk = Aijk + Ajki + Akij, (7.1)
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FIGURE 12. Parallel firehose instability, β‖ = 4. It is shown that the Hall-CGL-FLR3
model (black dashed lines) indeed develops the firehose instability even for values of
ap > 0.5, i.e. when there is no instability in the long-wavelength limit. Nevertheless, by
increasing the value of ap beyond 0.5, the growth rate in the FLR3 model quickly falls
off, and the instability disappears for ap > 0.5317. In contrast, kinetic theory (blue solid
lines) develops a strong firehose instability even at ap = 0.6.

i.e. the operator represents all possible cyclic permutations. For the first term we will
need the following identities

∂

∂t
(cicjck)=−

∂ui

∂t
cjck − ci

∂uj

∂t
ck − cicj

∂uk

∂t
; (7.2)

m
∫

f
∂

∂t
(cicjck) d3v = −

∂ui

∂t
m
∫

cjckf d3v︸ ︷︷ ︸
pjk

−
∂uj

∂t
m
∫

cickf d3v︸ ︷︷ ︸
pik

−
∂uk

∂t
m
∫

cicjf d3v︸ ︷︷ ︸
pij

= −
∂ui

∂t
pjk −

∂uj

∂t
pik −

∂uk

∂t
pij, (7.3)

and the entire first term of the integrated Vlasov equation calculates as

1 = m
∫

cicjck
∂f
∂t

d3v =
∂

∂t

(
m
∫

cicjckf d3v

)
︸ ︷︷ ︸

qijk

−m
∫

f
∂

∂t
(cicjck) d3v

=
∂

∂t
qijk +

∂ui

∂t
pjk +

∂uj

∂t
pik +

∂uk

∂t
pij =

∂

∂t
qijk +

[
∂u
∂t

p
]S

ijk

. (7.4)

For the second term we will need identities

m
∫

cccvf d3v = r+ qu; (7.5)

m
∫

cicjckvl f d3v = m
∫

cicjck(vl − ul + ul)f d3v

= m
∫

cicjckcl f d3v︸ ︷︷ ︸
rijkl

+ul m
∫

cicjckf d3v︸ ︷︷ ︸
qijk

= rijkl + qijkul; (7.6)
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∂l(cicjck)=−cjck∂lui − cick∂luj − cicj∂luk; (7.7)

m
∫

fvl∂l(cicjck) d3v = −(∂lui)m
∫

cjckvl f d3v︸ ︷︷ ︸
qjkl+pjkul

− (∂luj)m
∫

cickvl f d3v︸ ︷︷ ︸
qikl+pikul

−(∂luk)m
∫

cicjvl f d3v︸ ︷︷ ︸
qijl+pijul

= −(qjkl + pjkul)∂lui − (qikl + pikul)∂luj − (qijl + pijul)∂luk,

(7.8)

and the second term calculates as

2 = m
∫

cicjckvl∂lf d3v = ∂l

(
m
∫

cicjckvl f d3v

)
−m

∫
fvl∂l(cicjck) d3v

= ∂l(rlijk + ulqijk)+ (qjkl + pjkul)∂lui + (qikl + pikul)∂luj + (qijl + pijul)∂luk

= [∇ · (r+ uq)]ijk + [(q+ pu) · ∇u]jki + [(q+ pu) · ∇u]ikj + [(q+ pu) · ∇u]ijk
= [∇ · (r+ uq)]ijk + [(q+ pu) · ∇u]Sijk. (7.9)

Note again that the divergence of a tensor operates through its first component
∂l(rlijk + ulqijk)= [∇ · (r+ uq)]ijk. Similarly, if the operator acts on a tensor from the
right-hand side, the most natural way is to define that it operates through the last
component, i.e. [q · ∇]ij = qijl∂l. In the expressions above [q · ∇u]ijk = qijl∂luk and
[pu · ∇u]ijk = (pu)ijl∂luk = pijul∂luk. The last term can also be rewritten as pij(u · ∇u)k,
where the expression (u · ∇u)k = ul∂luk is familiar from MHD. For the third term we
will need identities

∂ci

∂vl
= δil; (7.10)

∂

∂vl
(cicjck)= δilcjck + ciδjlck + cicjδkl, (7.11)

and the entire third term calculates as

3 = q
∫

cicjckEl
∂f
∂vl

d3v = qEl

∫
∂

∂vl
(cicjckf ) d3v︸ ︷︷ ︸
→0

−qEl

∫
∂

∂vl
(cicjck)f d3v

= −qEl

∫
(δilcjck + δjlcick + δklcicj)f d3v =−

q
m
(Eipjk + Ejpik + Ekpij)

= −
q
m
[Ep]Sijk. (7.12)

For the fourth term we will need identities

∂

∂vl
(v×B)l = 0; (7.13)

∂

∂vl
[cicjck(v×B)l] = cjck(v×B)i + cick(v×B)j + cicj(v×B)k; (7.14)
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cj(v×B)if d3v =−

1
m
(B× p)ij; (7.15)∫

cjck(v×B)if d3v =−
1
m
[B× (q+ up)]ijk, (7.16)

and the entire fourth term calculates as

4 =
q
c

∫
cicjck(v×B)l

∂f
∂vl

d3v

=
q
c

∫
∂

∂vl
[cicjck(v×B)lf ] d3v︸ ︷︷ ︸

→0

−
q
c

∫
f
∂

∂vl
[cicjck(v×B)l] d3v

= −
q
c

{∫
fcjck(v×B)i d3v +

∫
fckci(v×B)j d3v +

∫
fcicj(v×B)k d3v

}
=

q
mc
{[B× (q+ up)]ijk + [B× (q+ up)]jki + [B× (q+ up)]kij}

≡
q

mc
[B× (q+ up)]Sijk. (7.17)

Combining all the results together 1 + 2 + 3 + 4 = 0, the entire heat flux tensor
equation obtained by direct integration of the Vlasov equation reads

∂q
∂t
+∇ · (r+ uq)+

[
∂u
∂t

p+ (q+ pu) · ∇u−
q
m

Ep+
q

mc
B× (q+ up)

]S

= 0. (7.18)

Now we will need to use 3 different momentum equations that will cancel various
terms. We will also need identity

[(u×B)p]ijk =−[B× (up)]ijk. (7.19)

We need to multiply the momentum equation for ∂ui/∂t by pjk, the equation for ∂uj/∂t
by pki and the equation for ∂uk/∂t by pij. All the three momentum equations that we
want to subtract from the heat flux equation can be written together as[(

∂u
∂t
+ u · ∇u+

1
mn
∇ · p−

q
m

E−
q

mc
u×B

)
p
]S

ijk

= 0, (7.20)

and because of identity (7.19), this is equivalent to[(
∂u
∂t
+ u · ∇u+

1
mn
∇ · p−

q
m

E
)

p+
q

mc
[B× (up)]

]S

ijk

= 0. (7.21)

Note that, because of the symmetric operator, it does not matter if the tensor p is
applied to the momentum equation from the left or right, since all the expressions
are symmetric in this regard, i.e. for example [(∇ · p)p]S= [p(∇ · p)]S. By subtracting
(7.21) from (7.18), the final heat flux tensor equation reads

∂

∂t
q+∇ · (r+ uq)+

[
q · ∇u+

q
mc

B× q−
1
ρ

p(∇ · p)
]S

= 0. (7.22)
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By defining the cyclotron frequency vector Ω = qB/mc, this equation identifies with
equation (A 5) in Chust & Belmont (2006). By using the scalar cyclotron frequency
defined with respect to |B| as Ω = q|B|/mc, the heat flux tensor equation is written
explicitly in the index notation

∂

∂t
qijk + ∂l(rlijk + ulqijk)+ qijl∂luk + qjkl∂lui + qkil∂luj +Ω b̂l(εilmqmjk + εjlmqmki + εklmqmij)

−
1

mn
(pij∂lplk + pjk∂lpli + pki∂lplj)= 0, (7.23)

which is equivalent to (4) in Goswami et al. (2005) with the term

(b̂× q)Sijk = εilmb̂lqmjk + εjlmb̂lqmki + εklmb̂lqmij

= −b̂l(εimlqjkm + εjmlqikm + εkmlqijm). (7.24)

7.1. Heat flux tensor decomposition
Considering only the gyrotropic part of the heat flux tensor (3× 3× 3) cube, the heat
flux is decomposed into the scalar parallel and perpendicular heat flux components
q‖, q⊥ according to

qg
= q‖b̂b̂b̂+ q⊥[(I − b̂b̂)b̂]S, (7.25)

and which in the index notation reads

qg
ijk = q‖b̂ib̂jb̂k + q⊥(δijb̂k + δjkb̂i + δkib̂j − 3b̂ib̂jb̂k). (7.26)

This part of the pressure tensor represents only the gyrotropic part, and the full heat
flux decomposition can be written as q= qg

+ qng. In the heat flux tensor equation, the
term B× q is proportional to the cyclotron frequency Ω = qB0/mc and the equation
rewrites as

∂

∂t
q+∇ · (r+ uq)+

[
q · ∇u+Ω

|B|
B0

b̂× q−
1
ρ

p(∇ · p)
]S

= 0. (7.27)

The situation is now similar to the previously studied pressure tensor. At long spatial
scales (low frequencies ω), this term will dominate and the gyrotropic contribution
must be equal to zero

[b̂× qg
]

S
= 0. (7.28)

At first look, it is not that obvious that the decomposition (7.25) satisfies this equation.
It is however possible to verify that indeed

(b̂× qg)ijk = εirsb̂rq
g
sjk = εirsb̂r[q‖b̂sb̂jb̂k + q⊥(δsjb̂k + δjkb̂s + δksb̂j − 3b̂sb̂jb̂k)]

= q‖b̂jb̂k εirsb̂rb̂s︸ ︷︷ ︸
=0

+q⊥(εirjb̂rb̂k + δjk εirsb̂rb̂s︸ ︷︷ ︸
=0

+εirkb̂rb̂j − 3b̂jb̂k εirsb̂rb̂s︸ ︷︷ ︸
=0

)

= q⊥b̂r(εirjb̂k + εirkb̂j); (7.29)

(b̂× qg)jki = q⊥b̂r(εjrkb̂i + εjrib̂k); (7.30)

(b̂× qg)kij = q⊥b̂r(εkrib̂j + εkrjb̂i). (7.31)
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Putting all terms together

[b̂× qg
]

S
ijk = [b̂× qg

]ijk + [b̂× qg
]jki + [b̂× qg

]kij

= q⊥b̂r[b̂i (εjrk + εkrj)︸ ︷︷ ︸
=0

+ b̂j (εirk + εkri)︸ ︷︷ ︸
=0

+ b̂k (εirj + εjri)︸ ︷︷ ︸
=0

] = 0, (7.32)

and we see that all three parts of the symmetric operator are required to make this
term equal to zero. Therefore, the exact heat flux tensor equation reads

∂

∂t
q+∇ · (r+ uq)+

[
q · ∇u+Ω

|B|
B0

b̂× qng
−

1
ρ

p(∇ · p)
]S

= 0. (7.33)

Since this should be an introductory text, we do not want to be bothered right now
with the complicated algebra of the non-gyrotropic heat flux qng. For the clarity of the
presented material, here we separate the non-gyrotropic heat flux into a separate term
Qng, and write the heat flux tensor equation in the following form

∂

∂t
qg
+∇ · (r+ uqg)+

[
qg
· ∇u−

1
ρ

p(∇ · p)
]S

+Qng
= 0, (7.34)

where

Qng
=
∂

∂t
qng
+∇ · (uqng)+

[
qng
· ∇u+Ω

|B|
B0

b̂× qng

]S

. (7.35)

We will address the non-gyrotropic heat flux contributions in appendix D.
In a similar fashion to the pressure decomposition (2.35), we are going to frequently

apply double contractions with b̂b̂ and (I− b̂b̂)/2. Applying these operators to the heat
flux tensor qijk, must yield quantities that are vectors. It is therefore logical to define
parallel and perpendicular heat flux vectors

S‖ ≡ q : b̂b̂; S⊥ ≡ q : (I − b̂b̂)/2. (7.36)

The scalar parallel and perpendicular heat flux components q‖, q⊥ (which are the only
parts that are gyrotropic) are obtained by further projecting these heat flux vectors
along the magnetic field lines, i.e. by performing ·b̂, so that

q‖ = (q : b̂b̂) · b̂; q⊥ = (q : (I − b̂b̂)/2) · b̂. (7.37)

Briefly considering only the gyrotropic heat flux (7.26) on the right-hand side, it is
easy to verify that the parallel decomposition indeed works

(qg
: b̂b̂)k = qg

kijb̂ib̂j = qg
ijkb̂ib̂j = [q‖b̂ib̂jb̂k + q⊥(δijb̂k + δjkb̂i + δkib̂j − 3b̂ib̂jb̂k)]b̂ib̂j

= q‖b̂k + q⊥(b̂k + b̂k + b̂k − 3b̂k)= q‖b̂k; (7.38)

qg
: b̂b̂= q‖b̂; (7.39)

(qg
: b̂b̂) · b̂= q‖. (7.40)

For the perpendicular decomposition, it is useful to specifically calculate components

qg
iik = q‖b̂k + q⊥( δii︸︷︷︸

=3

b̂k + b̂k + b̂k − 3b̂k)= q‖b̂k + 2q⊥b̂k, (7.41)
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so that

Tr qg
= qg
: I = q‖b̂+ 2q⊥b̂; (7.42)

qg
: (I − b̂b̂)/2= (qg

: I − qg
: b̂b̂)/2= (q‖b̂+ 2q⊥b̂− q‖b̂)/2= q⊥b̂; (7.43)

(qg
: (I − b̂b̂)/2) · b̂= q⊥, (7.44)

which verifies that the perpendicular decomposition (7.37) is satisfied for qg. Now we
apply the decomposition (7.37) directly to the definition of the entire heat flux tensor
(2.6), which yields

(q : b̂b̂)k =
(

m
∫

cccf d3v : b̂b̂
)

k

=m
∫

cicjckf d3vb̂ib̂j

= m
∫
(vi − uu)b̂i(vj − uj)b̂j(vk − uk)f d3v

= m
∫
(v‖ − u‖)2(vk − uk)f d3v ≡ (S‖)k; (7.45)

(q : b̂b̂) · b̂=m
∫
(v‖ − u‖)3f d3v ≡ q‖; (7.46)

and the perpendicular decomposition

(q : I/2)k =
m
2

∫
cicjckf d3vδij =

m
2

∫
|c|2ckf d3v =

m
2

∫
|v − u|2(vk − uk)f d3v; (7.47)

(q : (I − b̂b̂)/2)k =
m
2

∫
(|v − u|2 − (v‖ − u‖)2)(vk − uk)f d3v

=
m
2

∫
|v⊥ − u⊥|2(vk − uk)f d3v ≡ (S⊥)k; (7.48)

(q : (I − b̂b̂)/2) · b̂=
m
2

∫
|v⊥ − u⊥|2(v‖ − u‖)f d3v ≡ q⊥. (7.49)

The decomposition (7.37) obviously works for the entire heat flux q, as well as for
the gyrotropic part qg. Similarly to the pressure decomposition, this further yields the
required properties that the non-gyrotropic heat flux qng must satisfy. By using (7.37),
the entire heat flux decomposition reads

q= q‖b̂b̂b̂+ q⊥[(I − b̂b̂)b̂]S + qng
; (7.50)

q= [(q : b̂b̂) · b̂]b̂b̂b̂+ [(q : (I − b̂b̂)/2) · b̂][(I − b̂b̂)b̂]S + qng. (7.51)

Obviously, it would be useful to introduce a triple-contraction operator and instead

of (q : b̂b̂) · b̂ to write something like q
... b̂b̂b̂, but we do not want to introduce new

notations. Also, an alternative and perhaps prettier expression is to move the ·b̂ to the
left-hand side, as (q : b̂b̂) · b̂= b̂ · q : b̂b̂, but we will keep the first choice. Applying
: b̂b̂ and ·b̂ to the above equation yields

(q : b̂b̂) · b̂= (q : b̂b̂) · b̂+ (qng
: b̂b̂) · b̂, (7.52)
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implying the first requirement for the non-gyrotropic heat flux

(qng
: b̂b̂) · b̂= 0. (7.53)

Similarly, the second requirement is obtained by applying : (I − b̂b̂) and ·b̂, yielding

(qng
: (I − b̂b̂)) · b̂= 0. (7.54)

By using the first requirement, the second requirement simplifies to

(qng
: I) · b̂= Tr qng

· b̂= 0, (7.55)

where obviously the trace and ·b̂ operators commute. The two requirements in the
index notation read

qng
ijkb̂ib̂jb̂k = 0; qng

iikb̂k = 0. (7.56)

Instead of decomposing q= qg
+ qng, an alternative and very useful decomposition of

the entire heat flux tensor reads

q= S+ σ , (7.57)

with the requirement σ : b̂b̂= 0 and σ : (I − b̂b̂)= 0 (or equivalently σ : I = 0). The heat
flux vectors (7.36) therefore satisfy S‖ = S : b̂b̂ and S⊥ = S : (I − b̂b̂)/2. The heat flux
vectors contain both gyrotropic and non-gyrotropic contributions. Since the gyrotropic
contributions are obtained by projecting these vectors along the magnetic field lines
q‖ = S‖ · b̂, q⊥ = S⊥ · b̂, it is useful to introduce the following decomposition

S‖ ≡ q‖b̂+ S‖⊥; S⊥ ≡ q⊥b̂+ S⊥
⊥
. (7.58)

The vectors S‖⊥, S⊥
⊥

are referred to as the non-gyrotropic heat flux vectors, and
their algebra is addressed in appendix D. Here, we only state that the qng can be
decomposed into vectors S‖⊥, S⊥

⊥
and tensor σ according to

qng
= [S‖⊥b̂b̂]S + 1

2 [S
⊥

⊥
(I − b̂b̂)]S + σ . (7.59)

The entire heat flux tensor σ is of course non-gyrotropic.
Now we need to verify the heat flux contributions (2.72), (2.73) that we used in

the pressure equations (2.74), (2.75). To calculate the heat flux contributions to the
pressure equations, we will need

Tr(∇ · qg) = δij(∇ · qg)ij = δij∂kq
g
kij = ∂kq

g
iik = ∂k(q‖b̂k + 2q⊥b̂k)

= ∇ · (q‖b̂)+ 2∇ · (q⊥b̂); (7.60)

qg
ijkb̂ib̂j = q‖b̂k; (7.61)

qg
ijk∂k(b̂ib̂j) = [q‖b̂ib̂jb̂k + q⊥(δijb̂k + δjkb̂i + δkib̂j − 3b̂ib̂jb̂k)]∂k(b̂ib̂j)

= q‖b̂k b̂ib̂j∂k(b̂ib̂j)︸ ︷︷ ︸
=0

+q⊥b̂k ∂k(b̂ib̂i)︸ ︷︷ ︸
=0
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+ q⊥b̂i∂j(b̂ib̂j)+ q⊥b̂j∂i(b̂ib̂j)− 3q⊥b̂k b̂ib̂j∂k(b̂ib̂j)︸ ︷︷ ︸
=0

= q⊥∂jb̂j + q⊥b̂j b̂i∂jb̂i︸ ︷︷ ︸
=0

+q⊥∂ib̂i + q⊥b̂i b̂j∂ib̂j︸ ︷︷ ︸
=0

= 2q⊥∇ · b̂, (7.62)

and the contributions are

b̂ · (∇ · qg) · b̂ = b̂i(∂kq
g
kij)b̂j = ∂k(q

g
ijkb̂ib̂j)− qg

ijk∂k(b̂ib̂j)= ∂k(q‖b̂k)− 2q⊥∇ · b̂

= ∇ · (q‖b̂)− 2q⊥∇ · b̂; (7.63)

1
2 [Tr∇ · qg

− b̂ · (∇ · qg) · b̂] =∇ · (q⊥b̂)+ q⊥∇ · b̂. (7.64)

The left-hand side of the above equation can be also written naturally as (∇ · qg) : (I −
b̂b̂)/2, which is consistent with an alternative derivation of the perpendicular pressure
equation, where instead of doing trace and subtracting the parallel pressure equation,
one can directly perform : (I − b̂b̂)/2.

7.2. Parallel heat flux equation
Now we apply the decomposition (7.37) to the heat flux tensor equation (7.34) step
by step. We consider only gyrotropic heat flux components. Starting with the equation
for the parallel heat flux, the first term calculates as(

∂qg

∂t
: b̂b̂
)
· b̂ =

∂

∂t
[q‖b̂ib̂jb̂k + q⊥(δijb̂k + δjkb̂i + δkib̂j − 3b̂ib̂jb̂k)]b̂ib̂jb̂k

=
∂q‖
∂t

b̂ib̂jb̂kb̂ib̂jb̂k︸ ︷︷ ︸
=1

+q‖ b̂ib̂jb̂k
∂

∂t
(b̂ib̂jb̂k)︸ ︷︷ ︸
=0

+
∂q⊥
∂t
(1+ 1+ 1− 3︸ ︷︷ ︸

=0

)

+ q⊥

b̂k
∂

∂t
b̂k︸ ︷︷ ︸

=0

+ b̂i
∂

∂t
b̂i︸ ︷︷ ︸

=0

+ b̂j
∂

∂t
b̂j︸ ︷︷ ︸

=0

−3 b̂ib̂jb̂k
∂

∂t
(b̂ib̂jb̂k)︸ ︷︷ ︸
=0


=
∂q‖
∂t
; (7.65)

the second term calculates as

(∇ · (uqg) : b̂b̂) · b̂ = ∂l(ulq
g
ijk)b̂ib̂jb̂k = (∂lul) qg

ijkb̂ib̂jb̂k︸ ︷︷ ︸
=q‖

+ul (∂lq
g
ijk)b̂ib̂jb̂k︸ ︷︷ ︸
=∂lq‖

= q‖∇ · u+ u · ∇q‖ =∇ · (q‖u); (7.66)

((∇ · r) : b̂b̂) · b̂= (∂lrlijk)b̂ib̂jb̂k = unchanged. (7.67)

Note that in all of the expressions here, the operator ·b̂ can be naturally moved to the
left as b̂·. The third term calculates as
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((qg
· ∇u) : b̂b̂) · b̂ = (qg

· ∇u)ijkb̂ib̂jb̂k = qg
ijl(∂luk)b̂ib̂jb̂k

= (∂luk)[q‖b̂ib̂jb̂l + q⊥(δijb̂l + δjlb̂i + δlib̂j − 3b̂ib̂jb̂l)]b̂ib̂jb̂k;

= (∂luk)[q‖b̂lb̂k + q⊥ (b̂lb̂k + b̂lb̂k + b̂lb̂k − 3b̂lb̂k)︸ ︷︷ ︸
=0

]

= q‖b̂l(∂luk)b̂k = q‖b̂ · ∇u · b̂; (7.68)

[qg
· ∇u]Sijkb̂ib̂jb̂k = [q

g
ijl∂luk + qg

jkl∂lui + qg
kil∂luj]b̂ib̂jb̂k

= qg
ijlb̂ib̂j︸ ︷︷ ︸
=q‖b̂l

(∂luk)b̂k + qg
jklb̂jb̂k︸ ︷︷ ︸
=q‖b̂l

(∂lui)b̂i + qg
kilb̂kb̂i︸ ︷︷ ︸
=q‖b̂l

(∂luj)b̂j

= 3q‖b̂ · ∇u · b̂. (7.69)

For the final fourth term we will need

(∇ · p) · b̂ = b̂k∂lplk = b̂k∂l[(p‖ − p⊥)b̂lb̂k + p⊥δlk +Πlk]

= b̂k[b̂lb̂k∂l(p‖ − p⊥)+ (p‖ − p⊥)∂l(b̂lb̂k)+ ∂kp⊥ + ∂lΠlk]

= [b̂l∂l(p‖ − p⊥)+ (p‖ − p⊥) b̂k∂l(b̂lb̂k)︸ ︷︷ ︸
=∇·b̂

+b̂k∂kp⊥ + (∂lΠlk)b̂k]

= b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂+ (∇ ·Π) · b̂, (7.70)

and the fourth term calculates as

[p(∇ · p)]ijkb̂ib̂jb̂k = pij(∂lplk)b̂ib̂jb̂k = pijb̂ib̂j︸ ︷︷ ︸
=p‖

b̂k∂lplk = p‖b̂k∂lplk

= p‖b̂ · ∇p‖ + p‖(p‖ − p⊥)∇ · b̂+ p‖(∇ ·Π) · b̂; (7.71)

[p(∇ · p)]Sijkb̂ib̂jb̂k = [pij∂lplk + pjk∂lpli + pki∂lplj]b̂ib̂jb̂k

= pijb̂ib̂j︸ ︷︷ ︸
=p‖

b̂k∂lplk + pjkb̂jb̂k︸ ︷︷ ︸
=p‖

b̂i∂lpli + pkib̂kb̂i︸ ︷︷ ︸
=p‖

b̂j∂lplj = 3p‖b̂k∂lplk;

(7.72)

−
1
ρ
[p(∇ · p)]Sijkb̂ib̂jb̂k = −3

p‖
ρ

b̂ · ∇p‖ − 3
p‖
ρ
(p‖ − p⊥)∇ · b̂− 3

p‖
ρ
(∇ ·Π) · b̂.

(7.73)

Combining all the terms yields the equation for the scalar parallel heat flux

∂q‖
∂t
+∇ · (q‖u)+ b̂ · (∇ · r) : b̂b̂+ 3q‖b̂ · ∇u · b̂− 3

p‖
ρ

b̂ · ∇p‖ − 3
p‖
ρ
(p‖ − p⊥)∇ · b̂

− 3
p‖
ρ
(∇ ·Π) · b̂+Qng

‖ = 0, (7.74)

where Qng
‖ ≡ (Q

ng
: b̂b̂) · b̂. The heat flux equations contain the fourth-order moment

rijkl, which we will consider in the next section and at this stage it is unspecified.
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7.3. Perpendicular heat flux equation

We will apply the trace operator to (7.34) and also perform ·b̂ step by step. In the
index notation, we are basically multiplying the entire equation by δijb̂k. The first term
calculates

Tr
∂

∂t
qg
=
∂

∂t
Tr qg
=
∂

∂t
(q‖b̂+ 2q⊥b̂)= b̂

∂

∂t
(q‖ + 2q⊥)+ (q‖ + 2q⊥)

∂

∂t
b̂; (7.75)(

Tr
∂

∂t
qg

)
· b̂= b̂ · b̂︸︷︷︸

=1

∂

∂t
(q‖ + 2q⊥)+ (q‖ + 2q⊥)

∂ b̂
∂t
· b̂︸ ︷︷ ︸
=0

=
∂

∂t
(q‖ + 2q⊥). (7.76)

The second term ∇ · (r+ uqg) calculates as

[Tr∇ · (uqg)]k = δij∂l(ulq
g
ijk)= ∂l(ulq

g
iik); (7.77)

[Tr∇ · (uqg)] · b̂ = ∂l(ulq
g
iik)b̂k = ∂l(ulq

g
iikb̂k)− ul qg

iik∂lb̂k︸ ︷︷ ︸
=0

= ∂l[ul(q‖ + 2q⊥)]

= (q‖ + 2q⊥)∇ · u+ u · ∇(q‖ + 2q⊥); (7.78)

[Tr∇ · r]k = δij∂lrlijk = ∂lrliik; (7.79)

[Tr∇ · r] · b̂= (∂lrliik)b̂k = unchanged. (7.80)

The components rliik = riikl are nothing else but the trace of the moment r

[Tr r]kl = δijrijkl = riikl. (7.81)

The third term in (7.34) calculates as

[qg
· ∇u]Sijk = qg

ijl∂luk + qg
jkl∂lui + qg

kil∂luj; (7.82)

Tr[qg
· ∇u]Sijk = qg

iil∂luk + qg
ikl∂lui + qg

kil︸︷︷︸
=qg

ikl

∂lui = qg
iil∂luk + 2qg

ikl∂lui (7.83)

Tr[qg
· ∇u]Sijkb̂k = qg

iil(∂luk)b̂k + 2qg
iklb̂k∂lui

= (q‖ + 2q⊥)b̂l(∂luk)b̂k + 2[q‖b̂ib̂l + q⊥(δil − b̂ib̂l)]∂lui

= (q‖ + 2q⊥)b̂l(∂luk)b̂k + 2(q‖ − q⊥)b̂l(∂lui)b̂i + 2q⊥∂iui

= 3q‖b̂ · ∇u · b̂+ 2q⊥∇ · u, (7.84)

where we have used that qg
iil = (q‖ + 2q⊥)b̂l and qg

iklb̂k = q‖b̂ib̂l + q⊥(δil − b̂ib̂l). The
fourth term in (7.34) calculates as

[p(∇ · p)]Sijk = pij∂lplk + pjk∂lpli + pki∂lplj; (7.85)

Tr[p(∇ · p)]Sijk = pii∂lplk + pik∂lpli + pki︸︷︷︸
=pik

∂lpli = pii∂lplk + 2pik∂lpli; (7.86)

Tr[p(∇ · p)]Sijkb̂k = piib̂k∂lplk + 2pikb̂k∂lpli, (7.87)
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and we have to calculate each term separately. Since pii = p‖ + 2p⊥ and by using the
already calculated equation (7.70) for b̂k∂lplk and identities pikb̂k = p‖b̂i + Πikb̂k and
Πikb̂ib̂k = 0 one obtains

piib̂k∂lplk = (p‖ + 2p⊥)[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂+ (∇ ·Π) · b̂]; (7.88)

pikb̂k∂lpli = (p‖b̂i +Πikb̂k)[∂ip⊥ + (p‖ − p⊥)(b̂i∂lb̂l + b̂l∂lb̂i)+ b̂ib̂l∂l(p‖ − p⊥)+ ∂lΠli]

= p‖[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂+ (∇ ·Π) · b̂]

+Πikb̂k[∂ip⊥ + (p‖ − p⊥)b̂l∂lb̂i + ∂lΠli]

= p‖[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂+ (∇ ·Π) · b̂]

+ [∇p⊥ + (p‖ − p⊥)b̂ · ∇b̂+∇ ·Π] ·Π · b̂; (7.89)

and the final result of (7.87) is

Tr[p(∇ · p)]Sijkb̂k = (3p‖ + 2p⊥)[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂+ (∇ ·Π) · b̂]

+ 2[∇p⊥ + (p‖ − p⊥)b̂ · ∇b̂+∇ ·Π] ·Π · b̂. (7.90)

Collecting all the terms, one obtains

∂

∂t
(q‖ + 2q⊥)+ (q‖ + 2q⊥)∇ · u+ u · ∇(q‖ + 2q⊥)+ (Tr∇ · r) · b̂+ 3q‖b̂ · ∇u · b̂

+ 2q⊥∇ · u−
1
ρ
(3p‖ + 2p⊥)[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂+ (∇ ·Π) · b̂]

−
2
ρ
[∇p⊥ + (p‖ − p⊥)b̂ · ∇b̂+∇ ·Π] ·Π · b̂+ (Qng

‖ + 2Qng
⊥ )= 0, (7.91)

and subtracting the parallel heat flux equation (7.74) and dividing by two yields the
perpendicular heat flux equation

∂

∂t
q⊥ + u · ∇q⊥ + 2q⊥∇ · u+

1
2
[(Tr∇ · r) · b̂− b̂ · (∇ · r) : b̂b̂]

−
p⊥
ρ
[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂+ (∇ ·Π) · b̂]

−
1
ρ
[∇p⊥ + (p‖ − p⊥)b̂ · ∇b̂+∇ ·Π] ·Π · b̂+Qng

⊥ = 0, (7.92)

where Qng
⊥ ≡ (Q

ng
: (I − b̂b̂)/2) · b̂. The term containing r in the above equation can be

rewritten to many possible forms, for example

1
2 [(Tr∇ · r) · b̂− b̂ · (∇ · r) : b̂b̂] = 1

2 [(∂lrliik)b̂k − (∂lrlijk)b̂ib̂jb̂k]

=
1
2 [(Tr∇ · r)− (∇ · r) : b̂b̂] · b̂

= b̂ · (∇ · r) : (I − b̂b̂)/2. (7.93)

The last expression is of course consistent with an alternative way to derive the
perpendicular heat flux equation, where instead of doing trace of the heat flux tensor
equation and subtracting the scalar parallel heat flux equation, one can directly apply
operators : (I − b̂b̂)/2 and ·b̂.
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7.4. Scalar heat flux equations continued
The parallel and perpendicular heat flux equations (7.74), (7.92) contain expressions
for the fourth-order moment r, and even though we will consider this moment in
detail in the next section, here we want to finish the derivation of the scalar heat
flux equations, and we write down the required expressions. Similarly to the pressure
tensor and the heat flux tensor, the fourth-order moment can be decomposed into its
gyrotropic and non-gyrotropic parts, r= rg

+ rng. The gyrotropic part rg is decomposed
according to (8.10), and it can be shown (see later in the text), that direct calculation
yields

b̂ · (∇ · rg) : b̂b̂=∇ · (r‖‖b̂)− 3r‖⊥∇ · b̂; (7.94)
1
2 [(Tr∇ · rg) · b̂− b̂ · (∇ · rg) : b̂b̂] =∇ · (r‖⊥b̂)+ (r‖⊥ − r⊥⊥)∇ · b̂, (7.95)

which yields the parallel heat flux equation

∂q‖
∂t
+∇ · (q‖u)+∇ · (r‖‖b̂)− 3r‖⊥∇ · b̂+ 3q‖b̂ · ∇u · b̂− 3

p‖
ρ

b̂ · ∇p‖

− 3
p‖
ρ
(p‖ − p⊥)∇ · b̂+ b̂ · (∇ · rng) : b̂b̂− 3

p‖
ρ
(∇ ·Π) · b̂+Qng

‖ = 0, (7.96)

and the perpendicular heat flux equation

∂q⊥
∂t
+ u · ∇q⊥ + 2q⊥∇ · u+∇ · (r‖⊥b̂)+ (r‖⊥ − r⊥⊥)∇ · b̂

−
p⊥
ρ
[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂] +

1
2
[(Tr∇ · rng) · b̂− b̂ · (∇ · rng) : b̂b̂]

−
p⊥
ρ
(∇ ·Π) · b̂−

1
ρ
[∇p⊥ + (p‖ − p⊥)b̂ · ∇b̂+∇ ·Π] ·Π · b̂+Qng

⊥ = 0. (7.97)

Exact nonlinear expressions for Qng
‖ and Qng

⊥ that represent contributions from the
non-gyrotropic heat flux qng are calculated in appendix D, see (D 110), (D 120). The
scalar heat flux equations (7.96) and (7.97) are completely general at this stage,
since no distribution function has been prescribed yet, and no simplification has been
introduced. These equations are exact.

Nevertheless, equations (7.96), (7.97) are very complicated, and at this stage, it
is beneficial to simplify them. One possibility is to cancel all the non-gyrotropic
contributions Π, qng and rng, and we will study such fluid models later. Another
possibility is to keep only those non-gyrotropic terms that have some non-zero
contribution at the linear level. This eliminates the last term in the second line
of (7.97) that is proportional to [. . .] · Π · b̂. Also, by following the derivations
in appendix D, it is easy to show that the terms Qng

‖ , Qng
⊥ (that represent the

non-gyrotropic heat flux qng), do not contribute at the linear level. Therefore, the
heat flux equations simplify

∂q‖
∂t
+∇ · (q‖u)+∇ · (r‖‖b̂)− 3r‖⊥∇ · b̂+ 3q‖b̂ · ∇u · b̂− 3

p‖
ρ

b̂ · ∇p‖

− 3
p‖
ρ
(p‖ − p⊥)∇ · b̂+ b̂ · (∇ · rng) : b̂b̂− 3

p‖
ρ
(∇ ·Π) · b̂= 0; (7.98)
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∂q⊥
∂t
+ u · ∇q⊥ + 2q⊥∇ · u+∇ · (r‖⊥b̂)+ (r‖⊥ − r⊥⊥)∇ · b̂

−
p⊥
ρ
[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂] +

1
2
[(Tr∇ · rng) · b̂− b̂ · (∇ · rng) : b̂b̂]

−
p⊥
ρ
(∇ ·Π) · b̂= 0. (7.99)

Still, no specific distribution function was assumed. However, to evaluate the non-
gyrotropic rng, and correctly evaluate possible cancellations with terms containing Π,
we need to use rng decomposition (8.58). Importantly, the decomposition (8.58) is
valid only for perturbations around a bi-Maxwellian distribution function. By keeping
only terms that have non-zero contribution at the linear level, see equations (8.63),
(8.65) later in the text, the rng terms are evaluated as

b̂ · (∇ · rng) : b̂b̂=
3p‖
ρ
(∇ ·Π) · b̂; (7.100)

1
2
[(Tr∇ · rng) · b̂− b̂ · (∇ · rng) : b̂b̂] =

2p⊥
ρ
(∇ ·Π) · b̂. (7.101)

Importantly, both non-gyrotropic contributions in the parallel heat flux equation (7.98)
completely cancel out! The cancellation demonstrates the importance of keeping the
non-gyrotropic rng, if one wants to keep the non-gyrotropic Π. Also, there is a partial
cancellation in the perpendicular heat flux equation (7.99). The heat flux equations
therefore read

∂q‖
∂t
+∇ · (q‖u)+∇ · (r‖‖b̂)− 3r‖⊥∇ · b̂+ 3q‖b̂ · ∇u · b̂− 3

p‖
ρ

b̂ · ∇p‖

− 3
p‖
ρ
(p‖ − p⊥)∇ · b̂= 0; (7.102)

∂q⊥
∂t
+ u · ∇q⊥ + 2q⊥∇ · u+∇ · (r‖⊥b̂)+ (r‖⊥ − r⊥⊥)∇ · b̂

−
p⊥
ρ
[b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂] +

p⊥
ρ
(∇ ·Π) · b̂= 0. (7.103)

The last term can be evaluated with respect to the mean magnetic field, and
assuming that b̂0 is in the z-direction, the term is equal to (p⊥/ρ)(∂xΠxz + ∂yΠyz),
since Πzz = 0. Essentially, the term should be written in a fully linearized form
(p(0)⊥ /ρ0)(∇ ·Π) · b̂0, since other non-gyrotropic nonlinear terms were neglected. It is
important to emphasize that it is because of this one term, that the equations (7.102),
(7.103) are valid only for perturbations around a bi-Maxwellian distribution function.
If the term is neglected, i.e. if one neglects from the beginning the non-gyrotropic
contributions in (7.98), (7.99), the heat flux equations are valid for perturbations
around any distribution function. We will consider a bi-kappa distribution function
later.

7.5. Heat flux equations with ‘normal’ closure
Detailed calculations with the fourth-order moment will be presented in the next
section. Here we want to finish the derivation, and by using the bi-Maxwellian
‘normal’ fluid closure

r‖‖ =
3p2
‖

ρ
; r‖⊥ =

p‖p⊥
ρ
; r⊥⊥ =

2p2
⊥

ρ
, (7.104)
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terms entering the heat flux equations directly calculate as

∇ · (r‖‖b̂)− 3r‖⊥∇ · b̂= 3
p2
‖

ρ
∇ · b̂+ 3p‖b̂ · ∇

(
p‖
ρ

)
+ 3

p‖
ρ

b̂ · ∇p‖ − 3
p‖p⊥
ρ
∇ · b̂;

(7.105)

∇ · (r‖⊥b̂)+ (r‖⊥ − r⊥⊥)∇ · b̂=
p⊥
ρ

b̂ · ∇p‖ + p‖b̂ · ∇
(

p⊥
ρ

)
+ 2

p⊥
ρ
(p‖ − p⊥)∇ · b̂.

(7.106)

The use of these expressions in (7.102), (7.103) cancels various terms, and the scalar
heat flux equations read

∂q‖
∂t
+∇ · (q‖u)+ 3p‖b̂ · ∇

(
p‖
ρ

)
+ 3q‖b̂ · ∇u · b̂= 0; (7.107)

∂q⊥
∂t
+ u · ∇q⊥ + 2q⊥∇ · u+ p‖b̂ · ∇

(
p⊥
ρ

)
+

p⊥
ρ
(p‖ − p⊥)∇ · b̂+

p⊥
ρ
(∇ ·Π) · b̂0 = 0.

(7.108)

8. Fourth-order fluid moment

The algebra of the fourth-order fluid moment r = m
∫

ccccf d3v can be quite
intimidating at first, since the moment is a 4-D cube (3x3x3x3). We are not going
to derive the time evolution equation for this moment step by step, nevertheless,
later in the text we derive the evolution equation of the nth-order fluid moment X (n),
see (12.16), and therefore, for n= 4, the equation reads

∂

∂t
r+∇ · (X (5)

+ ur)+
[

r · ∇u+
q

mc
B× r−

1
ρ
(∇ · p)q

]S

= 0. (8.1)

The symmetric operator ‘S’ is here defined as

AS
ijkl = Aijkl + Ajkli + Aklij + Alijk. (8.2)

Here, we are not that interested in the evolution equation for r, we just want to clarify
its decomposition, that we need in the heat flux equations. The definition of gyrotropy
means that the integral has to be evaluated only over combinations of (v‖ − u⊥)≡ c‖
and |v⊥−u⊥|2≡ c2

⊥
. For the fourth moment r, there are obviously only 3 possibilities:

c4
‖
, c2
‖
c2
⊥

and (c2
⊥
)2, and these gyrotropic components will be called r‖‖, r‖⊥ and r⊥⊥.

We have already seen that the double contractions with b̂b̂ and (I − b̂b̂)/2, were very
useful operators to extract the gyrotropic components for the lower-order moments, p
and q. To obtain any scalar quantity from the fourth moment, we obviously need to
apply two double contractions. There are 3 possibilities: we can apply b̂b̂ twice, we
can apply b̂b̂ and (I − b̂b̂)/2 or we can apply (I − b̂b̂)/2 twice. Not surprisingly, these
double contractions with r indeed extract the 3 possible gyrotropic parts, as it is easy
to verify that

(r : b̂b̂) : b̂b̂ = rijklb̂ib̂jb̂kb̂l =m
∫

cicjckcl f d3vb̂ib̂jb̂kb̂l =m
∫

cib̂icjb̂jckb̂kclb̂lf d3v

= m
∫

c‖c‖c‖c‖f d3v =m
∫
(v‖ − u‖)4f d3v ≡ r‖‖; (8.3)
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(r : b̂b̂) : (I − b̂b̂)/2 =
m
2

∫
cicjckclb̂ib̂j(δkl − b̂kb̂l)f d3v =

m
2

∫
c2
‖
ckcl(δkl − b̂kb̂l)f d3v

=
m
2

∫
c2
‖
(|c|2 − c2

‖
)f d3v =

m
2

∫
c2
‖
c2
⊥

f d3v

=
m
2

∫
(v‖ − u‖)2|v⊥ − u⊥|2f d3v ≡ r‖⊥; (8.4)

(r : (I − b̂b̂)/2) : (I − b̂b̂)/2 =
m
4

∫
cicjckcl(δij − b̂ib̂j)(δkl − b̂kb̂l)f d3v =

m
4

∫
c2
⊥

c2
⊥

f d3v

=
m
4

∫
|v⊥ − u⊥|4f d3v ≡ r⊥⊥. (8.5)

We are now ready to guess how to write the decomposition of the gyrotropic
fourth-order moment. Motivated by the previous decompositions, it obviously has to
be something in the form of

rg
= r‖‖b̂b̂b̂b̂+ r‖⊥[b̂b̂(I − b̂b̂)]Sym

+ r⊥⊥[(I − b̂b̂)(I − b̂b̂)]Sym, (8.6)

where we still did not determine how the symmetric operator acts here. Importantly,
the symmetric operator ‘Sym’ is not equivalent to the symmetric operator ‘S’ that
cycles all the indices around, equation (8.2). The fluid hierarchy obviously needs two
symmetric operators, one unique ‘S’ that is used to derive the evolution equation of a
given fluid moment X (n), and one non-unique ‘Sym’ that is used for the decomposition
of that fluid moment. The determination of how ‘Sym’ acts here is not that obvious.
Nevertheless, one can consider in how many ways one can extract the gyrotropic
components from rijkl. For r‖‖, one does two double contractions with (b̂b̂). The
possible choices are (b̂b̂)ij(b̂b̂)kl; (b̂b̂)ik(b̂b̂)jl and (b̂b̂)il(b̂b̂)jk, however, all of these
choices are equivalent. To obtain the r‖⊥, we perform double contractions with (b̂b̂)
and (I − b̂b̂)/2, where the last operator contains a function δij. How many different
delta functions we can obtain from 4 indices i, j, k, l? There are

(4
2

)
= 4!/2!(4− 2)!= 6

different possibilities:

δij; δik; δil; δjk; δjl; δkl, (8.7)

and all of them are non-equivalent. The symmetric operator acting in the second term
therefore has 6 components

[b̂b̂(I − b̂b̂)]Sym
ijkl = (I − b̂b̂)ijb̂kb̂l + (I − b̂b̂)ikb̂jb̂l + (I − b̂b̂)ilb̂jb̂k + (I − b̂b̂)jkb̂ib̂l

+ (I − b̂b̂)jlb̂ib̂k + (I − b̂b̂)klb̂ib̂j

= δijb̂kb̂l + δikb̂jb̂l + δilb̂jb̂k + δjkb̂ib̂l + δjlb̂ib̂k + δklb̂ib̂j − 6b̂ib̂jb̂kb̂l.

(8.8)

Lastly, to obtain the r⊥⊥ component, one applies two double contractions with
(I − b̂b̂)/2 that results in combinations of δijδkl. How many possibilities do we have?
Obviously, there are 6 possibilities for the first delta function, which, by pairing
with the other delta function in a way that indices are not repeated, yields together
6 possibilities δijδkl; δikδjl; δilδjk; δjkδil; δjlδik; δklδij. However, 3 possibilities have an
equivalent pair, δijδkl = δklδij; δikδjl = δjlδik and δilδjk = δjkδil and there are only 3
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non-equivalent combinations. The symmetric operator acting on the last term in (8.6)
can be determined to be

[(I − b̂b̂)(I − b̂b̂)]Sym
ijkl

=
1
2 [(I − b̂b̂)ij(I − b̂b̂)kl + (I − b̂b̂)ik(I − b̂b̂)jl + (I − b̂b̂)il(I − b̂b̂)jk]

=
1
2

[
δijδkl − δklb̂ib̂j − δijb̂kb̂l + δikδjl − δjlb̂ib̂k − δikb̂jb̂l

+ δilδjk − δjkb̂ib̂l − δilb̂jb̂k + 3b̂ib̂jb̂kb̂l

]
. (8.9)

The factor 1/2 is actually not that obvious, and one needs to verify that the
decomposition indeed satisfies (8.5). The entire fourth-order gyrotropic moment
rg is decomposed in the index notation according to

rg
ijkl = r‖‖b̂ib̂jb̂kb̂l + r‖⊥[δijb̂kb̂l + δikb̂jb̂l + δilb̂jb̂k + δjkb̂ib̂l + δjlb̂ib̂k + δklb̂ib̂j − 6b̂ib̂jb̂kb̂l]

+
r⊥⊥
2

[
δijδkl + δikδjl + δilδjk − δijb̂kb̂l − δikb̂jb̂l − δilb̂jb̂k − δjkb̂ib̂l

− δjlb̂ib̂k − δklb̂ib̂j + 3b̂ib̂jb̂kb̂l

]
. (8.10)

It might be tempting to rearrange this decomposition to a more compact form

rg
ijkl =

(
r‖‖ − 6r‖⊥ +

3
2

r⊥⊥

)
b̂ib̂jb̂kb̂l

+

(
r‖⊥ −

r⊥⊥
2

)
[δijb̂kb̂l + δikb̂jb̂l + δilb̂jb̂k + δjkb̂ib̂l + δjlb̂ib̂k + δklb̂ib̂j]

+
r⊥⊥
2
[δijδkl + δikδjl + δilδjk], (8.11)

nevertheless, in actual calculations we find the form (8.10) to be more useful. It
is important to verity that the decomposition (8.10) really works. A straightforward
calculation yields

rg
ijklb̂i = r‖‖b̂jb̂kb̂l + r‖⊥[δjkb̂l + δjlb̂k + δklb̂j − 3b̂jb̂kb̂l]; (8.12)

rg
ijklb̂ib̂j = r‖‖b̂kb̂l + r‖⊥[δkl − b̂kb̂l]; (8.13)

rg
ijklb̂ib̂jb̂k = r‖‖b̂l; (8.14)

rg
ijklb̂ib̂jb̂kb̂l = r‖‖, (8.15)

which is consistent with (8.3). The r‖⊥ component calculates as

rg
ijklb̂ib̂jδkl = r‖‖ + 2r‖⊥; (8.16)

rg
ijklb̂ib̂j(δkl − b̂kb̂l)/2= rg

ijklb̂ib̂jδkl/2− rg
ijklb̂ib̂jb̂kb̂l/2= r‖‖/2+ r‖⊥ − r‖‖/2= r‖⊥, (8.17)

which is consistent with (8.4). The r⊥⊥ component calculates as

rg
ijklδij = rg

iikl = r‖‖b̂kb̂l + r‖⊥(δkl + b̂kb̂l)+ 2r⊥⊥(δkl − b̂kb̂l); (8.18)

rg
ijklδijδkl = rg

iikk = r‖‖ + 4r‖⊥ + 4r⊥⊥; (8.19)
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rg
ijklδijb̂kb̂l = r‖‖ + 2r‖⊥; (8.20)

rg
ijklδij(δkl − b̂kb̂l)= 2r‖⊥ + 4r⊥⊥; (8.21)

rg
ijkl(δij − b̂ib̂j)(δkl − b̂kb̂l)/4 = rg

ijklδij(δkl − b̂kb̂l)/4− rg
ijklb̂ib̂j(δkl − b̂kb̂l)/4

= r‖⊥/2+ r⊥⊥ − r‖⊥/2= r⊥⊥, (8.22)

which is consistent with (8.5). The decomposition (8.10) indeed works.
Now we need to verify expressions (7.94), (7.95) that were used in the scalar heat

flux equations. The first expression calculates as

(∇ · rg)ijkb̂ib̂jb̂k = (∂lr
g
ijkl)b̂ib̂jb̂k = ∂l(r

g
ijklb̂ib̂jb̂k)− rg

ijkl∂l(b̂ib̂jb̂k)

= ∂l(r‖‖b̂l)− rg
ijkl∂l(b̂ib̂jb̂k)

= ∇ · (r‖‖b̂)− rg
ijkl((∂lb̂i)b̂jb̂k + b̂i(∂lb̂j)b̂k + b̂ib̂j(∂lb̂k)); (8.23)

rg
ijklb̂jb̂k = r‖‖b̂ib̂l + r‖⊥[δil − b̂ib̂l]; (8.24)

rg
ijklb̂jb̂k∂lb̂i = r‖⊥∇ · b̂; (8.25)

(∇ · rg)ijkb̂ib̂jb̂k =∇ · (r‖‖b̂)− 3r‖⊥∇ · b̂, (8.26)

and the second expression calculates similarly as

(∇ · rg)ijkδijb̂k = (∂lr
g
iikl)b̂k = ∂l(r

g
iiklb̂k)− rg

iikl∂lb̂k; (8.27)

rg
iiklb̂k = r‖‖b̂l + 2r‖⊥b̂l; (8.28)

rg
iikl∂lb̂k = (r‖⊥ + 2r⊥⊥)∇ · b̂; (8.29)

(∇ · rg)ijkδijb̂k =∇ · (r‖‖b̂)+ 2∇ · (r‖⊥b̂)− (r‖⊥ + 2r⊥⊥)∇ · b̂; (8.30)

(∇ · rg)ijk(δij − b̂ib̂j)b̂k/2=∇ · (r‖⊥b̂)+ (r‖⊥ − r⊥⊥)∇ · b̂, (8.31)

which verifies (7.94), (7.95).
Furthermore, by exploring the ∂r/∂t equation (8.1), at frequencies that are much

smaller than the gyrofrequency, the gyrotropic part of r should satisfy

(b̂× rg)S = 0, (8.32)

in the same way that the gyrotropic parts of p and q satisfied this requirement. By
using the gyrotropic (8.10), it is easy to calculate for example that

(b̂× rg)ijkl = εirsb̂rr
g
sjkl = r‖⊥(εirjb̂rb̂kb̂l + εirkb̂rb̂jb̂l + εirlb̂rb̂jb̂k)

+
r⊥⊥
2
(εirjb̂rδkl + εirkb̂rδjl + εirlb̂rδjk − εirjb̂rb̂kb̂l − εirkb̂rb̂jb̂l − εirlb̂rb̂jb̂k),

(8.33)

and by adding together all the 4 representations of the ‘S’ operator, one can indeed
verify that all the terms cancel, yielding (8.32). By decomposing the entire fourth-
order moment into its gyrotropic and non-gyrotropic parts

r= rg
+ rng, (8.34)

the evolution equation (8.1) can therefore be rewritten as

∂

∂t
r+∇ · (X (5)

+ ur)+
[

r · ∇u+Ω
|B|
B0

b̂× rng
−

1
ρ
(∇ · p)q

]S

= 0. (8.35)
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8.1. Non-gyrotropic rng

Basic properties of the non-gyrotropic tensor rng can be easily determined with a
similar procedure as those we used for the non-gyrotropic pressure Π and the non-
gyrotropic heat flux qng. The decomposition of the entire fourth-order moment is

r= r‖‖b̂b̂b̂b̂+ r‖⊥[b̂b̂(I − b̂b̂)]Sym
+ r⊥⊥[(I − b̂b̂)(I − b̂b̂)]Sym

+ rng, (8.36)

and the meaning of the ‘Sym’ operators was specified by (8.8), (8.9). By using
definitions (8.3), (8.4), (8.5) for r‖‖, r‖⊥, r⊥⊥ in the expression above, the full
decomposition reads

r = [(r : b̂b̂) : (b̂b̂)]b̂b̂b̂b̂+ [(r : b̂b̂) : (I − b̂b̂)/2][b̂b̂(I − b̂b̂)]Sym

+ [(r : (I − b̂b̂)/2) : (I − b̂b̂)/2][(I − b̂b̂)(I − b̂b̂)]Sym
+ rng. (8.37)

Now, applying : b̂b̂ twice to both sides of the equation yields (r : b̂b̂) : (b̂b̂)= (r : b̂b̂) :
(b̂b̂)+ (rng

: b̂b̂) : (b̂b̂), implying (rng
: b̂b̂) : (b̂b̂)= 0, which can be also rewritten as

b̂b̂ : rng
: b̂b̂= 0. (8.38)

Similarly, the other two properties are derived by either applying : b̂ and : (I − b̂b̂), or
twice : (I − b̂b̂), yielding

(I − b̂b̂) : rng
: b̂b̂= 0; (I − b̂b̂) : rng

: (I − b̂b̂)= 0, (8.39)

which, by using the property (8.38), are further reduced to

I : rng
: b̂b̂= 0; I : rng

: I = 0. (8.40)

The last two properties can be also written as Tr rng
: b̂b̂ = 0, Tr Tr rng

= 0. Finally,
writing all 3 properties in the index notation

rng
ijklb̂ib̂jb̂kb̂l = 0; rng

iiklb̂kb̂l = 0; rng
iikk = 0. (8.41)

One would assume that the non-gyrotropic rng can be evaluated by rewriting (8.35)
as

(b̂× rng)S =−
B0

Ω|B|

[
∂

∂t
r+∇ · (X (5)

+ ur)+
(

r · ∇u−
1
ρ
(∇ · p)q

)S
]
, (8.42)

and then expanding the right-hand side similarly to what we did for the non-gyrotropic
Π (and also the non-gyrotropic heat flux vectors in appendix D). However, the
equation does not seem to yield anything useful. Instead, one needs to consider a
specific example of a bi-Maxwellian distribution function.
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8.2. Bi-Maxwellian distribution
Here we consider a special case of a bi-Maxwellian distribution function

f0 = n
( m

2π

)3/2 1

T1/2
‖ T⊥

exp
[
−m

(v‖ − u‖)2

2T‖
−m
|v⊥ − u⊥|2

2T⊥

]
. (8.43)

It is useful to use the fluctuating velocity c = v − u, where c2
= c2

‖
+ c2

⊥
and c2

⊥
=

c2
x + c2

y . For brevity of the calculations we introduce

α‖ ≡
m

2T‖
=

1
v2

th‖
; α⊥ ≡

m
2T⊥
=

1
v2

th⊥
, (8.44)

where here the thermal speeds are meant to be spatially dependent, i.e. they are
written with T and not with T (0). The bi-Maxwellian distribution therefore reads

f0 = n
√
α‖

π

α⊥

π
e−α‖c

2
‖e−α⊥c2

⊥ . (8.45)

It is useful to remind ourselves of the following one-dimensional integrals∫
∞

−∞

e−αx2
dx=

√
π

α
;

∫
∞

−∞

x2e−αx2
dx=

1
2

√
π

α3
;

∫
∞

−∞

x4e−αx2
dx=

3
4

√
π

α5
, (8.46)

and that the general integral with xn, where n is an integer, reads∫
∞

−∞

xne−αx2
dx =

(n− 1)!!
2n/2

√
π

αn+1
; n= 0, 2, 4 . . . (n= even); (8.47)

= 0; n= 1, 3, 5 . . . (n= odd). (8.48)

The double factorial (n− 1)!! = 1 · 3 · 5 · · · (n− 1), with (−1)!! = 1. The identity (8.47)
is easily obtained by performing differentiation ∂/∂α of the first result in (8.46), and
this technique is useful in the calculation of the fluid moments.

To become more familiar with the bi-Maxwellian distribution, it is useful to
verify whether integrals over f0 indeed yield the expected fluid moments. Since the
macroscopic velocity u is independent of v, changing from variable v to c just yields
d3v= d3c (similarly to the substitution y= x+ const. that yields dy= dx). We use the
notations d3c= dc‖ d2c⊥ and d2c⊥ = dcx dcy. Also, because the integrals are evaluated
from −∞ to ∞, substitution from v to c does not change these bounds. Integration
in velocity space therefore yields∫

∞

−∞

e−α‖c
2
‖ dc‖ =

√
π

α‖
;

∫
∞

−∞

e−α⊥c2
⊥ d2c⊥ =

∫
e−α⊥(c

2
x+c2

y ) dcx dcy =
π

α⊥
. (8.49)

For simplicity we have integrated in Cartesian coordinates (instead of perhaps the
more elegant cylindrical coordinates), which has an additional benefit in that we can
stop writing the integral bounds, since the integrals are always from −∞ to ∞. By
using the bi-Maxwellian f0 it is very easy to verify that

n=
∫

f0 d3v; nu=
∫

vf0 d3v; p‖ =m
∫

c2
‖
f0 d3v; p⊥ =

m
2

∫
c2
⊥

f0 d3v. (8.50)
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Continuing with the heat flux components yields

q‖ =m
∫

c3
‖
f0 d3v =mn

√
α‖

π

∫
c3
‖
e−α‖c

2
‖ dc‖︸ ︷︷ ︸

=0

α⊥

π

∫
e−α⊥c2

⊥ d2c⊥ = 0; (8.51)

q⊥ =
m
2

∫
c‖c2
⊥

f0 d3v =
m
2

n
√
α‖

π

∫
c‖e−α‖c

2
‖ dc‖︸ ︷︷ ︸

=0

α⊥

π

∫
c2
⊥

e−α⊥c2
⊥ d2c⊥ = 0. (8.52)

It is important to emphasize that the zero heat flux values were obtained by assuming
some prescribed equilibrium f0, here bi-Maxwellian. A crucial principle used in
constructing fluid models with higher-order moments is that the specific f0 is
assumed only for the last retained moment. Indeed, if one closes the hierarchy
by prescribing q‖ = 0, q⊥ = 0, the CGL fluid model is obtained. However, to go
higher in the fluid hierarchy, evolution equations for q‖ and q⊥ cannot be eliminated,
even if the hierarchy will be eventually closed, for example at the fourth-order
moment level, by assuming a bi-Maxwellian f0. Or in another words, the zero heat
flux values were obtained for a distribution function that is strictly f0, however,
fluctuations/perturbations around f0 are still allowed. Therefore, to obtain the next
available model after the CGL, the heat flux equations must be retained, and a
closure is performed on the fourth-order moment. Only this last moment is calculated
by assuming a specific distribution function, that is strictly f0. For a bi-Maxwellian,
the gyrotropic fourth-order moments are calculated according to

r‖‖ ≡m
∫

c4
‖
f0 d3v = mn

√
α‖

π

∫
c4
‖
e−α‖c

2
‖ dc‖︸ ︷︷ ︸

=3/(4α2
‖
)

α⊥

π

∫
e−α⊥c2

⊥ d2c⊥︸ ︷︷ ︸
=1

=
3
4

mn
α2
‖

= 3
n2T2
‖

nm
= 3

p2
‖

ρ
; (8.53)

r‖⊥ ≡
m
2

∫
c2
‖
c2
⊥

f0 d3v =
m
2

n
√
α‖

π

∫
c2
‖
e−α‖c

2
‖ dc‖︸ ︷︷ ︸

=1/(2α‖)

α⊥

π

∫
c2
⊥

e−α⊥c2
⊥ d2c⊥︸ ︷︷ ︸

=1/α⊥

=
mn

4α‖α⊥
=

n2T‖T⊥
mn

=
p‖p⊥
ρ
; (8.54)

r⊥⊥ ≡
m
4

∫
c4
⊥

f0 d3v =
m
4

n
√
α‖

π

∫
e−α‖c

2
‖ dc‖︸ ︷︷ ︸

=1

α⊥

π

∫
c4
⊥

e−α⊥c2
⊥ d2c⊥︸ ︷︷ ︸

=2/α2
⊥

=
mn
2α2
⊥

= 2
n2T2
⊥

mn
= 2

p2
⊥

ρ
. (8.55)

Therefore, for a bi-Maxwellian, the following closure can be constructed

r‖‖ =
3p2
‖

ρ
; r‖⊥ =

p‖p⊥
ρ
; r⊥⊥ =

2p2
⊥

ρ
, (8.56)

and this closure is known as the ‘normal’ closure, a name suggested by Chust &
Belmont (2006).
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8.3. Bi-Maxwellian non-gyrotropic rng contributions
Let us consider a specific case of a bi-Maxwellian distribution function. Then, an
expansion procedure analogous to the one developed by Grad (1949) for rarefied
gases can be used, where the distribution function is expanded in a series of Hermite
polynomials. By keeping only the first few terms, one can express the fourth-order
moment through the second-order (pressure) moments. The procedure is written down
in Oraevskii et al. (1968), and the entire fourth-order moment can be decomposed
in the following way: see (2.31) in Oraevskii et al. (1968) (where a small typo on
the left-hand side is present, where instead of qαβγ ε , there should be qαβγ δ), equation
(24) in Goswami et al. (2005), equation (9) in Passot & Sulem (2007)

ρrijkl = pg
ijp

g
kl + pg

ikp
g
jl + pg

ilp
g
jk + ρrng

ijkl, (8.57)

where the non-gyrotropic contributions read

ρrng
ijkl = pg

ijΠkl + pg
ikΠjl + pg

ilΠjk +Πijp
g
kl +Πikp

g
jl +Πilp

g
jk, (8.58)

and where terms ΠijΠlk + ΠikΠjl + ΠilΠjk were neglected. By using pg
ij = p‖b̂ib̂j +

p⊥(δij − b̂ib̂j), it can be indeed shown by direct straightforward calculation that the
gyrotropic part

ρrg
ijkl = pg

ijp
g
kl + pg

ikp
g
jl + pg

ilp
g
jk = 3p2

‖
b̂ib̂jb̂kb̂l

+ p‖p⊥[δijb̂kb̂l + δikb̂jb̂l + δilb̂jb̂k + δjkb̂ib̂l + δjlb̂ib̂k + δklb̂ib̂j − 6b̂ib̂jb̂kb̂l]

+ p2
⊥

[
δijδkl + δikδjl + δilδjk − δijb̂kb̂l − δikb̂jb̂l − δilb̂jb̂k − δjkb̂ib̂l

− δjlb̂ib̂k − δklb̂ib̂j + 3b̂ib̂jb̂kb̂l

]
. (8.59)

This agrees with the decomposition (8.10) valid for a general distribution function,
after one specifies that for a bi-Maxwellian distribution r‖‖= 3p2

‖
/ρ, r‖⊥= p‖p⊥/ρ and

r⊥⊥ = 2p2
⊥
/ρ (last term in (8.10) contains r⊥⊥/2).

Now it is possible to calculate the non-gyrotropic contributions rng, by using (8.58).
It is useful to pre-calculate the trace of (8.58) that reads

ρriikl = (p‖ + 6p⊥)Πkl + 2(p‖ − p⊥)b̂i(b̂kΠil + b̂lΠik). (8.60)

The two terms that enter the parallel and perpendicular heat flux equations (7.96),
(7.97) calculate as

b̂ · (∇ · rng) : b̂b̂=
3p‖
ρ
(∇ ·Π) · b̂+

3p‖
ρ
(b̂ · ∇Π) : b̂b̂+ 3

(
∇

p‖
ρ

)
·Π · b̂; (8.61)

I : (∇ · rng) · b̂ =
(
∇

3p‖ + 4p⊥
ρ

)
·Π · b̂+

(3p‖ + 4p⊥)
ρ

(∇ ·Π) · b̂

+
2
ρ
(p‖ − p⊥)[Π : (∇b̂)+ (b̂ · ∇b̂) ·Π · b̂+ b̂ · (∇Π) : b̂b̂]. (8.62)

At this stage, we need to further simplify, and we keep only those terms that
contribute at the linear level, yielding

b̂ · (∇ · rng) : b̂b̂=
3p‖
ρ
(∇ ·Π) · b̂; (8.63)
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I : (∇ · rng) · b̂=
(3p‖ + 4p⊥)

ρ
(∇ ·Π) · b̂, (8.64)

so the term entering the q⊥ equation (7.97) reads

1
2
(I − b̂b̂) : (∇ · rng) · b̂=

2p⊥
ρ
(∇ ·Π) · b̂. (8.65)

Note that (b̂ · ∇Π) : b̂b̂=−Π : (b̂(b̂ · ∇)b̂)S, and the term does not contribute at the
linear level. Of course, many nonlinear terms were neglected, and technically, the only
fully consistent procedure is to explicitly write those terms at the linear level, in the
form

b̂ · (∇ · rng) : b̂b̂=
3p(0)‖
ρ0

(∇ ·Π) · b̂0 =
3p(0)‖
ρ0

(∂xΠxz + ∂yΠyz); (8.66)

1
2
(I − b̂b̂) : (∇ · rng) · b̂=

2p(0)⊥
ρ0

(∇ ·Π) · b̂0 =
2p(0)⊥
ρ0

(∂xΠxz + ∂yΠyz). (8.67)

The results show that, if the Π contributions are kept in the heat flux equations,
the rng contributions cannot just be straightforwardly neglected, since the Π and rng

contributions partially cancel out.

9. Bi-Maxwellian fluid model, second-order CGL (CGL2)
In the previous section we have seen that for a bi-Maxwellian distribution function,

one can close the fluid hierarchy by prescribing the ‘normal’ closure

r‖‖ =
3p2
‖

ρ
; r‖⊥ =

p‖p⊥
ρ
; r⊥⊥ =

2p2
⊥

ρ
. (9.1)

It is useful to summarize the fully nonlinear model that we want to consider here.
We consider only proton species, and we make the electrons massless and cold. We
simplify the pressure equations, by neglecting the FLR stress forces (which enter only
nonlinearly), and we keep only those non-gyrotropic contributions in the pressure and
heat flux equations that have a non-zero linear contributions. The nonlinear model
reads

∂ρ

∂t
+∇ · (ρu)= 0; (9.2)

∂u
∂t
+ u · ∇u+

1
ρ
∇ · [p‖b̂b̂+ p⊥(I − b̂b̂)+Π] −

1
4πρ

(∇×B)×B= 0; (9.3)

∂B
∂t
=∇× (u×B)−

1
Ωp

B0

4π
∇×

[
1
ρ
(∇×B)×B

]
; (9.4)

∂p‖
∂t
+ u · ∇p‖ + p‖∇ · u+ 2p‖b̂ · ∇u · b̂+∇ · (q‖b̂)− 2q⊥∇ · b̂+∇ · S‖⊥ = 0; (9.5)

∂p⊥
∂t
+ u · ∇p⊥ + 2p⊥∇ · u− p⊥b̂ · ∇u · b̂+∇ · (q⊥b̂)+ q⊥∇ · b̂+∇ · S⊥⊥ = 0; (9.6)

∂q‖
∂t
+ u · ∇q‖ + q‖∇ · u+ 3p‖b̂ · ∇

(
p‖
ρ

)
+ 3q‖b̂ · ∇u · b̂= 0; (9.7)
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∂q⊥
∂t
+ u · ∇q⊥ + 2q⊥∇ · u+ p‖b̂ · ∇

(
p⊥
ρ

)
+

p⊥
ρ
(p‖ − p⊥)∇ · b̂+

p⊥
ρ
(∇ ·Π) · b̂0 = 0.

(9.8)

To develop a vocabulary, let us first consider the above fluid model with all the
non-gyrotropic fluctuations neglected, i.e. when all the terms with Π, S‖⊥, S⊥

⊥
are

neglected. Additionally, let us neglect the Hall term in the induction equation. Such
a fluid model is non-dispersive, and represents a generalization of the non-dispersive
CGL model. Even though such a fluid model was not explicitly considered by
Chew, Goldberger and Low, the pressure equations that include the gyrotropic heat
flux contributions q‖, q⊥, were indeed given by Chew et al. (1956). As discussed
previously, the authors just used a different notation with qn = q‖ − 3q⊥ and qs = q⊥,
but their pressure equations contain the gyrotropic heat flux. The authors did not
consider evolution equations for the gyrotropic heat fluxes, equations (9.7), (9.8).
Nevertheless, the name CGL is so well recognized by the community, i.e. the name
CGL is essentially recognized as the collisionless MHD, that we suggest calling the
non-dispersive fluid model that used the above gyrotropic heat flux equations, ‘the
second-order CGL’, abbreviated as ‘CGL2’. The name CGL2 has a nice advantage
in that the abbreviations for many models considered previously can be easily and
naturally generalized.

The CGL2 fluid model does not contain any dispersive effects and it is length-scale
invariant, similarly to the CGL and MHD models. If the Hall term in the induction
equation is considered, this yields the ‘Hall-CGL2’ model. Considering also the
first-order FLR corrections to the pressure tensor (FLR1) or the second-order
corrections (FLR2), yields the ‘Hall-CGL2-FLR1’ and the ‘Hall-CGL2-FLR2’ fluid
models. Finally, considering the non-gyrotropic heat flux fluctuations S‖⊥, S⊥

⊥
, yields

the Hall-CGL2-FLR3 model. Fluid models with the Hall term neglected can be easily
abbreviated as ‘CGL2-FLR1’, ‘CGL2-FLR2’ etc. Even though, if the dispersive
effects of the FLR corrections are considered, there is really no reason to neglect the
simple Hall term, and the use of such fluid models is discouraged. Obviously, the
name ‘CGL2’ is extremely beneficial and the very natural for the classification of
fluid models, and we will use this name henceforth.

It is important to correctly normalize the heat flux, and the normalization is
according to q̃‖,⊥ = q‖,⊥/(p

(0)
‖ VA), so both the parallel and perpendicular heat fluxes

are normalized in the same way (similarly, both p‖ and p⊥ are normalized with
respect to p(0)‖ ). By dropping the tilde, the scalar pressure equations (9.5), (9.6)
remain unchanged, and the normalized nonlinear heat flux equations read

∂q‖
∂t
+ u · ∇q‖ + q‖∇ · u+ 3

β‖

2
p‖b̂ · ∇

(
p‖
ρ

)
+ 3q‖b̂ · ∇u · b̂= 0; (9.9)

∂q⊥
∂t
+ u · ∇q⊥ + 2q⊥∇ · u+

β‖

2
p‖b̂ · ∇

(
p⊥
ρ

)
+
β‖

2
p⊥
ρ
(p‖ − p⊥)∇ · b̂+

β‖

2
p⊥
ρ
(∇ ·Π) · b̂0 = 0. (9.10)

Now we need to linearize the system, where one prescribes q(0)‖ = 0 and q(0)⊥ = 0. Once
normalized, linearized, transformed to Fourier space and written in the x–z plane, the
model reads (dropping the tilde everywhere)

−ωρ + k⊥ux + k‖uz = 0; (9.11)
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−ωux +
β‖

2
k⊥p⊥ − v2

A‖k‖Bx + k⊥Bz +
β‖

2
(k⊥Πxx + k‖Πxz)= 0; (9.12)

−ωuy − v
2
A‖k‖By +

β‖

2
(k⊥Πxy + k‖Πyz)= 0; (9.13)

−ωuz +
β‖

2
k‖p‖ +

β‖

2
(1− ap)k⊥Bx +

β‖

2
k⊥Πxz = 0; (9.14)

−ωBx − k‖ux − ik2
‖
By = 0; (9.15)

−ωBy − k‖uy − ik‖k⊥Bz + ik2
‖
Bx = 0; (9.16)

−ωBz + k⊥ux + ik‖k⊥By = 0; (9.17)

−ωp‖ + k⊥ux + 3k‖uz + k‖q‖ + k⊥S‖⊥ = 0; (9.18)
−ωp⊥ + 2apk⊥ux + apk‖uz + k‖q⊥ + k⊥S⊥

⊥
= 0; (9.19)

−ωq‖ + 3
2β‖k‖(p‖ − ρ)= 0; (9.20)

−ωq⊥ +
β‖

2
k‖(p⊥ − apρ)+

β‖

2
ap(1− ap)k⊥Bx +

β‖

2
apk⊥Πxz = 0. (9.21)

As previously, v2
A‖ = 1+ (β‖/2)(ap − 1).

9.1. CGL2 dispersion relation

Neglecting all the dispersive effects, prescribing Π = 0, S‖⊥ = 0, S⊥
⊥
= 0, and

eliminating the Hall term in the induction equation (i.e. terms proportional to ik2

in the above induction equation), yields the CGL2 model. By exploring the system, it
is obvious that the Alfvén mode separates from the system in the uy, By components.
The dispersion relation of the Alfvén mode in the (non-dispersive) CGL2 model is
therefore the same as in the CGL model, and reads (the normalization tildes are
dropped)

ω=±k‖vA‖ =±k cos(θ)

√
1+

β‖

2
(ap − 1). (9.22)

The ‘hard’ threshold of the oblique firehose instability is therefore the same as in the
CGL model, and correctly reproduced. The entire dispersion relation for the CGL2
fluid model can be written in the following form

(ω2
− v2

A‖k
2
‖
)(ω8
− A6ω

6
+ A4ω

4
− A2ω

2
+ A0)= 0; (9.23)

A6 = k2
‖

(
v2

A‖ +
7
2β‖
)
+ k2
⊥
(1+ apβ); (9.24)

A4 = k2
‖
β‖
{

k2
‖

(
7
2v

2
A‖ +

9
4β‖
)
+ k2
⊥

7
2

(
1+ apβ‖ −

1
7 a2

pβ‖
)}
; (9.25)

A2 = k4
‖
β2
‖

{
k2
‖

(
9
4v

2
A‖ +

3
8β‖
)
+ k2
⊥

9
4

(
1+ apβ‖ −

5
9 a2

pβ‖
)}
; (9.26)

A0 =
3
8 k6
‖
β3
‖
{k2
‖
v2

A‖ + k2
⊥
(1+ apβ‖ − a2

pβ‖)}. (9.27)

The CGL2 fluid model therefore contains 5 forward and 5 backward propagating
modes. The oblique Alfvén mode is separated as stated above, and is incompressible.
The remaining 4 forward and 4 backward waves are generally compressible and
coupled together through the eighth-order polynomial in ω (fourth-order polynomial
in ω2). Let us ignore for a moment the distinction between the forward and
backward modes, since these will always be symmetric in ω. The CGL2 model
contains 5 waves/modes. The oblique Alfvén mode is separated, and the remaining 4
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compressible modes are in general strongly coupled. In contrast to the simpler CGL
(and MHD) model, that contains only 2 compressible modes (slow and fast), we
therefore have 2 ‘new’ modes, that do not have an analogy in the usual CGL and
MHD descriptions. There is no standardized vocabulary on how the modes should
be named, perhaps the expression ‘higher-order modes’ is the most appropriate. For
the highly oblique propagation, considering the mirror instability, sometimes the
expression ‘mirror modes’ is used. Nevertheless, since none of the 4 compressible
modes match the slow and fast CGL dispersion relations, the distinction between
modes becomes blurry. The reader has to get used to the fact that, by considering
higher-order fluid moments, we perhaps came closer to the kinetic theory, which
admits an infinite number of modes that are difficult to classify, unless a specific
situation is considered. The difference between the CGL2 model and the kinetic
description is that, unless a firehose or mirror instability threshold is reached, the
fluid modes are un-damped.

For strictly parallel propagation (k⊥ = 0), in addition to the parallel Alfvén mode
(9.22) ω = ±k‖vA‖ that was already separated, the solution of the eighth-order
polynomial contains another Alfvén mode ω=±k‖vA‖, which was of course expected
and is equivalent to the CGL model, since the components ux, uy, Bx, By de-couple
for parallel propagation. The remaining solutions are

ω=±k‖

√
β‖

(
3
2 +

√
3
2

)
=±1.65k‖

√
β‖; (9.28)

ω=±k‖

√
β‖

(
3
2 −

√
3
2

)
=±0.52k‖

√
β‖; (9.29)

ω=±k‖

√
β‖

2
=±0.71k‖

√
β‖. (9.30)

Solutions (9.28) and (9.29) can be obtained by considering a pure 1-D geometry
(where p⊥ and q⊥ disappear since the kinetic velocity v⊥ disappears) and considering
only fluctuations in the quantities ρ, uz, p‖, q‖. The q‖ heat flux fluctuations in the
CGL2 fluid model are therefore responsible for ‘splitting’ of the CGL ion-acoustic
mode ω=±k‖

√
3β‖/2 into two modes (9.28) and (9.29).

Considering solutions for strictly perpendicular propagation (k‖ = 0), the only non-
zero mode is the fast mode

ω=±k⊥
√

1+ apβ‖, (9.31)

and the dispersion relation is unchanged from the CGL model (for perpendicular
propagation the q‖, q⊥ contributions to the equations for p‖, p⊥ naturally vanish and
the CGL2 model is equivalent to the CGL model).

9.2. Mirror instability
A very interesting direction of propagation for this fluid model is the highly oblique
limit, k⊥ � k‖, since the CGL2 fluid model contains the correct mirror instability
threshold. The correct mirror threshold can be already seen in the quantity A0, where,
in contrast to the usual CGL model, the factor 1/6 disappears in the last term ∼ a2

pβ‖.
In the highly oblique limit, the fast mode (9.31) can be separated from the coupled

eighth degree polynomial (actually fourth degree polynomial in ω2) in the following
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way. Importantly, one cannot prescribe a completely perpendicular propagation k‖= 0,
and a highly oblique limit k⊥� k‖, or k‖→ 0, has to be considered. The polynomial
coefficients can be approximated as

A6 = k2
⊥
(1+ apβ); (9.32)

A4 = k2
‖
β‖k2
⊥

7
2

(
1+ apβ‖ −

1
7 a2

pβ‖
)
; (9.33)

A2 = k4
‖
β2
‖
k2
⊥

9
4

(
1+ apβ‖ −

5
9 a2

pβ‖
)
; (9.34)

A0 =
3
8

k6
‖
β3
‖
k2
⊥
(1+ apβ‖ − a2

pβ‖). (9.35)

An alternative approximation is to use k⊥→ k in the above expressions. The coefficient
A6 does not contain any k‖ and is very large compared to A4, A2, A0 that all contain
k‖. The solutions will inevitably be one fast mode, and 3 very slow modes. In this
specific case, the fast mode can be quickly separated from the eighth-order polynomial
in (9.23) with a neat trick

(ω8
− A6ω

6
+ A4ω

4
− A2ω

2
+ A0)= 0;

(ω2
− A6)(−A6ω

6
+ A4ω

4
− A2ω

2
+ A0)= 0.

}
(9.36)

The trick can be verified by multiplying both brackets term by term, dividing by −A6

and observing that (A4, A2, A0)/A6 is negligible. The fast mode is always obtained
correctly in this way (when the A6 is much larger than all the other coefficients),
however, the dispersion relation for the 3 slow modes is correct only in this specific
case when the system is non-dispersive, and all 3 slow modes have constant phase
speeds. A proper limit and expansion should be always checked.

Nevertheless, in the highly oblique limit, the fast mode ω = ±k⊥
√

1+ apβ‖ is
separated, and the rest of the dispersion is of sixth order in ω and contains 3 ‘slow’
modes. By cancelling out the k2

⊥
that is common in all of the remaining coefficients

(or k2), an obvious substitution is offered that reads ω̄= ω/(k‖
√
β‖), and that yields

a dispersion equation of third order in ω̄2 in the form

−(1+ apβ‖)(ω̄
2)3 + 7

2

(
1+ apβ‖ −

1
7 a2

pβ‖
)
(ω̄2)2 − 9

4

(
1+ apβ‖ −

5
9 a2

pβ‖
)
(ω̄2)

+
3
8(1+ apβ‖ − a2

pβ‖)= 0. (9.37)

Now, at exactly the mirror threshold a2
pβ‖= 1+ apβ‖, the last term disappears and we

have one solution ω̄2
= 0, and two solutions

ω̄2
= (3±

√
5)/2, (9.38)

that are both positive. Slightly below or beyond the mirror threshold, we can prescribe
a2

pβ‖ = (1 + apβ‖)(1 + ε), where ε is a small parameter, meaning that for ε < 0,
the system is slightly below the expected mirror threshold, i.e. stable. For ε > 0, the
system is slightly beyond the expected mirror threshold, i.e. unstable. The polynomial
transforms to

(ω̄2)3 −
(

3−
ε

2

)
(ω̄2)2 +

(
1−

5
4
ε

)
(ω̄2)+

3
8
ε = 0. (9.39)
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It is possible to show that this polynomial has a discriminant12
4> 0, implying the

existence of 3 distinct real roots. Now, when ε is small, the two solutions (9.38)
will remain almost the same and change only slightly, importantly, the solutions will
remain positive. Solutions of a cubic polynomial (x − x1)(x − x2)(x − x3) = 0 form
the last coefficient in that polynomial, −x1x2x3, here equal to 3

8ε, and here x1 and
x2 are positive. Therefore, ε < 0 (slightly below the threshold) implies x3 > 0; and
ε > 0 (slightly beyond the threshold) implies x3 < 0. The negative solution (in (ω̄2))
represents the mirror instability, which finishes the analytic proof that the (highly
oblique) mirror threshold in CGL2 model is indeed a2

pβ‖= 1+ apβ‖. The CGL2 fluid
model therefore contains the same mirror instability threshold, as is found in kinetic
theory.

The conclusion can be double checked by numerically exploring solutions of (9.39)
for several values of ε, and it is indeed possible to conclude that, for ε < 0 (slightly
below the threshold), the signs of the solutions are ω̄2

=+,+,+; and that, for ε > 0
(slightly beyond the mirror threshold), the signs of the solutions are ω̄2

= +, +, −.
The solution with the minus sign represents the mirror instability. It is noted that the
Landau fluid description allows for the construction of a fluid model with quasi-static
heat fluxes, that also correctly reproduces the ‘hard’ mirror instability threshold
(Sulem & Passot 2012). Considering Landau fluid models, the mirror instability was
numerically investigated in detail for example by Passot & Sulem (2007), Passot
et al. (2012) and Sulem & Passot (2015). As a suggestion for possible future work,
it would be beneficial to numerically calculate ‘Hellinger’s’ contours (see § 6.3) with
the prescribed maximum growth rate for the mirror instability. If one uses Landau
fluid models with sufficiently precise FLR corrections, the results should match the
kinetic contours very precisely.

9.3. Hall-CGL2 dispersion relation
Considering the Hall term, the dispersion relation of the Hall-CGL2 fluid model reads

(ω2
− v2

A‖k
2
‖
)(ω8
− A6ω

6
+ A4ω

4
− A2ω

2
+ A0)

= k2k2
‖
ω2
[
ω6
−ω4β‖

(
7
2 k2
‖
+ apk2

⊥

)
+ω2β2

‖
k2
‖

(
9
4 k2
‖
+ 3apk2

⊥

)
− k4
‖
β3
‖

(
3
8 k2
‖
+ apk2

⊥

)]
,

(9.40)

where the left-hand side represents the CGL2 dispersion relation (9.23) and the right-
hand side is the Hall-term contribution. For strictly parallel propagation, the solutions

are the usual Hall-CGL whistler and ion-cyclotron waves ω=±k2
‖
/2+ k‖

√
v2

A‖ + k2
‖/4,

ω = ±k2
‖
/2 − k‖

√
v2

A‖ + k2
‖/4, that are accompanied by the CGL2 solutions (9.28),

(9.30) and (9.29). For strictly perpendicular propagation, the solution is (9.31) since
the Hall term vanishes. The dispersion relation of the Hall-CGL-FLR1 model was
already quite large to write down, and we do not provide the final dispersion relation
for the Hall-CGL2-FLR1 model, instead we recommend working with the full system
of linearized equations and solving it numerically or using analytic software such as
Maple.

12Discriminant of a cubic polynomial ax3
+ bx2

+ cx+ d= 0 is calculated according to 4= 18abcd− 4b3d+
b2c2
− 4ac3

− 27a2d2.
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9.4. ‘Static’ closure – generalized isothermal closure
There exists even simpler fluid closure that recovers the correct mirror threshold,
called the ‘static’ or ‘quasi-static’ closure (Constantinescu 2002; Chust & Belmont
2006; Passot et al. 2006). By using heat flux equations (9.7), (9.8) and considering
the quasi-static regime with ∂q‖/∂t= 0, ∂q⊥/∂t= 0, u= 0 yields

b̂ · ∇
(

p‖
ρ

)
= 0; p‖b̂ · ∇

(
p⊥
ρ

)
+

p⊥
ρ
(p‖ − p⊥)∇ · b̂= 0, (9.41)

where the FLR pressure tensor Π was neglected in the second equation. It is useful
to define ∂‖≡ b̂ · ∇, which represents the gradient along the magnetic field lines, and
to use the identity

∇ · b̂=−
1
|B|

b̂ · ∇|B|, (9.42)

further yielding

∂‖T‖ = 0;
∂‖T⊥
T⊥
=

(
1−

T⊥
T‖

)
∂‖|B|
|B|

. (9.43)

Equation (9.43) describes the evolution of the parallel and perpendicular temperature
fluctuations along the magnetic field lines, and it can be verified that the solution is

T‖ = T (0)‖ ; T⊥ = T (0)⊥

|B|
B0

1− ap + ap
|B|
B0

, (9.44)

where ap= T (0)⊥ /T
(0)
‖ . Solution (9.44) is referred to as the ‘static’ closure and it is, for

example, equivalent to (19), (20) of Passot et al. (2006), and (2) of Constantinescu
(2002). For isotropic mean temperatures ap= 1, equation (9.44) yields T⊥= T (0)⊥ = T (0)‖
and both parallel and perpendicular temperatures are isothermal. A similar result is
obtained for general ap with |B| = B0, which yields T⊥ = T (0)⊥ . The closure (9.44)
can be therefore viewed as a generalization of the isothermal closure in the presence
of temperature anisotropy and variations of magnetic field strength. The closure
is used directly in the momentum equation (9.3), and the time-dependent pressure
equations (9.5), (9.6) are disregarded. Therefore, even though the closure was derived
by considering fourth-order moments, the resulting fluid model is actually simpler
than the CGL2 and CGL models. As discussed for example by Passot et al. (2006),
the closure prescribes a limitation for the minimal value of |B|/B0 > 1 − 1/ap that
is required to prevent temperature singularity. Or in other words, by separating
|B| = B0 + B(1) the requirement reads B(1) >−1/ap, meaning that the fluctuating B(1)
cannot be too negative. Mirror instability is often associated with nonlinear structures
in the form of magnetic holes and humps, and the requirement implies that the
magnetic holes cannot be too deep. To easily analyse the dispersion relations, it is
useful to write the closure at the linear level, in the following form

p‖ = nT (0)‖ ; p⊥
lin
= nT (0)⊥ + p(0)⊥ (1− ap)

B(1)z

B0
. (9.45)

The result can be obtained by linearizing (9.44) or (9.43), and at the linear level
∂i|B|

lin
= ∂iBz. The normalized closure reads (tildes are dropped) p‖= n and p⊥= apn+
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ap(1 − ap)Bz. Considering the simplest non-dispersive model (by neglecting the Hall
term and Π), the dispersion relation of this fluid model reads

(ω2
− k2
‖
v2

A‖)(ω
4
− A2ω

2
+ A0)= 0;

A2 = k2
‖

(
v2

A‖ +
β‖

2

)
+ k2
⊥

(
1+ apβ‖ − a2

p
β‖

2

)
;

A0 = k2
‖

β‖

2
[k2
‖
v2

A‖ + k2
⊥
(1+ apβ‖ − a2

pβ‖)].


(9.46)

In comparison with the dispersion relation (3.193) of the adiabatic CGL model,
the ‘static’ closure eliminates the erroneous 1/6 factor in the A0 coefficient and
yields the correct mirror threshold. The erroneous 1/6 factor in the CGL model
can be therefore interpreted as a result of inadequacy of adiabatic closures in
the very slow-dynamics context, such as the mirror instability. For completeness,
solutions for parallel propagation (k⊥ = 0) are ω = ±vA‖k‖ and ω = ±

√
(β‖/2)k‖.

For perpendicular propagation (k‖ = 0) the solution is ω=±
√

1+ apβ‖ − a2
p(β‖/2)k⊥.

Obviously, somewhere beyond the mirror threshold, the perpendicular fast mode
experiences unphysical instability, which can be interpreted as a result of inadequacy
of ‘static’ (isothermal) closures in the fast-dynamics context.

To clearly demonstrate that variations of magnetic field in the ‘static’ closures (9.45)
are indeed crucial in recovering the mirror instability, let us neglect them and quickly
consider strictly isothermal closure p‖ = nT (0)‖ ; p⊥ = nT (0)⊥ , which yields the following
dispersion relation

(ω2
− k2
‖
v2

A‖)(ω
4
− A2ω

2
+ A0)= 0;

A2 = k2
‖

(
v2

A‖ +
β‖

2

)
+ k2
⊥

(
1+ ap

β‖

2

)
;

A0 = k2
‖

β‖

2

[
k2
‖
v2

A‖ + k2
⊥

(
1+ ap

β‖

2
− a2

p
β‖

2

)]
.


(9.47)

As can be seen from the A0 coefficient, this model does not recover the mirror
instability. For parallel propagation the solutions are the same as for the ‘static’
closure, nevertheless, the perpendicular fast mode is now always stable with
ω = ±

√
1+ ap(β‖/2)k⊥. As a double check, after prescribing ap = 1, the dispersion

relation (9.47) is equal to (9.46), since the Bz contributions in the ‘static’ closure
disappear. Also, we considered models with polytropic indices γ‖, γ⊥ in § 3.11, and
the dispersion relation (9.47) is consistent with (3.171), after prescribing γ‖ = 1,
γ⊥ = 1.

10. Bi-kappa fluid model (BiKappa)
10.1. Bi-kappa distribution function

Often in the solar wind and in space plasma physics, distribution functions with
elongated high-energy ‘suprathermal’ tails are observed, that cannot be modelled
with the bi-Maxwellian distribution. A slightly more general distribution function
is the bi-kappa distribution, that contains one free parameter κ , see for example
Summers & Thorne (1992), Pierrard & Lazar (2010), Livadiotis & McComas (2013)

https://doi.org/10.1017/S0022377819000801 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000801


130 P. Hunana and others

and references therein. The κ parameter can be different in the parallel and transverse
directions (see e.g. Basu (2009), dos Santos, Ziebell & Gaelzer (2015)). Here, we
consider only one free κ parameter. The distribution has the following form

f0 = n
Γ (κ + 1)

π3/2κ3/2Γ (κ − 1
2)

1
θ‖θ

2
⊥

[
1+

(v‖ − u‖)2

κθ 2
‖

+
|v⊥ − u⊥|2

κθ 2
⊥

]−κ−1

, (10.1)

where the generalized thermal speeds

θ‖ =

√
1−

3
2κ

√
2T‖
m
; θ⊥ =

√
1−

3
2κ

√
2T⊥
m
, (10.2)

and Γ is the usual gamma function. In the limit κ →∞, the generalized thermal
speeds are the usual thermal speeds and the distribution function is bi-Maxwellian,
since

lim
x→∞

(
1+

a
x

)−x
= e−a

; lim
x→∞

(
1+

a
x

)−x−1
= e−a. (10.3)

Why the generalized thermal speeds are defined this way will become clear from later
calculations of the moments, and the choice of the power law index −(κ + 1), instead
of perhaps the more logical −κ , is attributed to purely historical reasons. Calculating
second-order (pressure) integrals with this distribution requires for convergence
κ > 3/2, and this value is also the minimum value for the generalized thermal
speeds (10.2) to have real values. Sometimes, in the definition of the isotropic kappa
distribution, a value of Γ (3/2) =

√
π/2 is used and π3/2

= 2π
√

π/2 = 2πΓ (3/2).
Again, for brevity of the calculations, it is useful to introduce α‖ = 1/(κθ 2

‖
),

α⊥ = 1/(κθ 2
⊥
), and rewrite the bi-kappa distribution (10.1) in the following form

f0 = n
Γ (κ + 1)
Γ (κ − 1

2)

√
α‖

π

α⊥

π
[1+ α‖c2

‖
+ α⊥c2

⊥
]
−κ−1. (10.4)

The important integral is∫
∞

−∞

(1+ x2)−a dx=
√

π
Γ (a− 1

2)

Γ (a)
, a>

1
2
. (10.5)

For the critical value of a= 1/2, the integral
∫

1/
√

1+ x2 dx= arcsinh(x), and since
limx→±∞ arcsinh(x) = ±∞, the integral diverges. For an isotropic kappa distribution
f (c2), the three-dimensional integrals can be conveniently evaluated by transformation
to spherical coordinates ∫

∞

−∞

f (c2) d3c= 4π

∫
∞

0
c2f (c2) dc. (10.6)

In this case, the important integral is∫
∞

0
x2(1+ x2)−a dx=

√
π

4
Γ (a− 3

2)

Γ (a)
; a>

3
2
, (10.7)

and by a direct substitution∫
∞

0
x2(1+ αx2)−(κ+1) dx=

√
π

4α3/2

Γ (κ − 1
2)

Γ (κ + 1)
; κ >

1
2
. (10.8)
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For an isotropic kappa distribution therefore∫
∞

−∞

(1+ αc2)−(κ+1) d3c= 4π

∫
∞

0
c2(1+ αc2)−(κ+1) dc=

(π

α

)3/2 Γ (κ − 1
2)

Γ (κ + 1)
, (10.9)

which explains the normalization factors. For an anisotropic bi-kappa distributions
f (c2
‖
, c2
⊥
), the integration is slightly more complicated because, in contrast to a

bi-Maxwellian distribution, the integration cannot be fully separated into two
independent integrations over parallel and perpendicular velocity components, and
has to be performed successively. It is possible to use a cylindrical coordinate system
and integrate ∫

∞

−∞

f (c2
‖
, c2
⊥
) d3c= 2π

∫
∞

c⊥=0

∫
∞

c‖=−∞
f (c2
‖
, c2
⊥
)c⊥ dc‖ dc⊥. (10.10)

However, here we keep the old fashioned Cartesian coordinates, and at the expense of
a slightly bit more algebra (i.e. one more integration), we will integrate over d3c=
dc‖ d2c⊥= dc‖ dcx dcy. A small added benefit is that we do not have to follow whether
the integrals are

∫
∞

−∞
or
∫
∞

0 , and we can stop writing the boundaries.
The most important integral is a slight generalization of (10.5) in the form∫

∞

−∞

(1+ b+ αx2)−a dx=
√

π

α

Γ (a− 1
2)

Γ (a)
(1+ b)−(a−

1
2 ); a>

1
2
, (10.11)

where for simplicity b, α are assumed to be positive constants. So one can calculate

∫
∞

−∞

(1+ αxx2
+ αyy2

+ αzz2)−a dx=
√

π

αx

Γ (a− 1
2)

Γ (a)
(1+ αyy2

+ αzz2)−(a−1/2), (10.12)

where, importantly, the ‘power law’ changed from −a to −(a − 1/2). Performing a
successive three-dimensional integral therefore yields∫

∞

−∞

(1+ αxx2
+ αyy2

+ αzz2)−a dx dy dz

=

√
π

αx

Γ (a− 1
2)

Γ (a)

∫
(1+ αyy2

+ αzz2)−(a−1/2) dy dz

=

√
π

αx

√
π

αy

Γ (a− 1
2)

Γ (a)
Γ (a− 1)
Γ (a− 1

2)

∫
(1+ αzz2)−(a−1) dz

=

√
π

αx

√
π

αy

√
π

αz

Γ (a− 1
2)

Γ (a)
Γ (a− 1)
Γ (a− 1

2)

Γ (a− 3
2)

Γ (a− 1)

=

√
π

αx

√
π

αy

√
π

αz

Γ (a− 3
2)

Γ (a)
; a>

3
2
, (10.13)

and integrating the bi-kappa distribution over the velocity space∫
∞

−∞

(1+ α‖c2
‖
+ α⊥c2

⊥
)−(κ+1) dc‖ d2c⊥ =

√
π

α‖

π

α⊥

Γ (κ − 1
2)

Γ (κ + 1)
; κ >

1
2
, (10.14)
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which verifies that the normalization constants in the bi-kappa definition (10.4) are
indeed correct, and that

∫
f0d3c= n. For later calculations, it is useful to write down

two partial integrals when the integration is done over dc‖ and d2c⊥ that read

∫
∞

−∞

(1+ α‖c2
‖
)−a dc‖ =

√
π

α‖

Γ (a− 1
2)

Γ (a)
; (10.15)∫

∞

−∞

(1+ α‖c2
‖
+ α⊥c2

⊥
)−(κ+1) dc‖ =

√
π

α‖

Γ (κ + 1
2)

Γ (κ + 1)
(1+ α⊥c2

⊥
)−(κ+1/2)

; (10.16)∫
f0 dc‖ = n

Γ (κ + 1
2)

Γ (κ − 1
2)

α⊥

π
(1+ α⊥c2

⊥
)−(κ+1/2), (10.17)

and ∫
∞

−∞

(1+ α⊥c2
⊥
)−a d2c⊥ =

π

α⊥

Γ (a− 1)
Γ (a)

; (10.18)∫
(1+ α‖c2

‖
+ α⊥c2

⊥
)−(κ+1) d2c⊥ =

π

α⊥

Γ (κ)

Γ (κ + 1)
(1+ α‖c2

‖
)−κ; (10.19)∫

f0 d2c⊥ = n
Γ (κ)

Γ (κ − 1
2)

√
α‖

π
(1+ α‖c2

‖
)−κ . (10.20)

Continuing with the calculation of velocity moments, it is easy to show that
∫

cf0 d3c=
0, which verifies nu =

∫
vf0 d3v. Continuing with the higher-order moments, it is

possible to calculate those from table integrals (a great help for double checking is
an analytic software like Maple or Mathematica) or similarly for a bi-Maxwellian
distribution to use a trick with the differentiation with respect to α as

∫
∞

−∞

x2(1+ αx2)−(κ+1) dx = −
1
κ

∂

∂α

∫
∞

−∞

(1+ αx2)−κ dx=−
1
κ

√
π
Γ (κ − 1

2)

Γ (κ)

∂

∂α
α−1/2

=

√
π

2α3/2

Γ (κ − 1
2)

Γ (κ + 1)
, (10.21)

where we have also used a property of the gamma function xΓ (x) = Γ (x + 1), and
the last integral requires κ > 1

2 . A slightly more general integral is

∫
∞

−∞

x2(1+ b+ αx2)−a dx=
√

π

2α3/2

Γ (a− 3
2)

Γ (a)
(1+ b)−(a−3/2), (10.22)

which can be used to evaluate the following integrals

∫
∞

−∞

c2
‖
(1+ α‖c2

‖
)−a dc‖ =

√
π

2α3/2
‖

Γ (a− 3
2)

Γ (a)
; (10.23)
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∞

−∞

c2
x(1+ α⊥c2

⊥
)−a d2c⊥ =

∫
∞

−∞

c2
x(1+ α⊥c2

x + α⊥c2
y)
−a dcx dcy

=

√
π

2α3/2
⊥

Γ (a− 3
2)

Γ (a)

∫
∞

−∞

(1+ α⊥c2
y)
−(a−3/2) dcy

=

√
π

2α3/2
⊥

Γ (a− 3
2)

Γ (a)

√
π

α⊥

Γ (a− 2)
Γ (a− 3

2)
=

π

2α2
⊥

Γ (a− 2)
Γ (a)

;

(10.24)∫
∞

−∞

c2
⊥
(1+ α⊥c2

⊥
)−a d2c⊥ =

π

α2
⊥

Γ (a− 2)
Γ (a)

. (10.25)

Since we like to double check everything, the above integral can be also calculated
as ∫

∞

−∞

c2
⊥
(1+ α⊥c2

⊥
)−a d2c⊥ = −

1
a− 1

∂

∂α⊥

∫
∞

−∞

(1+ α⊥c2
⊥
)−(a−1) d2c⊥

= −
1

a− 1
Γ (a− 2)
Γ (a− 1)

∂

∂α⊥

π

α⊥

=
π

α2
⊥

Γ (a− 2)
Γ (a)

. (10.26)

For the calculation of the parallel pressure, we first integrate over d2c⊥ so we can use
result (10.20) and then over dc‖

p‖ ≡m
∫

c2
‖
f0 d2c⊥ dc‖ = mn

Γ (κ)

Γ (κ − 1
2)

√
α‖

π

∫
c2
‖
(1+ α‖c2

‖
)−κ dc‖

= mn
Γ (κ)

Γ (κ − 1
2)

√
α‖

π

√
π

2α3/2
‖

Γ (κ − 3
2)

Γ (κ)

= mn
Γ (κ − 3

2)

Γ (κ − 1
2)

1
2α‖
=mn

Γ (κ − 3
2)

Γ (κ − 1
2)

1
2

(
κ −

3
2

)
2T‖
m
= nT‖,

(10.27)

where we have used (κ − 3
2)Γ (κ −

3
2) = Γ (κ −

1
2). Calculating the perpendicular

pressure, we here first integrate over dc‖ so we can use result (10.17) and then over
d2c⊥

p⊥ ≡
m
2

∫
c2
⊥

f0 dc‖ d2c⊥ =
m
2

n
Γ (κ + 1

2)

Γ (κ − 1
2)

α⊥

π

∫
c2
⊥
(1+ α⊥c2

⊥
)−(κ+1/2) d2c⊥

=
m
2

n
Γ (κ + 1

2)

Γ (κ − 1
2)

α⊥

π

π

α2
⊥

Γ (κ − 3
2)

Γ (κ + 1
2)

= mn
Γ (κ − 3

2)

Γ (κ − 1
2)

1
2α⊥
=mn

Γ (κ − 3
2)

Γ (κ − 1
2)

1
2

(
κ −

3
2

)
2T⊥
m
= nT⊥.

(10.28)
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The last two calculations clarify the reasoning behind the definition of the bi-kappa
generalized thermal speeds θ‖, θ⊥ (here rewritten with the notation α‖ and α⊥), where
one starts with a bi-kappa distribution with unspecified α‖ and α⊥, and calculating
the parallel and perpendicular pressure integrals, yields the required forms α−1

‖ = (κ −
3
2)(2T‖/m); α−1

⊥ = (κ −
3
2)(2T⊥/m). Then, the split to α−1

‖ = κθ
2
‖
; α−1
⊥ = κθ

2
⊥

is dictated
by the requirement that for κ→∞, the generalized thermal speeds converge to the
usual thermal speeds, and which also yields that in this limit the distribution is bi-
Maxwellian.

The bi-kappa distribution was specified with perhaps a somewhat obscure power
law −(κ + 1) instead of the more logical −κ , which is attributed to purely historical
reasons. If one wants to define an anisotropic power-law distribution, a first guess
would be

f̃0 ∼ n[1+ α‖c2
‖
+ α⊥c2

⊥
]
−κ, (10.29)

which then yields normalization constants

f̃0 = n
Γ (κ)

Γ (κ − 3
2)

√
α‖

π

α⊥

π
[1+ α‖c2

‖
+ α⊥c2

⊥
]
−κ . (10.30)

Then, calculating the parallel and perpendicular pressures yields the requirement
α−1
‖,⊥ = (κ −

5
2)(2T‖,⊥/m). Further writing α−1

‖,⊥ = κθ
2
‖,⊥ yields a distribution function

f̃0 = n
Γ (κ)

π3/2κ3/2Γ (κ − 3
2)

1
θ‖θ

2
⊥

[
1+

c2
‖

κθ 2
‖

+
c2
⊥

κθ 2
⊥

]−κ
, (10.31)

with generalized thermal speeds

θ‖ =

√
1−

5
2κ

√
2T‖
m
; θ⊥ =

√
1−

5
2κ

√
2T⊥
m
. (10.32)

The convergence of the pressure integrals requires κ > 5
2 , which is also the limiting

case for the thermal speeds to be real. In the limit κ→∞ the generalized thermal
speeds converge to the usual thermal speeds and the distribution converges to the bi-
Maxwellian. To double check that the distribution (10.31) is really correct, one can
of course substitute κ→ κ + 1, which fully recovers the original bi-kappa distribution
(10.1), since κθ 2

→ (κ + 1)(1− 5/2(κ + 1))(2T/m)= κ(1− 3/2κ)(2T/m). From now
on, let us continue calculations with the original bi-kappa distribution (10.1), that uses
the −(κ + 1) power-law index.

10.2. Bi-kappa fluid closure
Now that we are familiar with the bi-kappa distribution, we are ready to calculate
higher-order moments. The heat fluxes are zero and easy to calculate, since both q‖,q⊥
are anti-symmetric in c‖, and by a direct calculation∫

∞

−∞

c3
‖
(1+ α‖c2

‖
+ α⊥c2

⊥
)−a dc‖d2c⊥

=−
1

a− 1
∂

∂α‖

∫
∞

−∞

c‖(1+ α‖c2
‖
+ α⊥c2

⊥
)−(a−1) dc‖︸ ︷︷ ︸

=0

d2c⊥ = 0, (10.33)
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implying

q‖ ≡m
∫

c3
‖
f0 d3c= 0; q⊥ ≡

m
2

∫
c‖c2
⊥

f0 d3c= 0. (10.34)

As discussed previously for the bi-Maxwellian distribution, the heat fluxes must be
kept in the general form, since we want to consider closure performed at the fourth-
order moment level. To calculate the fourth-order fluid moments, we will need the
following integrals∫

∞

−∞

c4
‖
(1+ α‖c2

‖
)−a dc‖ =

3
4

√
π

α
5/2
‖

Γ (a− 5
2)

Γ (a)
; a>

5
2
; (10.35)∫

∞

−∞

c2
‖
(1+ α‖c2

‖
+ α⊥c2

⊥
)−a dc‖ =

√
π

2α3/2
‖

Γ (a− 3
2)

Γ (a)
(1+ α⊥c2

⊥
)−(a−3/2)

; a>
3
2
;

(10.36)∫
∞

−∞

c2
‖
c2
⊥
(1+ α‖c2

‖
+ α⊥c2

⊥
)−a dc‖ d2c⊥ =

√
π

2α3/2
‖

π

α2
⊥

Γ (a− 7
2)

Γ (a)
; a>

7
2
; (10.37)∫

∞

−∞

c4
⊥
(1+ α⊥c2

⊥
)−a d2c⊥ =

2π

α3
⊥

Γ (a− 3)
Γ (a)

; a> 3. (10.38)

The r‖‖ moment then calculates as

r‖‖ ≡ m
∫

c4
‖
f0 d2c⊥ dc‖ =mn

Γ (κ)

Γ (κ − 1
2)

√
α‖

π

∫
c4
‖
(1+ α‖c2

‖
)−κ dc‖

= mn
Γ (κ)

Γ (κ − 1
2)

√
α‖

π

3
4

√
π

α
5/2
‖

Γ (κ − 5
2)

Γ (κ)

= mn
3
4
Γ (κ − 5

2)

Γ (κ − 1
2)

1
α2
‖

=mn
3
4
Γ (κ − 5

2)

Γ (κ − 1
2)
(κ −

3
2
)2

4T2
‖

m2
= 3

p2
‖

ρ

(κ − 3/2)
(κ − 5/2)

; κ >
5
2
,

(10.39)

where in the last step we used that Γ (x)(x+1)2/Γ (x+2)= (x+1)/x with x=κ−5/2.
The r‖⊥ moment calculates as

r‖⊥ ≡
m
2

∫
c2
‖
c2
⊥

f0 dc‖ d2c⊥ =
m
2

n
Γ (κ + 1)
Γ (κ − 1

2)

√
α‖

π

α⊥

π

√
π

2α3/2
‖

π

α2
⊥

Γ (κ − 5
2)

Γ (κ + 1)

=
1
4

mn
Γ (κ − 5

2)

Γ (κ − 1
2)

1
α‖α⊥

=
1
4

mn
Γ (κ − 5

2)

Γ (κ − 1
2)

(
κ −

3
2

)2 4T‖T⊥
m2
=

p‖p⊥
ρ

(κ − 3/2)
(κ − 5/2)

; κ >
5
2
, (10.40)

and finally the r⊥⊥ moment calculates as

r⊥⊥ ≡
m
4

∫
c4
⊥

f0 dc‖ d2c⊥ =
m
4

n
Γ (κ + 1

2)

Γ (κ − 1
2)

α⊥

π

∫
c4
⊥
(1+ α⊥c2

⊥
)−(κ+1/2) d2c⊥

=
m
4

n
Γ (κ + 1

2)

Γ (κ − 1
2)

α⊥

π

2π

α3
⊥

Γ (κ − 5
2)

Γ (κ + 1
2)
=

1
2

mn
Γ (κ − 5

2)

Γ (κ − 1
2)

1
α2
⊥

= 2
p2
⊥

ρ

(κ − 3/2)
(κ − 5/2)

; κ >
5
2
.

(10.41)
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To summarize, the following closure can be constructed

r‖‖ = ακ
3p2
‖

ρ
; r‖⊥ = ακ

p‖p⊥
ρ
; r⊥⊥ = ακ

2p2
⊥

ρ
, (10.42)

where for the bi-kappa distribution (10.1), the ακ coefficient reads

ακ =
κ − 3

2

κ − 5
2

; κ >
5
2
. (10.43)

It is noteworthy that all three fourth-order moments are just multiplied by the same
constant ακ . Obviously, in the limit κ→∞, ακ→ 1, and the ‘normal’ bi-Maxwellian
closure is obtained.

As suggested for example by Chust & Belmont (2006), a very large class of
distribution functions can be accounted for by considering closures

r‖‖ = α‖‖
3p2
‖

ρ
; r‖⊥ = α‖⊥

p‖p⊥
ρ
; r⊥⊥ = α⊥⊥

2p2
⊥

ρ
, (10.44)

where the 3 proportionality constants α‖‖, α‖⊥, α⊥⊥ have to be determined, once a
specific distribution function is prescribed. Such an unspecified closure can account for
a very wide class of distribution functions. Also, a much more complicated distribution
functions can be modelled by considering multi-fluid models. For example, one could
consider a plasma consisting of 3 different electron species, that would describe
the core, halo and the tail/strahl parts of the electron distribution function. Further
information about the core, halo and strahl components of the electron distribution
function can be found for example in Vocks et al. (2005), Vocks, Mann & Rausche
(2008), Pierrard, Lazar & Schlickeiser (2011) and references therein.

Here, we consider closure (10.42), (10.43). Nevertheless, in the following
calculations one can we keep the value of ακ unspecified. Therefore, the results
are actually valid for a much larger class of fluid models, and not just for a bi-kappa
distribution. Let us completely neglect the non-gyrotropic Π and rng in the heat flux
equations (7.98) and (7.99). We need to calculate

∇ · (r‖‖b̂)− 3r‖⊥∇ · b̂= ακ

[
3

p2
‖

ρ
∇ · b̂+ 3p‖b̂ · ∇

(
p‖
ρ

)
+ 3

p‖
ρ

b̂ · ∇p‖ − 3
p‖p⊥
ρ
∇ · b̂

]
;

(10.45)

∇ · (r‖⊥b̂)+ (r‖⊥ − r⊥⊥)∇ · b̂= ακ
[

p⊥
ρ

b̂ · ∇p‖ + p‖b̂ · ∇
(

p⊥
ρ

)
+ 2

p⊥
ρ
(p‖ − p⊥)∇ · b̂

]
,

(10.46)

and the nonlinear heat flux equations for the bi-kappa fluid model read

∂q‖
∂t
+ u · ∇q‖ + q‖∇ · u+ ακ3p‖b̂ · ∇

(
p‖
ρ

)
+ 3q‖b̂ · ∇u · b̂

+ (ακ − 1)
3p‖
ρ
[(p‖ − p⊥)∇ · b̂+ b̂ · ∇p‖] = 0; (10.47)
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∂q⊥
∂t
+ u · ∇q⊥ + 2q⊥∇ · u+ ακp‖b̂ · ∇

(
p⊥
ρ

)
+ (2ακ − 1)

p⊥
ρ
(p‖ − p⊥)∇ · b̂

+ (ακ − 1)
p⊥
ρ

b̂ · ∇p‖ = 0. (10.48)

Obviously, for ακ = 1 (i.e. for κ →∞), the bi-Maxwellian heat flux equations are
obtained. The model is now closed, and it is accompanied by (9.2)–(9.6). The model
is nonlinear and numerical simulations for a chosen (and fixed) value of κ can
be considered. Even though the κ coefficient is fixed, similarly to bi-Maxwellian
nonlinear simulations, the temperature anisotropy is free to develop, and complicated
plasma heating processes can be studied (we recommend adding the FLR pressure
stress forces to the scalar pressure equations). We abbreviate the non-dispersive fluid
model that uses the above heat flux equations as ‘BiKappa’. If the Hall term is
considered in the induction equation, the ‘Hall-BiKappa’ fluid model is obtained.
Similarly, considering FLR1 and FLR2 corrections to the pressure tensor, yields the
‘Hall-BiKappa-FLR1’ and ‘Hall-BiKappa-FLR2’ fluid models. The heat flux equations
are normalized, linearized, written in the x–z plane and Fourier transformed according
to

−ωq‖ + ακ 3
2β‖k‖(p‖ − ρ)+ (ακ − 1) 3

2β‖
[
(1− ap)k⊥Bx + k‖p‖

]
= 0; (10.49)

−ωq⊥ + ακ
β‖

2
k‖(p⊥ − apρ)+ (2ακ − 1)

β‖

2
ap(1− ap)k⊥Bx + (ακ − 1)

β‖

2
apk‖p‖ = 0,

(10.50)

where we have used the same plasma beta definition as always β‖/2 = p(0)‖ /(V2
Aρ0).

The heat flux equations are accompanied by the linearized system (9.11)–(9.19).
To consider FLR3 corrections, one needs to derive non-gyrotropic heat flux vectors

S‖⊥, S⊥
⊥

for the bi-kappa distribution. For the first-order vectors the derivation is
straightforward, and by following the calculations in appendix D, it is easy to show
that the nonlinear

S‖(1)⊥ =
B0

Ω|B|
b̂×

[
ακp⊥∇

(
p‖
ρ

)
+ (ακ − 1)

p‖
ρ
∇p⊥

+ (3ακ − 1)
p‖
ρ
(p‖ − p⊥)b̂ · ∇b̂+ 2q‖b̂ · ∇u+ 2q⊥b̂×ω

]
; (10.51)

S⊥(1)⊥ =
B0

Ω|B|
b̂×

[
2ακp⊥∇

(
p⊥
ρ

)
+ 2(ακ − 1)

p⊥
ρ
∇p⊥ + 2(ακ − 1)

p⊥
ρ
(p‖ − p⊥)b̂ · ∇b̂+ 4q⊥b̂ · ∇u

]
. (10.52)

Here, we neglected perturbations r̃, since we will not consider Landau fluid models
for bi-kappa distribution. For ακ = 1, the results are of course equivalent to the bi-
Maxwellian expressions (D 37), (D 60). The second-order heat flux vectors are not
addressed here, since we would have to derive rng for the bi-kappa distribution.
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10.3. BiKappa dispersion relation
The BiKappa dispersion relation can be written in the following form

(ω2
− v2

A‖k
2
‖
)(ω8
− A6ω

6
+ A4ω

4
− A2ω

2
+ A0)= 0; (10.53)

A6 = k2
‖

(
v2

A‖ + ακ
7
2β‖
)
+ k2
⊥
(1+ apβ); (10.54)

A4 = ακk2
‖
β‖

{
k2
‖

(
7
2
v2

A‖ +
(3+ 6ακ)

4
β‖

)
+ k2
⊥

7
2

(
1+ apβ‖ −

1
7

a2
pβ‖

)}
; (10.55)

A2 = ακk4
‖
β2
‖

{
k2
‖

(
(3+ 6ακ)

4
v2

A‖ + ακ
3
8
β‖

)
+ k2

⊥

9
4

(
(1+ 2ακ)

3
(1+ apβ‖)−

(1+ 9ακ)
18

a2
pβ‖

)}
; (10.56)

A0 = α
2
κ

3
8

k6
‖
β3
‖
{k2
‖
v2

A‖ + k2
⊥
(1+ apβ‖ − a2

pβ‖)}, (10.57)

and for ακ = 1 it is of course equivalent to the CGL2 dispersion relation (9.23). The
oblique Alfvén mode is not affected, and is identical to (9.22), implying that the long-
wavelength threshold of the oblique firehose instability is identical as well.

For strictly parallel propagation (k⊥= 0), the solutions of the remaining eighth-order
polynomial are

ω=±k‖vA‖; (10.58)

ω=±k‖

√
β‖

(
3
2ακ +

1
2

√
3ακ(3ακ − 1)

)
; (10.59)

ω=±k‖

√
ακ
β‖

2
; (10.60)

ω=±k‖

√
β‖

(
3
2ακ −

1
2

√
3ακ(3ακ − 1)

)
. (10.61)

Note that in the last solution (10.61), the expression under the square root remains
always positive, regardless of how large ακ is (i.e. when the κ-index approaches 5/2).
For strictly perpendicular propagation (k‖ = 0), the fast mode is not affected, and is
equivalent to (9.31).

10.4. Mirror instability
By considering the highly oblique limit k⊥ � k‖, and by assuming that ακ is not
enormously large (i.e. that κ is not very close to 5/2) so that ακk‖ can be neglected
with respect to k⊥, the polynomial coefficients can be approximated as

A6 = k2
⊥
(1+ apβ‖); (10.62)

A4 = ακk2
‖
β‖k2
⊥

7
2

(
1+ apβ‖ −

1
7 a2

pβ‖
)
; (10.63)

A2 = ακk4
‖
β2
‖
k2
⊥

9
4

(
(1+ 2ακ)

3
(1+ apβ‖)−

(1+ 9ακ)
18

a2
pβ‖

)
; (10.64)

A0 = α
2
κ

3
8

k6
‖
β3
‖
k2
⊥
(1+ apβ‖ − a2

pβ‖). (10.65)
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The fast mode can be quickly separated with the trick (9.36), and by using the
substitution ω̄=ω/(k‖

√
β‖), the resulting polynomial reads

−(1+ apβ‖)ω̄
6
+ ακ

7
2

(
1+ apβ‖ −

1
7

a2
pβ‖

)
ω̄4

−ακ
9
4

(
(1+ 2ακ)

3
(1+ apβ‖)−

(1+ 9ακ)
18

a2
pβ‖

)
ω̄2

+α2
κ

3
8
(1+ apβ‖ − a2

pβ‖)= 0. (10.66)

At exactly the (assumed) mirror threshold a2
pβ‖ = 1 + apβ‖, the coefficient A0

disappears, so we have one solution ω̄2
= 0; from the remaining polynomial the

1+ apβ‖ can be factored out and the solutions are

ω̄2
=

3
2ακ ±

1
4

√
10ακ(3ακ − 1), (10.67)

both always positive. Slightly below (ε < 0) or beyond (ε > 0) the mirror threshold,
one can prescribe a2

pβ‖ = (1 + apβ‖)(1 + ε), where ε is a small parameter and the
polynomial transforms to

(ω̄2)3 − ακ

(
3−

ε

2

)
(ω̄2)2 +

ακ

8
(5+ 3ακ − ε(1+ 9ακ))(ω̄2)+

3
8
α2
κε = 0, (10.68)

and which for ακ = 1 is equivalent to the bi-Maxwellian polynomial (9.39). As
previously, for small ε the solutions (10.67) remain almost the same, and positive.
Furthermore, since multiplying all 3 solutions together must yield − 3

8α
2
κε, this

implies that below (ε < 0) the threshold the third solution is positive, and beyond
(ε > 0) the threshold the third solution is negative, which analytically proves that
the (highly oblique) mirror instability threshold is a2

pβ‖ = 1 + apβ‖, regardless of ακ .
The long-wavelength limit or ‘hard’ mirror threshold for the bi-kappa distribution is
therefore the same as for the bi-Maxwellian distribution.

Conclusion
We investigated solutions of the (non-dispersive) BiKappa fluid model. The

calculations were done with closure (10.42) for a general ακ coefficient, i.e. without
using the specific value (10.43) for the bi-kappa distribution. The calculations are
therefore more general and valid for any distribution function that can be closed as
(10.42). We conclude that all 3 long-wavelength ‘hard’ thresholds – for the parallel
and oblique firehose instability and the highly oblique mirror instability – are not
affected by the value of ακ .

10.5. Hall-BiKappa dispersion relation
The Hall-BiKappa dispersion relation can be written in the following form

(ω2
− v2

A‖k
2
‖
)(ω8
− A6ω

6
+ A4ω

4
− A2ω

2
+ A0)

= k2k2
‖
ω2
[
ω6
−ω4β‖

(
7
2ακk

2
‖
+ apk2

⊥

)
+ω2ακβ

2
‖
k2
‖

(
3
4(1+ 2ακ)k2

‖
+ 3apk2

⊥

)
− ακk4

‖
β3
‖

(
3
8ακk

2
‖
+

1
8(5+ 3ακ)apk2

⊥

)]
, (10.69)
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where we kept the BiKappa dispersion relation (10.53)–(10.57) on the left-hand side,
and the Hall term contributions to the right-hand side. For the bi-Maxwellian value
ακ = 1, the result is equivalent to the Hall-CGL2 dispersion relation (9.40). For strictly
parallel propagation, the solutions are the usual dispersive ion-cyclotron and whistler
waves (that are not affected by the ακ coefficient) and the non-dispersive solutions
(10.59)–(10.61) of the BiKappa model. For strictly perpendicular propagation, the Hall
term naturally disappears and the fast mode solution is (9.31).

11. Collisionless damping in fluid models – Landau fluid models

In the previous sections, we have calculated the fluid hierarchy up to the
fourth-order fluid moment r. We have seen that, unless we crossed some instability
threshold, the dispersion relations yielded frequencies ω that were purely real, and
there was no collisionless damping present. Remarkably, collisionless damping, i.e.
Landau damping, will be absent even if we continue to develop the fluid hierarchy
to higher-order moments. In fact, we will see in the next section that, by considering
parallel 1-D propagation (where all the fluctuations are along B0), the fluid models
closed by a bi-Maxwellian fluid closure at higher-order moments than r are always
unstable. Such fluid models are physically ill posed. To go higher in the fluid
hierarchy, one needs to incorporate the Landau damping phenomenon into the fluid
framework, and consider Landau fluid closures.

Nevertheless, to capture the Landau damping, it is not necessary to go beyond
the fourth-order moment and closures performed at the fourth moment level describe
the Landau damping with very good accuracy. Even though the entire Part 2 of
this text is dedicated to Landau fluid closures, it is beneficial to briefly show why
the Landau damping was omitted in the previous calculations. Let us consider the
simplest example of 1-D electrostatic propagation. The collisionless Vlasov equation
reads

∂f
∂t
+ vz∂zf +

q
m

Ez
∂f
∂vz
= 0. (11.1)

Direct integration of the Vlasov equation (over vz) for a general distribution function
f , of course yields the usual density equation, ∂n/∂t + ∂z(nuz) = 0. The same result
is obtained if one considers a specific f0, such as for example 1-D Maxwellian
f0 = n

√
(α/π)e−α(vz−uz)

2 , 1-D kappa distribution, etc. The last term of the Vlasov
equation ∼ Ez vanishes by the integration, since

∫
∞

−∞
(∂f /∂vz) dvz = 0. Now let us

do the calculation differently, by expanding the distribution function f = f0 + f (1),
where f0 does not have any time or spatial dependence, so ∂f0/∂t = 0, ∂zf0 = 0. We
can consider the Maxwellian f0 = n0

√
(α/π)e−αv2

z where α = m/(2T (0)) = 1/v2
th. The

electric field is also expanded Ez = E(0)z + E(1)z , and one assumes that there is no
large-scale electric field, so E(0)z = 0. By neglecting the term with two small quantities
E(1)z ∂f (1)/∂vz, the Vlasov equation reads

∂f (1)

∂t
+ vz∂zf (1) +

q
m

E(1)z
∂f0

∂vz
= 0, (11.2)

and transformation to Fourier space yields

− i(ω− kzvz)f (1) +
q
m

E(1)z
∂f0

∂vz
= 0. (11.3)
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The equation (11.3) is actually not that much different from (11.1), the Vlasov
equation is just fully linearized and written in Fourier space. However, in kinetic
calculations, the (11.3) is not directly integrated in this form. The crucial technique
that reveals the presence of Landau damping in the Vlasov equation is that the
equation (11.3) is first divided by (ω − kzvz), and an expression for f (1) is obtained.
Only then is the equation integrated over the velocity space, yielding

f (1)=−
q
m

iE(1)z

∂f0

∂vz

ω− kzvz
; ⇒ n(1)=

∫
∞

−∞

f (1) dvz=−
q
m

iE(1)z

∫
∞

−∞

∂f0

∂vz

ω− kzvz
dvz. (11.4)

The integral contains a ‘singularity’ in the denominator, and it is not obvious how to
calculate this integral. Such singularities are called wave–particle resonances, and can
have a more general form ω− kzvz ± lΩ , where Ω is the cyclotron frequency of the
considered species, and l is an integer. The resonance for l= 0 is called the Landau
resonance, and the other resonances for l 6= 0 are called cyclotron resonances. It is
the presence of these resonances in integrals such as (11.4), that yields collisionless
damping mechanisms, the Landau damping and the cyclotron damping. In Part 2 of
our guide, we will see that the integral actually cannot be ‘calculated’, i.e. the integral
cannot be expressed through elementary functions, even if f0 is a simple Maxwellian.
The integral is just expressed through the famous plasma dispersion function Z(ζ ),
where ζ =ω/(|kz|vth), since the plasma dispersion function was specifically developed
to describe this integral. Skipping many technical (but very important) details, such as
the definition of Z(ζ ), for a Maxwellian f0 the density integral is simply expressed as

n(1) =−
q
m

iE(1)z

kz
(1+ ζZ(ζ )). (11.5)

One can define function R(ζ ) = 1 + ζZ(ζ ), that is called the plasma response
function. Now, for example, considering a proton–electron plasma with T (0)e = T (0)p
at wavelengths that are much longer than the Debye length, yields the following
dispersion relation and numerical solution

R(ζp)+ R(ζe)= 0; ⇒ ζp =
ω

|kz|vthp
=±1.457− 0.627i. (11.6)

The negative imaginary part represents the Landau damping, and the effect comes
from the Landau resonance in the integral (11.4). Obviously, integrating the Vlasov
equation directly in the form (11.1) or (2.1) neglects the wave–particle resonances in
velocity space, which clarifies why traditional fluid models do not contain collisionless
damping mechanisms. It is f (1) – the fluctuations/perturbations around f0 – where the
wave–particle resonances are written down explicitly, that yields the collisionless
damping mechanisms in kinetic theory. To introduce collisionless damping into fluid
models, we have no other choice, and we have to calculate the hierarchy of moments
again, this time by integrating over the ‘kinetic’ f (1). We find it useful to introduce
the following vocabulary:

(i) Fluid moments = integrals over a general (unspecified) distribution function f , or
over a specific f0. Evolution equations for fluid moments are obtained by direct
integration of the Vlasov equation written in a form that does not explicitly
contain wave–particle resonances. The resulting expressions can be nonlinear or
linear and contain only fluid variables, i.e. expressions do not contain Z(ζ ).
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(ii) Kinetic moments = integrals over f (1) (perturbations f (1)= f − f0, where a specific
equilibrium f0 is assumed), where the wave–particle resonances in velocity space
are written down explicitly. The resulting expressions are linear and contain Z(ζ ),
which is not a fluid variable.

Importantly, we want to keep the entire nonlinear fluid hierarchy discussed so
far, including the nonlinear heat flux equations. Therefore, considering bi-Maxwellian
distribution f0, instead of the ‘normal’ closure, the fourth-order moment is decomposed
in the following form

r‖‖ =
3p2
‖

ρ
+ r̃‖‖; r‖⊥ =

p‖p⊥
ρ
+ r̃‖⊥; r⊥⊥ =

2p2
⊥

ρ
+ r̃⊥⊥. (11.7)

The first terms represent the ‘normal’ closure, i.e. when an exact bi-Maxwellian f0 is
prescribed. The tilde components represent fluctuations/perturbations around f0, and a
good notation would also be δr. The decomposition (11.7) yields the following form
of the nonlinear heat flux equations

∂q‖
∂t
+∇ · (q‖u)+∇ · (̃r‖‖b̂)− 3r̃‖⊥∇ · b̂+ 3p‖b̂ · ∇

(
p‖
ρ

)
+ 3q‖b̂ · ∇u · b̂= 0;

(11.8)

∂q⊥
∂t
+∇ · (q⊥u)+ q⊥∇ · u+∇ · (̃r‖⊥b̂)+ (̃r‖⊥ − r̃⊥⊥)∇ · b̂+ p‖b̂ · ∇

(
p⊥
ρ

)
+

p⊥
ρ
(p‖ − p⊥)∇ · b̂+

p⊥
ρ
(∇ ·Π) · b̂0 = 0. (11.9)

Similarly to decomposition (11.7), ‘kinetic’ corrections with wave–particle resonances
can also be considered for the non-gyrotropic rng, which is not addressed in this guide.
Neglecting those contributions, the heat flux equations are equivalent for example to
equations (14), (15) of Passot & Sulem (2007), and equations (9), (10) of Passot et al.
(2012).

In Part 2 of this guide, we will calculate the ‘kinetic moments’ for r̃‖‖, r̃‖⊥, r̃⊥⊥,
by integrating over f (1). In the 3-D electromagnetic geometry, we will use a more
sophisticated f (1) in the gyrotropic limit, which describes both Landau damping
and its magnetic analogue, the transit-time damping. The expressions for the entire
‘kinetic’ hierarchy will contain Z(ζ ), or actually R(ζ ), which is not a fluid variable.
Nevertheless, we will see that by introducing the concept of the Padé approximation
to R(ζ ), that sometimes a rare possibility arises, when the ‘kinetic’ moment r̃ can
be expressed through lower-order ‘kinetic’ moments. Such a closure, where the last
retained kinetic moment (in this case r̃) is expressed through lower-order moments,
in a way such that the kinetic Z(ζ ) function is completely eliminated and that the
closure is valid for all ζ values, will be called a Landau fluid closure. For the
impatient reader, we will reveal that one of the possibilities is going to be (written
in Fourier space)

r̃‖‖ =
32− 9π

2(3π− 8)
n0v

2
th‖T‖ −

2
√

π

3π− 8
vth‖

ik‖
|k‖|

q‖; (11.10)

r̃‖⊥ =−
√

π

2
vth‖

ik‖
|k‖|

q⊥; (11.11)

r̃⊥⊥ = 0. (11.12)
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The first closure was obtained in the slab geometry by Hammett & Perkins (1990) and
the remaining closures were obtained in the 3-D geometry by Snyder et al. (1997)
(note that thermal speeds in those papers are defined without the factor of 2). In
Part 2 of our guide, we are going to map all the Landau fluid closures that can be
constructed at the fourth-moment level, and we will identify the most precise closures.
A summary of these findings can be found in Hunana et al. (2018).

12. Evolution equation for nth-order fluid moment
Now we are proficient with calculating the fluid moments for general f , and before

we start with kinetic calculations, it is useful to derive the time-dependent evolution
equation for a general nth-order fluid moment. Before going through this part, we
highly recommend going through the parts of the paper where the pressure tensor and
heat flux tensor equations are obtained. Then the algebra and the notation used here
will look hopefully logical and natural. We define the nth-order fluid moment X (n)

according to

X (n)
ij...n =m

∫
cicj . . . cnf d3v. (12.1)

The symmetric operator is defined such that it cycles around through all possibilities
according to

[X (n)
]

S
ijk...n = X (n)

ijk...n + X (n)
jk...ni + X (n)

k...nij + · · · + X (n)
nijk...n−1, (12.2)

and it is compatible with the previously used symmetric operators for a second-order
tensor [X (2)

]
S
ij = X (2)

ij + X (2)
ji and for a third-order tensor [X (3)

]
S
ijk = X (3)

ijk + X (3)
jki + X (3)

kij .
We multiply the Vlasov equation by the mass m and by the velocities cicj . . . cn and
integrate over d3v. To integrate the first term of the Vlasov equation we will need

∂

∂t
(cicj . . . cn)=−

(
∂ui

∂t
cj . . . cn

)
−

(
ci
∂uj

∂t
. . . cn

)
− · · · −

(
cicj . . .

∂un

∂t

)
; (12.3)

and the first term of the Vlasov equation calculates as

1 = m
∫

cicj . . . cn
∂f
∂t

d3v

=
∂

∂t

(
m
∫

cicj . . . cnf d3v

)
︸ ︷︷ ︸

X (n)ij...n

−m
∫

f
∂

∂t
(cicj . . . cn) d3v =

∂

∂t
X (n)

ij...n

+
∂ui

∂t
m
∫

fcjck . . . cn d3v︸ ︷︷ ︸
=X (n−1)

jk...n

+
∂uj

∂t
m
∫

cick . . . cn d3v︸ ︷︷ ︸
=X (n−1)

ik...n

+ · · ·

+
∂un

∂t
m
∫

fcicjck . . . cn−1︸ ︷︷ ︸
=X (n−1)

ij...n−1

d3v

=

{
∂

∂t
X (n)
+

[
∂u
∂t

X (n−1)

]S
}

ij...n

. (12.4)
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For the second term we will need

m
∫

cicjck . . . cnvl f d3v = m
∫

cicjck . . . cn(vl − ul︸ ︷︷ ︸
=cl

+ul)f d3v

= m
∫

cicjck . . . cncl f d3v︸ ︷︷ ︸
=X(n+1)

ij...nl

+ul m
∫

cicjck . . . cnf d3v︸ ︷︷ ︸
=X (n)ij...n

= X(n+1)
ij...nl + X (n)

ij...nul; (12.5)

∂l(cicj . . . cn)=−((∂lui)cj . . . cn)− (ci(∂luj) . . . cn)− · · · − (cicj . . . (∂lun)); (12.6)

m
∫
vl f ∂l(cicjck . . . cn) d3v

=m
∫
vl f [−((∂lui)cj . . . cn)− (ci(∂luj) . . . cn)− · · · − (cicj . . . (∂lun))] d3v

=−(∂lui)m
∫

fvlcj . . . cn d3v − (∂luj)m

×

∫
fvlci . . . cn d3v(∂lun)− · · · − (∂lun)m

∫
fvlcicj . . . cn−1 d3v

=−(∂lui)(X
(n)
jk...nl + X(n−1)

jk...n ul)− (∂luj)(X
(n)
ik...nl + X(n−1)

ik...n ul)− · · ·

− (∂lun)(X
(n)
ij...(n−1)l + X(n−1)

ij...n−1ul)

=−(X(n)
jk...nl + X(n−1)

jk...n ul)(∂lui)− (X
(n)
ik...nl + X(n−1)

ik...n ul)(∂luj)− · · ·

− (X(n)
ij...(n−1)l + X(n−1)

ij...n−1ul)(∂lun)

=−{(X (n)
+ X (n−1)u) · ∇u}Sij...n. (12.7)

The second term calculates as

2 = m
∫

cicjck . . . cn v · ∇︸︷︷︸
=vl∂l

f d3v

= ∂l

(
m
∫

cicjck . . . cnvl f d3v

)
−m

∫
vl f ∂l(cicjck . . . cn) d3v

= ∂l(X
(n+1)
ij...nl + ulX

(n)
ij...n)+ {(X

(n)
+ X (n−1)u) · ∇u}Sij...n

= {∇ · (X (n+1)
+ uX (n))}ij...n + {(X

(n)
+ X (n−1)u) · ∇u}Sij...n. (12.8)

The third term calculates as

3 = q
∫

cicj . . . cnEl
∂f
∂vl

d3v = qEl

∫
∂

∂vl
(cicj . . . cnf ) d3v︸ ︷︷ ︸
→0

−qEl

∫
f
∂

∂vl
(cicj . . . cn) d3v

= −qEl

∫
f (δilcj . . . cn + ciδjl . . . cn + · · · + cicj . . . cn−1δnl) d3v

= −qEi

∫
fcj . . . cnd3v − qEj

∫
fci . . . cn d3v − · · · − qEn

∫
fcicj . . . cn−1 d3v
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= −
q
m

EiX
(n−1)
jk...n −

q
m

Ej X(n−1)
ik...n︸ ︷︷ ︸
=X(n−1)

k...ni

− · · · −
q
m

EnX(n−1)
ij...n−1

= −
q
m
[EX (n−1)

]
S
ij...n. (12.9)

For the fourth term we will need
∂

∂vl
[cicj . . . cn(v×B)l] = δilcj . . . cn(v×B)l + ciδjl . . . cn(v×B)l + · · ·

+ cicj . . . cn−1δnl(v×B)l + cicj . . . cn
∂

∂vl
(v×B)l︸ ︷︷ ︸
=0

= cj . . . cn(v×B)i + ci . . . cn(v×B)j + · · ·
+ cicj . . . cn−1(v×B)n

(12.10)∫
cjck . . . cn(v×B)if d3v =

∫
cjck . . . cnεirsvrBsf d3v = εirsBs

∫
cjck . . . cnvrf d3v

=
1
m
εirs︸︷︷︸
=−εisr

Bs(X
(n)
jk...nr + X (n−1)

jk...n ur)=−
1
m
εisrBs(X

(n)
rjk...n + urX

(n−1)
jk...n )

= −
1
m
[B× (X (n)

+ uX (n−1))]ijk...n. (12.11)

The fourth term calculates as

4 =
q
c

∫
cicj . . . cn(v×B)l

∂f
∂vl

d3v

=
q
c

∫
∂

∂vl
[cicj . . . cn(v×B)lf ] d3v︸ ︷︷ ︸

→0

−
q
c

∫
f
∂

∂vl
[cicj . . . cn(v×B)l] d3v

= −
q
c

∫
f (cj . . . cn(v×B)i + ci . . . cn(v×B)j + · · · + cicj . . . cn−1(v×B)n) d3v

= +
q

mc
[B× (X (n)

+ uX (n−1))]Sijk...n (12.12)

Combining all the results together 1 + 2 + 3 + 4 = 0, the evolution equation for
nth-order fluid moment X (n)

ij...n reads (written in the vector notation without indices)

∂

∂t
X (n)
+∇ · (X (n+1)

+ uX (n))+

[
∂u
∂t

X (n−1)
+ (X (n)

+ X (n−1)u) · ∇u−
q
m

EX (n−1)

+
q

mc
B× (X (n)

+ uX (n−1))

]S

= 0. (12.13)

The final result should have only the time derivative of X (n) and, similarly to the heat
flux tensor, we need to use the momentum equation to eliminate ∂tu. We subtract a
total of n momentum equations combined with X (n) in the form[(

∂u
∂t
+ u · ∇u+

1
ρ
∇ · p−

q
m

E−
q

mc
u×B

)
X (n−1)

]S

= 0. (12.14)
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Again, because of the symmetric operator, it does not matter if X (n) is applied to
the momentum equation from the left or right. The subtraction also conveniently
eliminates the electric field, however it introduces ∇ · p. We also need an identity

[(u×B)X (n−1)
]ijk...n = (u×B)iX(n−1)

jk...n =−(B× u)iX(n−1)
jk...n =−[(B× u)X (n−1)

]ijk...n

= −[B× (uX (n−1))]ijk...n, (12.15)

where in the last step we emphasized that it does not matter if the B× applies only
to u or to the entire tensor uX (n−1), since the vector product operates only through
the first component of the tensor anyway. The final evolution equation reads

∂

∂t
X (n)
+∇ · (X (n+1)

+ uX (n))+

[
X (n)
· ∇u+

q
mc

B× X (n)
−

1
ρ
(∇ · p)X (n−1)

]S

= 0,

(12.16)

and it is valid for n > 2. Evaluation at m= 3 recovers the heat flux tensor equation
(7.22) and evaluation at m= 2 recovers the pressure tensor equation (2.28). Note that
X (4)
= r, X (3)

= q, X (2)
= p, however, and very importantly, according to our definition

(12.1), X (1)
= 0 and it is not equal to the velocity u, which is defined according

to (2.4). Additionally, X (0)
= ρ. The momentum equation can still be recovered by

evaluating (12.13) at n = 1, and by dividing by ρ (where naturally the symmetric
operator does not have any influence on a vector, and uS

i = ui). Similar equation to
our (12.13) was also obtained for example by Waelbroeck (2010), equation (22), even
though we did not verify whether it is consistent with ours since X (n) in that work is
defined with v instead of our c.

We want to always decompose the tensor X (n) into its gyrotropic and non-gyrotropic
parts, and to have space to write the ‘g’ and ‘ng’, let us move the index (n) down,
so that

X (n) = X g
(n) + X ng

(n). (12.17)

By generalizing the results we have seen for the gyrotropic pg, qg, rg, the same result
is obtained for the nth moment, and at low frequencies the gyrotropic part must satisfy

[b̂× X g
(n)]

S
= 0, (12.18)

which can be indeed viewed as a definition of gyrotropy. The general (12.16) therefore
rewrites as

∂

∂t
X (n) +∇ · (X (n+1) + uX (n))+

[
X (n) · ∇u+Ω

|B|
B0

b̂× X ng
(n) −

1
ρ
(∇ · p)X (n−1)

]S

= 0,

(12.19)

yielding an implicit equation for the non-gyrotropic part in the form

[b̂× X ng
(n)]

S
=−

B0

Ω|B|

{
∂

∂t
X (n) +∇ · (X (n+1) + uX (n))+

[
X (n) · ∇u−

1
ρ
(∇ · p)X (n−1)

]S
}
.

(12.20)

Ideally, an ‘inversion procedure’ should be found for the left-hand side, so that
an equation for X ng

(n) can be found, and then by expanding the right-hand side (for
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example at the leading order by considering only gyrotropic X g), a fully nonlinear
expressions for X ng

(n) can be obtained. Nevertheless, we have seen that the inversion
procedure was already quite complicated for the matrix (b̂ × Π)S, see (5.9). For
a tensor of third rank, such as (b̂ × qng)S, the full inversion procedure is actually
not addressed in this guide and an advanced reader is referred to (43) of Ramos
(2005). The inversion procedure was obtained only for a part of the qng, that can
be decomposed into the non-gyrotropic heat flux vectors S‖⊥, S⊥

⊥
, which is done

in detail in appendix D. For the rest of qng that consists of heat flux tensor σ ,
the inversion procedure cannot be avoided. Additionally, we have seen that for
fourth-order moment rng, the equation (12.20) does not seem to yield anything useful
even at the linear level, and a different procedure was used, where the specific
bi-Maxwellian distribution was expanded in Hermite polynomials. Therefore, for
higher-order moments, the equation (12.20) is immensely complicated.

It is useful to briefly consider how many scalar gyrotropic moments an nth-order
tensor X (n) has. The scalar gyrotropic moments can be constructed only from
combinations of c‖ and c2

⊥
. It is beneficial to write down the following self-explanatory

table

X (n) Possible combinations of c‖, c2
⊥

Common names Number
0 1 n 1
1 c‖ u‖ 1
2 c2

‖
; c2

⊥
p‖; p⊥ 2

3 c3
‖
; c‖c2

⊥
q‖; q⊥ 2

4 c4
‖
; c2

‖
c2
⊥
; c4

⊥
r‖‖; r‖⊥; r⊥⊥ 3

5 c5
‖
; c3

‖
c2
⊥
; c‖c4

⊥
3

6 c6
‖
; c4

‖
c2
⊥
; c2

‖
c4
⊥
; c6

⊥
4

7 c7
‖
; c5

‖
c2
⊥
; c3

‖
c4
⊥
; c‖c6

⊥
4

8 c8
‖
; c6

‖
c2
⊥
; c4

‖
c4
⊥
; c2

‖
c6
⊥
; c8

⊥
5

9 c9
‖
; c7

‖
c2
⊥
; c5

‖
c4
⊥
; c3

‖
c6
⊥
; c‖c8

⊥
5

Obviously, the number of gyrotropic moments for tensor X (n) is equal to 1+ int[n/2].
The function ‘int’ means integer part. In mathematics, the integer function is often
abbreviated with square brackets, as 1 + [n/2]. However, this notation might be
possibly confusing (we used square brackets in many other places), and we prefer to
write explicitly ‘int’. Another possibility would be to use the ‘floor’ function.

12.1. Hierarchy of moments in a 1-D geometry (electrostatic)
Let us see if we can use the nth-order moment equation (12.16) for something useful,
since the equation is immensely complicated. Let us consider the special case of
strictly parallel propagation along B0 (in the z-direction), where all the moments
(including the velocity) are along B0, i.e. let us consider the electrostatic case. Let us
change the index of a moment from (n) to (l), so that the index is not confused with
the number density. Let us stop writing the ‖ subscript on all the variables starting
from the pressure, so p‖, q‖, r‖‖ are simply p, q, r and the lth-order parallel moment
is just X(l)

≡m
∫

cl
‖
f dv. We keep the z-subscript for uz to remind us we are writing

1-D equations. In a 1-D geometry, the nonlinear evolution equation (12.16) simplifies
to

∂

∂t
X(l)
+ ∂z(X(l+1)

+ uzX(l))+ l(∂zuz)X(l)
−

l
ρ
(∂zp)X(l−1)

= 0; l > 2. (12.21)
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If one wants to be more general, instead of propagation along B0, it is possible to
consider propagation along magnetic field line b̂, and write the same equation with
u‖ and ∂‖. The equation is accompanied by the density and momentum equations

∂

∂t
ρ + ∂z(uzρ)= 0; (12.22)

∂

∂t
uz + uz∂zuz +

1
ρ
∂zp−

qr

m
Ez = 0, (12.23)

where for the charge qr it is useful to keep the species index r, so that it is not
confused with the heat flux q. The last term disappears anyway since in the case
considered here Ez = 0. Evaluating equation (12.21) for l= 2, 3, 4, 5, 6 . . . yields

∂

∂t
p+ ∂z(q+ uzp)+ 2(∂zuz)p= 0; (12.24)

∂

∂t
q+ ∂z(r+ uzq)+ 3(∂zuz)q−

3
ρ
(∂zp)p= 0; (12.25)

∂

∂t
r+ ∂z(X(5)

+ uzr)+ 4(∂zuz)r−
4
ρ
(∂zp)q= 0; (12.26)

∂

∂t
X(5)
+ ∂z(X(6)

+ uzX(5))+ 5(∂zuz)X(5)
−

5
ρ
(∂zp)r= 0; (12.27)

∂

∂t
X(6)
+ ∂z(X(7)

+ uzX(6))+ 6(∂zuz)X(6)
−

6
ρ
(∂zp)X(5)

= 0, (12.28)

and so on. The nonlinear equation (12.21) can be linearized, in the first step by
assuming zero mean uz0 value, yielding

∂

∂t
X(l)
+ ∂zX(l+1)

+ (l+ 1)X(l)
0 (∂zuz)−

l
ρ0

X(l−1)
0 (∂zp)= 0, (12.29)

and calculating it for l= 2− 8 and by prescribing q0 = 0, X(5)
0 = 0 and in general for

l odd X(l)
0 = 0, yields

∂

∂t
p+ ∂zq+ 3p0(∂zuz)= 0; (12.30)

∂

∂t
q+ ∂zr− 3

p0

ρ0
(∂zp)= 0; (12.31)

∂

∂t
r+ ∂zX(5)

+ 5r0(∂zuz)= 0; (12.32)

∂

∂t
X(5)
+ ∂zX(6)

− 5
r0

ρ0
(∂zp)= 0; (12.33)

∂

∂t
X(6)
+ ∂zX(7)

+ 7X(6)
0 (∂zuz)= 0; (12.34)

∂

∂t
X(7)
+ ∂zX(8)

− 7
X(6)

0

ρ0
(∂zp)= 0; (12.35)

∂

∂t
X(8)
+ ∂zX(9)

+ 9X(8)
0 (∂zuz)= 0. (12.36)
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Alternatively, we can split the linearized equations for even and odd l according to

l= even :
∂

∂t
X(l)
+ ∂zX(l+1)

+ (l+ 1)X(l)
0 (∂zuz)= 0; (12.37)

l= odd :
∂

∂t
X(l)
+ ∂zX(l+1)

−
l
ρ0

X(l−1)
0 (∂zp)= 0. (12.38)

When closing the system, one has to be careful how to deal with l= even quantities,
since we want to separate the ‘deviations’, similarly as we did for r= 3p2/ρ + r̃. For
a Maxwellian f0 and l > 4 and even, we therefore write

l= even : X(l)
=

l− 1
ρ

pX(l−2)
+ X̃(l), (12.39)

or equivalently

l= even : X(l)
= (l− 1)!!

pl/2

ρ l/2−1
+ X̃(l), (12.40)

so for example r0 = 3p2
0/ρ0, X(6)

0 = 15p3
0/ρ

2
0 , X(8)

0 = 105p4
0/ρ

3
0 , and linearization of the

lth-order moment yields

l= even : X(l) lin
= X(l)

0

[
l
2

p
p0
−

(
l
2
− 1
)
ρ

ρ0

]
+ X̃(l)

; (12.41)

lin
= X(l)

0

[
l
2

T
T0
+
ρ

ρ0

]
+ X̃(l). (12.42)

Using (12.41) in the first term of l = even equation (12.37), and using the pressure
and density equations, yields linear evolution equation for deviations of even moments

l= even :
∂

∂t
X̃(l)
+ ∂zX(l+1)

− X(l)
0

l
2p0

∂zq= 0, (12.43)

and using (12.41) in the second term of l= odd equation (12.38), and T/T0= p/p0−

ρ/ρ0 yields linear evolution equation for deviations of odd moments

l= odd :
∂

∂t
X(l)
+ ∂zX̃(l+1)

+ X(l−1)
0

l(l− 1)
2m

∂zT = 0. (12.44)

Finishing the calculation with evaluations of X(l)
0 values, the evolution equations of

deviations are

l= even :
∂

∂t
X̃(l)
+ ∂zX(l+1)

− (l− 1)!!
l
2

(
p0

ρ0

)l/2−1

∂zq= 0; (12.45)

l= odd :
∂

∂t
X(l)
+ ∂zX̃(l+1)

+ l!!
(l− 1)

2
n0

(
p0

ρ0

)(l−1)/2

∂zT = 0, (12.46)

or by using p0/ρ0 = v
2
th/2, equivalently

l= even :
∂

∂t
X̃(l)
+ ∂zX(l+1)

− (l− 1)!!
l

2l/2
vl−2

th ∂zq= 0; (12.47)
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l= odd :
∂

∂t
X(l)
+ ∂zX̃(l+1)

+ l!!
(l− 1)
2(l+1)/2

n0v
l−1
th ∂zT = 0, (12.48)

Continuing to higher orders, the hierarchy of deviations of Maxwellian moments
therefore evaluates as

∂

∂t
q+ ∂zr̃+

3
2

n0v
2
th∂zT = 0; (12.49)

∂

∂t
r̃+ ∂zX(5)

− 3v2
th∂zq= 0; (12.50)

∂

∂t
X(5)
+ ∂zX̃(6)

+
15
2

n0v
4
th∂zT = 0; (12.51)

∂

∂t
X̃(6)
+ ∂zX(7)

−
45
4
v4

th∂zq= 0; (12.52)

∂

∂t
X(7)
+ ∂zX̃(8)

+
315

8
n0v

6
th∂zT = 0; (12.53)

∂

∂t
X̃(8)
+ ∂zX(9)

−
105
2
v6

th∂zq= 0. (12.54)

The equations are written in physical units, and these results will be useful in Part 2,
where we will calculate Landau fluid closures for deviations of various moments.

12.2. Impossibility of going beyond CGL2 without Landau fluid closures
One can analyse the dispersion relations easily in physical units, but since in this Part
1 we used normalized units with k̃ = kVA/Ωp, ω̃ = ω/Ωp and β = v2

th/V
2
A in almost

all dispersion relations, let us rewrite the fluid hierarchy to normalized units, so that
everything feels more familiar. The X(5) is normalized with p0V3

A, the X(6) with p0V4
A

and X(n) with p0Vn−2
A . By dropping the normalization tilde as usual (but obviously not

for even moments such as r̃, that should be perhaps called δr), the equations in Fourier
space read

−ωρ + kuz = 0; (12.55)

−ωuz +
β

2
kp= 0; (12.56)

−ωp+ 3kuz + kq= 0; (12.57)
−ωq+ kr̃+ 3

2βk(p− ρ)= 0; (12.58)

−ωr̃+ kX(5)
− 3βkq= 0; (12.59)

−ωX(5)
+ kX̃(6)

+
15
2 β

2k(p− ρ)= 0; (12.60)

−ωX̃(6)
+ kX(7)

−
45
4 β

2kq= 0. (12.61)

Now, using just first 3 equations (12.55)–(12.57), and closing the system with a
closure q= 0, yields the CGL model, with solution

CGL : ω=±k
√
β 3

2 , (12.62)

the familiar CGL ion-acoustic mode. Going higher in the fluid hierarchy and using
the first 4 equations (12.55)–(12.58), and closing the system with r̃ = 0 (which is
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equivalent to prescribing r= 3p2/ρ), yields the CGL2 model. The dispersion relation
is ω4

− 3βk2ω2
+

3
4β

2k4
= 0, with solutions

CGL2 : ω = ±k

√
β

(
3
2 +

√
3
2

)
; (12.63)

ω = ±k

√
β

(
3
2 −

√
3
2

)
, (12.64)

the already obtained (9.28), (9.29). The heat flux fluctuations in the CGL2 model
therefore did ‘split’ the CGL ion-acoustic mode to two modes. One might assume
that this will always be the case when going higher and higher in the fluid hierarchy.
With the next example we demonstrate that this does not happen. Let us consider
fluctuations in r̃, and use the first 5 equations (12.55)–(12.59) with the closure X(5)

=0.
We might call this model CGL3. The dispersion relation reads ω4

=
15
4 β

2k4, and the
solutions are

CGL3 : ω=±k
√
β
(

15
4

)1/4
; ω=±ik

√
β
(

15
4

)1/4
. (12.65)

Importantly, the last two modes are imaginary, and one is unstable. Therefore, such
a fluid model does not make any physical sense. Why did this happen? For example,
expressing everything through pressure fluctuations, and putting the r̃ fluctuations on
the right-hand side yields(

ω4
− 3βk2ω2

+
3
4β

2k4
)

p = k2ω2r̃; (12.66)

= k3ωX(5)
+
(
−3βk2ω2

+
9
2β

2k4
)

p. (12.67)

Therefore, if r̃ = 0, so when (12.66) is used, the CGL2 model is obtained. However,
when fluctuations in r̃ are considered, so when (12.67) is used, the term −3βk2ω2

cancels on both sides, with the resulting dispersion relation(
ω4
−

15
4 β

2k4
)

p= k3ωX(5), (12.68)

and by prescribing closure X(5)
= 0, yields the dispersion relation of the CGL3 model.

Now it is easy to go higher in the fluid hierarchy. By considering the first 6
equations (12.55)–(12.60), the dispersion relation reads(

ω6
−

45
4 β

2k4ω2
+

15
4 β

3k6
)

p= k4ω2X̃(6), (12.69)

and prescribing closure X̃(6)
= 0 (which is equivalent to prescribing X(6)

= 15p3/ρ2),
yields a model that we can call CGL4, with numerical solutions

CGL4 :
ω

k
√
β
=±0.58;

ω

k
√
β
=±1.75;

ω

k
√
β
=±1.87i, (12.70)

again, two modes being imaginary, and one unstable.
The variable ω/(k

√
β), written here in normalized units, is easily rewritten to

physical units (reintroducing tilde for clarity)

ω̃

k̃
√
β
=

ω

Ωp

kVA

Ωp

√
v2

th

V2
A

=
ω

kvth
, (12.71)
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which is directly related to the ‘kinetic’ variable ζ , that we will use in Part 2 of the
text, defined as

ζ ≡
ω

|k|vth
, (12.72)

where the absolute value does not make any difference now (since all fluid models
here contain ζ 2), and will become important only when Landau fluid closures are
considered. The hierarchy of CGL dispersion relations then can be written as

CGL : ζ 2
−

3
2 = 0; (12.73)

CGL2 : ζ 4
− 3ζ 2

+
3
4 = 0; (12.74)

CGL3 : ζ 4
−

15
4 = 0; (12.75)

CGL4 : ζ 6
−

45
4 ζ

2
+

15
4 = 0; (12.76)

CGL5 : ζ 6
−

105
8 = 0; (12.77)

CGL6 : ζ 8
−

105
2 ζ

2
+

315
16 = 0; (12.78)

CGL7 : ζ 8
−

945
16 = 0. (12.79)

All the models beyond CGL2 contain modes that are unstable.

Double check
Let us double check our results, to verify that we calculated everything correctly. As

stated previously, a closure should be performed only at the last retained fluid moment,
and this is especially true when nonlinear numerical simulations are performed.13 The
CGL and CGL2 systems were already discussed at great length. Let us check the
CGL3 dispersion relation, and let us work directly in physical units. The system of
equations that we have in mind reads

∂

∂t
ρ + ρ0∂zuz = 0;

∂

∂t
uz +

1
ρ0
∂zp= 0;

∂

∂t
p+ ∂zq+ 3p0(∂zuz)= 0;

∂

∂t
q+ ∂zr− 3

p0

ρ0
(∂zp)= 0;

∂

∂t
r+ ∂zX(5)

+ 5r0(∂zuz)= 0,



(12.80)

and the closure is performed by setting X(5)
= 0. Importantly, the fourth-order moment

r is kept undetermined, and it is not separated to its ‘core’ and r̃, nor any specific
form of a distribution function is prescribed yet (other than the mean values of
odd moments X(l)

0 = 0). Calculating dispersion relation of this system (a matrix
multiplied by vector (ρ, uz, p, q, r)) yields result ω4

− 5k4r0/ρ0 = 0, which for
r0 = 3p2

0/ρ0 recovers the CGL3 dispersion relation. Our calculations were therefore

13An alternative approach that would describe the Landau damping very precisely is to keep the fully
nonlinear CGL2 equations, and supplement them with a hierarchy of time-dependent linear equations for
higher-order moments, closed with an appropriate Landau fluid closure.
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done right. Similarly, double checking the CGL4 dispersion, the system (12.80) is
supplemented with (12.33), and a closure is performed with X(6)

= 15p3/ρ. Again,
the r is left untouched, and dispersion relation of this system recovers the CGL4
result. Checking the CGL5 dispersion relation, the system is supplemented with
(12.34), and a closure X(7)

= 0. Again, the X(6) is kept untouched and generally
undetermined. Calculating the dispersion relation yields ω6

− 7k6X(6)
0 /ρ0 = 0, and

prescribing Maxwellian X(6)
0 = 15p3

0/ρ
2
0 recovers the CGL5 result. Going higher in

the hierarchy, and using closure X(8)
= 105p4/ρ3 recovers the CGL6 results. And

finally, keeping all the variables up to X(8) undetermined and using closure X(9)
= 0

yields dispersion relation ω8
− 9k8X(8)

0 /ρ0 = 0, which for Maxwellian X(8)
0 = 105p4

0/ρ
3
0

recovers the CGL7 result.
Or, in general, without yet performing a closure, and going higher and higher in

the hierarchy step by step, a straightforward calculation yields

CGL :
(
−ω2
+ 3

p0

ρ0
k2

)
p=−kωq; (12.81)

CGL2 : −ω2p=−k2r; (12.82)

CGL3 :
(
−ω4
+ 5

r0

ρ0
k4

)
p=−k3ωX(5)

; (12.83)

CGL4 : −ω4p=−k4X(6)
; (12.84)

CGL5 :

(
−ω6
+ 7

X(6)
0

ρ0
k6

)
p=−k5ωX(7)

; (12.85)

CGL6 : −ω6p=−k6X(8)
; (12.86)

CGL7 :

(
−ω8
+ 9

X(8)
0

ρ0
k8

)
p=−k7ωX(9), (12.87)

and for higher orders therefore

CGLl : l= odd;

(
−ωl+1

+ (l+ 2)
X(l+1)

0

ρ0
kl+1

)
p=−klωX(l+2)

; (12.88)

CGLl : l= even; −ωlp=−klX(l+2), (12.89)

where the validity can be proven by induction and using (12.37), (12.38). CGLl model
(or CGL of lth order) is therefore defined as performing a closure on X(l+2) moment.
In the equations (12.81)–(12.89) we used the word CGL, even though no specific
distribution function (nor any closure) was prescribed yet.

The closure in each model is performed by specifying the right-hand side of (12.88),
(12.89), which yields dispersion relations

CGLl : l= odd; closure X(l+2)
= 0; ⇒

(ω
k

)l+1
− (l+ 2)

X(l+1)
0

ρ0
= 0; (12.90)

CGLl : l= even; closure X(l+2)
= (l+ 1)!!

p(l+2)/2

ρ l/2
; ⇒(ω

k

)l+2
−

(
l
2
+ 1
)

X(l+2)
0

p0

(ω
k

)2
+

l
2

X(l+2)
0

ρ0
= 0. (12.91)
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The results are written in physical units. Alternatively, by using the ζ variable, the
results are

CGLl : l= odd; ⇒ ζ l+1
−
(l+ 2)!!
2(l+1)/2

= 0; (12.92)

CGLl : l= even; ⇒ ζ l+2
− (l+ 1)!!

l+ 2
2l/2+1

ζ 2
+ (l+ 1)!!

l
2l/2+2

= 0, (12.93)

which for specific l values recovers results (12.73)–(12.79).
The results (12.90)–(12.91) are written for a closure performed on moment X(l+2)

0 ,
which is dictated by the CGLl vocabulary, and which might be perhaps a bit confusing.
Alternatively, one can reformulate the results for closures performed on moment X(l)

0
(corresponding name for a Maxwellian is CGL(l− 2)) and that read

l= odd; l > 3 closure X(l)
= 0; ⇒

(ω
k

)l−1
− l

X(l−1)
0

ρ0
= 0; (12.94)

l= even; l > 4 closure X(l)
= (l− 1)!!

pl/2

ρ l/2−1
; ⇒(ω

k

)l
−

l
2

(ω
k

)2 X(l)
0

p0
+

(
l
2
− 1
)

X(l)
0

ρ0
= 0, (12.95)

or rewritten with the ζ variable

l= odd; l > 3 closure X(l)
= 0; ⇒ ζ l−1

−
l!!

2(l−1)/2
= 0;

l= even; l > 4 closure X(l)
= (l− 1)!!

pl/2

ρ l/2−1
; ⇒

ζ l
−
(l− 1)!!

2l/2

(
lζ 2
−

l
2
+ 1
)
= 0, (12.96)

a result reported in Hunana et al. (2018), equation (10). Importantly, solutions of
the above dispersion relations for l> 4, will always yield results with some complex
numbers, and some solutions will be unstable.

Therefore, the last physically meaningful fluid model (without considering the
Landau fluid closures) is the CGL2 model, and the last closure is the ‘normal’
closure, r= 3p2/ρ. To go higher in the fluid hierarchy, we necessarily need to make
connection to kinetic theory, and consider Landau fluid closures. These closures are
described in Part 2 of our guide, and for direct comparison with the simplest Landau
fluid dispersion relations, see Part 2, § 3.12 ‘Parallel ion-acoustic (sound) mode, cold
electrons’.

13. Conclusions
We offer a brief summary of the major results discussed throughout the text.

• A collisionless plasma is completely described by the kinetic Vlasov equation.
Directly integrating the Vlasov equation over velocity space, yields evolution
equations for an infinite hierarchy of fluid moments. In addition to the usual
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density and momentum equations, it is possible to derive an evolution equation for
a general nth-order fluid moment (n > 2), see (12.16). Then, evolution equations
for the pressure tensor and heat flux tensor can be obtained by simply evaluating
(12.16) at n= 2 and n= 3.

• Even though the fluid hierarchy is infinite, the reformulation of the kinetic
description to a fluid formalism is not necessarily complete, since the usual
calculations neglect wave–particle resonances in velocity space. These wave–particle
resonances, that are implicitly present in the Vlasov equation, are responsible for
collisionless damping mechanisms, such as Landau damping, transit-time damping
and cyclotron damping.

• The presence (or absence) of collisionless damping mechanisms in a fluid hierarchy
is determined by the type of closure selected to truncate that fluid hierarchy. We
differentiate between two classes of closures: a) ‘classical’ (non-Landau fluid)
closures, that neglect wave–particle resonances, and b) Landau fluid closures, that
account for Landau wave–particle resonances and associated Landau damping and
transit-time damping, addressed in Part 2.

• There are currently no known closures that account for cyclotron wave–particle
resonances and associated cyclotron damping. Nevertheless, there is a priori no
reason why such fluid closures can not be found in the future, at least for the
simplified case of electromagnetic propagation along the magnetic field (slab
geometry).

• Considering ‘classical’ closures, the hierarchy of fluid moments therefore does not
contain collisionless damping mechanisms, regardless of the order to which the
hierarchy is developed. Or in another words, collisionless damping is beyond all
orders in the classical hierarchy of fluid moments.

• In fact, it is impossible to go beyond the fourth-order moment with classical bi-
Maxwellian fluid closures X (n)

= X (n)
0 + X̃

(n)
, where X (n)

0 represents bi-Maxwellian
value of X (n) and its perturbation X̃

(n)
= 0, since all the fluid models contain higher-

order modes that are unstable. This is perhaps the most surprising result discussed
in Part 1. For a detailed proof, see § 12.2, where a 1-D geometry is considered
and a bi-Maxwellian closure is used at the nth-order fluid moment, which yields
dispersion relation (12.96). The same dispersion relation will be valid in a 3-D
geometry for the propagation along the magnetic field, where additional de-coupled
modes will be present as well. For n> 4, all the fluid models contain unphysical
instabilities. The same result is expected for other distribution functions.

• The classical bi-Maxwellian closure at the fourth-order moment reads r‖‖ =
3(p2

‖
/ρ); r‖⊥ = p‖p⊥/ρ; r⊥⊥ = 2(p2

⊥
/ρ) (or equivalently r̃ = 0), and is called the

‘normal’ closure. Therefore, the ‘normal’ closure is the last classical fluid closure
(X̃

(n)
= 0) and beyond the fourth-order moment, Landau fluid closures (X̃

(n)
6= 0)

are required.

• From a collisionless (or weakly collisional) perspective, the long-wavelength
low-frequency limit of a distribution function is not necessarily an isotropic
Maxwellian, but a general distribution function that is gyrotropic, i.e. isotropic
only in its perpendicular velocity components. Fluid moments are therefore
typically decomposed into their gyrotropic and non-gyrotropic parts. For example
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the pressure tensor p= pg
+Π, the heat flux tensor q= qg

+ qng, the fourth-order
moment r = rg

+ rng. The non-gyrotropic parts are also referred to as the FLR
corrections, since they represent deviations from gyrotropy at small spatial scales,
when the Larmor radius (gyroradius) is not infinitely small.

• A general nth-order fluid moment contains 1+ int[n/2] scalar gyrotropic moments,
where the function ‘int’ means integer part.

• The pressure tensor is second-order fluid moment and contains two gyrotropic
moments, p‖ and p⊥. Therefore, any fluid description of collisionless (or weakly
collisional) plasmas, requires two separate evolution equations for p‖ and p⊥.
Importantly, from a linear perspective the evolution equations remain different even
when the distribution function is isotropic, i.e. even when the mean pressure values
are equal (p(0)‖ = p(0)⊥ ), since pressure fluctuations in the directions parallel and
perpendicular to the local magnetic field remain anisotropic. We often use proton
pressure (temperature) anisotropy coefficient ap = T (0)⊥ /T

(0)
‖ = p(0)⊥ /p

(0)
‖ .

• The simplest fluid model that describes a collisionless plasma in an adiabatic regime
is the CGL description (model) – named after Chew–Goldberger–Law (Chew et al.
1956). The model is non-dispersive and obtained by a closure with zero heat flux.
The CGL description should be viewed as collisionless magnetohydrodynamics
(collisionless MHD), since the usual MHD description with isotropic scalar pressure
is highly collisional implicitly.

• The CGL pressure tensor is decomposed with respect to the direction of the local
magnetic field lines according to pg

= p‖b̂b̂ + p⊥(I − b̂b̂). It is possible to switch
to the reference frame of the magnetic field lines, where the pressure tensor is a
diagonal matrix. However, it should not be forgotten that in a such a reference
frame, imposing an external (mean) magnetic field is not straightforward. For
nonlinear numerical simulations of turbulence and plasma heating, the laboratory
reference frame is strongly recommended.

• The two pressure equations of the CGL model can be interpreted as conservation
laws for the first and second adiabatic invariants, see § 2.5. The first adiabatic
invariant is a conservation of the magnetic moment of a particle that is periodically
gyrating around a mean magnetic field. The second adiabatic invariant is a
conservation of the average parallel momentum of a particle that is completely
trapped and periodically bouncing inside of a magnetic bottle.

• Without performing (yet) any kind of closure and leaving the heat flux tensor q
and FLR pressure tensor Π unspecified, it is possible to derive rigorously exact
evolution equations for p‖ and p⊥, see (2.91)–(2.92).

• Rewriting the pressure equations to an alternative form, equations (2.100)–(2.101),
shows that the adiabatic invariants in the CGL model are broken by the inclusion
of the Hall term in the induction equation, gyrotropic heat flux, non-gyrotropic FLR
corrections to the pressure and heat flux, as well as by coupling of various species
together. All of these contributions therefore yield very complicated anisotropic
plasma heating processes, that can be studied only by nonlinear numerical
simulations.
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• The anisotropic plasma heating does not simplify much even in the case of periodic
boundary conditions (i.e. when the system can be viewed as completely isolated)
and when averaging over the entire spatial volume is performed and expressed as a
conservation of total energy, see (2.113)–(2.116). Only when the anisotropic heating
is neglected, i.e. when only total plasma heating studied, the conservation of energy
significantly simplify, see (2.109)–(2.111).

• By using the concept of polytropic indices, the pressure equations in the ideal CGL
model can be interpreted as having γ‖ = 3 and γ⊥ = 2. Consequently, the CGL
dispersion relation is in general not equal to the MHD dispersion relation, even
when ap = 1. The exception is the Alfvén mode, which for ap = 1 propagates with
the same phase speed ω/k = VA cos θ in both CGL and MHD models, for all the
propagation directions θ .

• Polytropic indices can be further related to the number of degrees of freedom i
through γ = (i+ 2)/i, which for the CGL model yields i‖= 1 and i⊥= 2. The CGL
pressure equations can be therefore viewed as being composed of strongly coupled
1-D and 2-D dynamics, whereas the dynamics in the MHD model with γ = 5/3
and i= 3 can be viewed as isotropically three-dimensional.

• In the CGL model, the Alfvén mode propagates with the phase speed ω/k =
VA cos θ

√
1+ (β‖/2)(ap − 1), which matches the (collisionless) kinetic theory in

the long-wavelength limit. Consequently, for ap = 1, the Alfvén mode in the MHD
model matches the kinetic theory as well. The CGL result is very useful when
numerically solving kinetic dispersion relations (for example with the WHAMP
solver), since the Alfvén mode can be easily identified at long wavelengths.

• In contrast to MHD, where the ordering of phase speeds is always vs 6 vA 6 vf
(slow, Alfvén, fast), in collisionless plasmas the oblique slow mode can become
faster than the oblique Alfvén mode. In general, oblique slow and fast modes in
the CGL model do not necessarily match the kinetic theory in the long-wavelength
limit. Nevertheless, the effect when vs >vA is present in the CGL model and exists
even for ap = 1, see § 3.6. The effect is very important for the parallel firehose
instability.

• Considering strictly perpendicular propagation (θ = 90◦ or k‖ = 0), the fast mode
in the CGL model propagates with the phase speed ω/k = VA

√
1+ apβ‖, which

matches the kinetic theory in the long-wavelength limit. The expression can be
rewritten as (ω/k)2 = V2

A + v
2
th⊥ = V2

A + 2(p(0)⊥ /ρ0), and can be contrasted with the
MHD result (ω/k)2=V2

A+
5
3(p

(0)/ρ0). The factor of 2 in the CGL result comes from
γ⊥= 2, which shows that the adiabatic assumption of the CGL model is appropriate
for the perpendicular fast mode.

• Contributions of the Hall term completely disappear for strictly perpendicular
propagation.

• It is more difficult to analytically show where the adiabatic CGL value γ‖ = 3 is
appropriate, since for example the parallel propagating ion-acoustic (sound) mode is
strongly Landau damped in kinetic theory (unless the electrons are hot), which also
modifies its real frequency. The ion-acoustic mode in the CGL model therefore does
not match kinetic theory. One needs to consider Landau fluid models with proton
and electron species, which is addressed in Part 2.
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• Nevertheless, when electrons are hot (Te � Ti) and the ion-acoustic mode is
Landau damped only weakly, the real phase speed obtained from kinetic theory
in the long-wavelength limit reads ω/k =

√
(Te + 3Ti)/mi. Thus, in this example

the kinetic theory is matched by a fluid model where protons are described
adiabatically (with the CGL value γ‖ = 3), while electrons are isothermal (with
γ‖ = 1). Also, a good example for γ‖ = 3 is the real frequency of the Langmuir
mode, ω2

=ω2
pe + 3(T (0)‖e /me)k2, which is addressed in Part 2.

• For anisotropic temperatures (ap 6= 1), some modes can become unstable. A
threshold of an instability that is obtained in the long-wavelength (non-dispersive)
limit is called a ‘hard’ threshold. The CGL model contains 3 instabilities, the
oblique firehose instability, the parallel firehose instability and the mirror instability.
The mirror instability is not described correctly.

• The oblique firehose instability is an instability of the oblique Alfvén mode. Since
the Alfvén mode is described correctly by the CGL model, its instability threshold
1+ (β‖/2)(ap− 1)< 0 matches the kinetic theory. The instability requires ap< 1 and
(in the long-wavelength limit) β‖> 2. Since the CGL model is non-dispersive, here
the instability growth rate only has a simple cos θ dependence. Once dispersive
effects are considered, the instability reaches maximum growth rate at some
wavenumber and angle θ that is oblique, see figure 10.

• The parallel firehose instability is an instability of the whistler mode, which
can be shown by considering the Hall-CGL model. However, considering usual
(non-causal) analytic solutions (4.32)–(4.35), one arrives at a contradiction that
for ωr > 0 the whistler mode is unstable, and that for ωr < 0 the whistler mode
is stable. The contradiction arises, because at the range of wavenumbers where
the firehose instability exists, the ion-cyclotron and whistler modes are completely
degenerate and distinguishing between them loses sense. The problem is resolved by
introducing a small (∼ ε) causal dissipation into the momentum equations, which is
later removed by the limit limε→0+ . The procedure yields causal dispersion relations
(4.43)–(4.46), where the whistler mode is firehose unstable for both positive and
negative ωr, and the ion-cyclotron mode is stable.

• The parallel firehose instability occurs for quasi-parallel (small θ ) propagation
directions, with the maximum growth rate at θ = 0◦, see figure 10. In the
non-dispersive CGL model it corresponds to the instability of the slow mode.
Its threshold obtained for θ = 0◦ is equivalent to the oblique firehose instability
(since vs = vA), and matches the kinetic theory. At first it might sound surprising
that the slow mode connects to the whistler mode once dispersive effects are
considered. However, considering θ = 0◦, β‖ > 2, ap < 1 yields that the fast mode
is the ion-acoustic (sound) mode and vs = vA, see figure 1. After dispersive effects
are introduced, which split the Alfvén and slow mode to the ion-cyclotron and
whistler modes, it is clarified that the instability is associated with the whistler
mode. For quasi-parallel propagation directions the situation is more obvious, since
vs > vA (see figure 1), and the slow mode clearly becomes the whistler mode.

• In the non-dispersive CGL model, all 3 instabilities are non-propagating, i.e. purely
growing with zero real frequency. Once dispersive effects are introduced, the
parallel firehose instability becomes propagating.
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• The mirror instability requires ap > 1 and usually develops for highly oblique
propagation angles. In the CGL model it corresponds to the instability of the
slow mode. Its threshold obtained in the highly oblique (but not completely
perpendicular) limit reads 1+ apβ‖ −

1
6 a2

pβ‖ < 0, and with respect to kinetic theory
the 1/6 factor is erroneous. The erroneous 1/6 factor shows that the adiabatic CGL
closure is not appropriate for the very slow dynamics of the mirror instability.

• The simplest fluid closure that recovers the correct threshold of the mirror instability
is the ‘static’ closure, see § 9.4. This closure is derived from the ‘normal’ closure
in a simplified quasi-static approximation, and represents a generalization of the
isothermal closure (in the presence of temperature anisotropy and variations of
magnetic field strength). The ‘static’ closure is very useful since it clarifies that
the highly oblique very slow dynamics of the slow mode (and of the associated
mirror instability) is better described by a generalized isothermal closure than the
adiabatic CGL closure.

• However, the ‘static’ closure modifies the dynamics of the perpendicular fast mode,
that now does not match the kinetic theory. Additionally, the fast mode now
experiences an unphysical instability, even though the instability is beyond the
mirror threshold, and should perhaps not play a role in numerical simulations. The
erroneous result shows that the generalized isothermal closure is not appropriate
for the relatively fast dynamics of the perpendicular fast mode, where the adiabatic
CGL closure is appropriate.

• Heuristically, the correct mirror threshold can be also obtained by keeping the
CGL value γ⊥= 2 and modifying the parallel polytropic index to γ‖= 1/2. Such a
closure does not alter the dynamics of the perpendicular fast mode, since the phase
speed depends only on γ⊥ (and not on γ‖). Thresholds of parallel and oblique
firehose instability are not altered either. Nevertheless, the γ‖ = 1/2 is even below
the isothermal value γ‖ = 1, the closure is heuristic, and it is mentioned only as a
curiosity.

• Obviously, to correctly capture both the slow dynamics of the highly oblique
mirror instability, as well as the fast dynamics of the perpendicular fast mode,
neither adiabatic nor (generalized) isothermal closures are sufficient. Considering
classical (rigorously derived) closures, one has no other choice but to keep the
correct adiabatic CGL values γ‖ = 3, γ⊥ = 2 unaltered, and instead, break the
(long-wavelength) adiabaticity by going higher in the fluid hierarchy. One needs to
consider fluid models with evolution equations for the heat flux tensor q, that has
two gyrotropic components, q‖ and q⊥. The system is closed at the fourth-order
moment r, that has 3 gyrotropic components, r‖‖; r‖⊥; r⊥⊥. To perform a closure,
a specific distribution function (or a class of distribution functions) has to be
assumed.

• Considering a bi-Maxwellian distribution function, the closure r̃ = 0 is known
as the ‘normal’ closure (see above). We call this non-dispersive bi-Maxwellian
fluid model the ‘second-order CGL’, abbreviated as CGL2. The abbreviation
CGL2 seems beneficial, since the name CGL is associated with collisionless
magnetohydrodynamics, now just taken to one higher order. Additionally, by
showing that all classical bi-Maxwellian models beyond CGL2 do not make
physical sense, fluid models can be easily classified as based on CGL or CGL2
descriptions. For direct comparison of the two systems, see dispersion relations
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of the CGL model (3.193) and the CGL2 model (9.23). The Hall term introduces
the simplest dispersive effects; see the dispersion relations of the Hall-CGL model
(4.81), and the Hall-CGL2 model (9.40).

• By comparing the dispersion relations, it is obvious that the gyrotropic heat flux
fluctuations in the CGL2 model modify the general dynamics (the mean heat flux
values are zero q(0)‖ = q(0)⊥ = 0). One of the exceptions is the perpendicular fast mode,
which is not altered by the gyrotropic heat fluxes, and therefore described correctly.
Other exceptions are the oblique Alfvén mode (the oblique firehose instability), and
once dispersive effects are introduced also the parallel propagating ion-cyclotron and
whistler modes (the parallel firehose instability).

• Two additional evolution equations typically create two additional modes. For
example, for the case of highly oblique CGL2 propagation, one obtains the Alfvén
mode, the fast mode, and 3 ‘slow’ modes. One of these slow modes is responsible
for the mirror instability, and is sometimes called the mirror mode. The CGL2
mirror threshold matches the kinetic theory. The CGL2 model is therefore the
simplest classical model that correctly captures (in the long-wavelength limit)
both the mirror instability threshold, as well as the perpendicular fast mode.
Nevertheless, only the ‘hard’ mirror threshold is correctly recovered, and capturing
the (long-wavelength) mirror instability growth rate requires Landau damping.

• One can construct closures for other distribution functions than bi-Maxwellians. For
example, one can consider the bi-kappa distribution function (10.1) with a free
parameter κ > 3/2. The closure then reads r‖‖= 3ακ(p2

‖
/ρ); r‖⊥=ακ(p‖p⊥/ρ); r⊥⊥=

2ακ(p2
⊥
/ρ), where the coefficient ακ = (κ − 3

2)/(κ −
5
2). The closure is restricted to

κ > 5
2 , which can be seen from the ακ coefficient, and the same requirement is

necessary for the convergence of the velocity integrals. We call this closure and
resulting fluid model simply ‘BiKappa’.

• If a closure for the bi-kappa distribution is performed at a higher nth-order moment
(which is presumably not possible with classical closures since it is expected that
for n> 4 all models contain unphysical instabilities), the closure will be restricted
to κ > (n + 1)/2, which increases with n. The requirement for the minimum κ

value is there, since the power law in the bi-kappa distribution is assumed all the
way till infinite velocities, and the requirement is necessary for the convergence of
the velocity integrals. Therefore, by going higher and higher in the bi-kappa fluid
hierarchy, the minimum value of κ increases, and in the limit κ→∞ the required
distribution function converges towards bi-Maxwellian.

• The dispersion relation for the BiKappa model is given by (10.53). A general ακ
coefficient is used, so the dispersion relation is valid for a much larger class of
distribution functions that can be closed with an analogous closure with just one
ακ coefficient. The dispersion relation shows that the general dynamics is of course
altered by the value of the ακ coefficient. Nevertheless, few exceptions are: the
oblique Alfvén mode (oblique firehose threshold), the perpendicular fast mode, the
parallel firehose threshold and the mirror threshold. When dispersive effects are
considered, and figures similar to figure 10 created, the growth rates for oblique
propagation will of course be affected by the ακ value. The Hall-BiKappa dispersion
relation is given by (10.69).
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• The non-gyrotropic (FLR) corrections Π to the pressure tensor were studied in § 5.
The tensor Π is described by the pressure tensor equation implicitly. To prevent
introducing several new independent fluid variables for components of the tensor
Π, each with its own evolution equation, expansion on temporal and spatial scales
is required. Correct evaluation of the FLR tensor with respect to magnetic field lines
is quite cumbersome, and at the leading order (in temporal and spatial scales) one
obtains (5.43)–(5.45), or equivalently (5.51)–(5.53). The FLR tensor Π is therefore
often evaluated in the linear approximation, which is appropriate when the magnetic
field lines are not too distorted.

• Even though the FLR pressure tensor Π has a zero trace, its contributions should
not be called ‘off diagonal’, since the diagonal components are non-zero. In the
collisionless case considered here with the mean field in the z-direction, only Πzz=

0, and Πxx = −Πyy 6= 0. In the collisional case (which was not considered) also
Πzz 6= 0.

• For the purpose of comparing various contributions, we differentiate between FLR1,
FLR2 and FLR3 corrections, even though the classification can be a bit blurry
and there are various possibilities. Perhaps the best definition that we used later
is as follows. The classical FLR1 tensor Π contains only velocity gradients, see
(5.74). The FLR2 tensor also contains ∂Π/∂t and the Hall term from the induction
equation, see (5.109). It can also contain gyrotropic heat flux contributions, see
(5.140). The FLR3 contains non-gyrotropic heat flux vectors S‖⊥, S⊥

⊥
, described in

§ 5.8, with the detailed algebra presented in appendix D. It can also contain the non-
gyrotropic heat flux tensor σ , which we neglected. For complete clarity in analysing
the dispersion relations, the entire Hall-CGL-FLR3 model (linearized in the x–z
plane, normalized and Fourier transformed) is written down in § 5.9, see (5.160)–
(5.164).

• Considering the strictly perpendicular fast mode, kinetic theory yields the leading-
order FLR corrections (in the long-wavelength limit) to the phase speed in the
following form (ω/k)2 = V2

A(1 −
1
8 k2ρ2

i ) + v
2
th⊥(1 −

5
16 k2ρ2

i ). The kinetic result is
reproduced by the CGL-FLR3 model (the Hall contributions are zero). Importantly,
both the first- and second-order non-gyrotropic heat flux vectors have to be retained.

• If the second-order non-gyrotropic heat flux contributions are neglected in the FLR3
model, yields solution for the perpendicular fast mode (5.159). In such a model, the
correction to the Alfvén speed is captured correctly, however, the correction to the
thermal speed is + 1

16 k2ρ2
i instead of − 5

16 k2ρ2
i , i.e. the correction has the wrong sign.

This is surprising, since the solution of the FLR2 model, equation (5.120), has a
correction to the thermal speed − 1

16 k2ρ2
i , i.e. at least the sign is correct. Finally,

the FLR1 model yields solution (5.119), and does not capture any correction to the
Alfvén speed, additionally, the correction to the thermal speed has the wrong sign
as well.

• We used the Hall-CGL-FLR3 model to investigate the parallel and oblique firehose
instability, and compare it with results of the FLR2 and FLR1 models, see
figures 7–11. It is shown that the growth rates of the parallel and oblique firehose
instability are strongly enhanced by the non-gyrotropic heat flux vectors of the
FLR3 model, see figure 10 (see the scales of the colour bars).
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• In general, when the maximum growth rates are sufficiently large (let us say
ωi/Ω ∼ 0.1) and not tiny (such as 0.001), the FLR3 model reproduces the kinetic
results with unexpectedly good accuracy. See for example bottom panels of
figure 10. Not only is the value of the maximum growth rate for the oblique
firehose instability (red lines) approximately the same in the FLR3 model and
kinetic theory, the maximum growth rate is also reached approximately for the
same angle of propagation and the same wavenumber.

• The oblique firehose instability can be (in general) reproduced with better accuracy
than the parallel firehose instability. Nevertheless, for very high β‖ values, the
parallel firehose instability is reproduced very accurately, see figure 9.

• Importantly, we show that the non-gyrotropic heat flux vectors in the FLR3 model,
partially reproduce the large ‘bump’ in the imaginary phase speed (growth rate
normalized to the wavenumber), when the plasma is close to the long-wavelength
limit ‘hard’ firehose threshold, see figure 7. The result clearly shows that, similarly
to kinetic theory, fluid models can develop the firehose instability at small spatial
scales, even when they are stable in the long-wavelength limit. Or in other words,
fluid models can become unstable even before the ‘hard’ firehose threshold is
reached. This unexpected result is perhaps the second most surprising result
discussed in Part 1.
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Appendix A. Fourier transformations
If we have an equation in real space, we decompose each quantity as a superposition

of waves according to

f (x, t)=
1

(2π)4

∫
∞

−∞

∫
∞

−∞

f̂ (k, ω)eik·x−iωt d3k dω. (A 1)

Most of plasma physics books and kinetic papers use eik·x−iωt in the definition (A 1).
Decomposing the frequency to real and imaginary parts ω = ωr + iωi, so e−iωt

=

e−iωr te+ωit, implies that a wave with ωi > 0 grows (i.e. has a positive growth rate)
and a wave with ωi < 0 is damped. Of course, an alternative definition of (A 1) with
e−ik·x+iωt is allowed, one just has to remember that a wave with ωi>0 is damped and a
wave with ωi < 0 grows. However, in Part 2 of the text, we will calculate the Landau
damping and we will see that following all the correct minus signs in the Landau

https://doi.org/10.1017/S0022377819000801 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000801


Collisionless fluid models. Part 1 163

integral can be very confusing. We therefore recommend using the first decomposition,
where waves with ωi < 0 are damped. This choice yields that Fourier transformations
in the x–z plane (with B0 in the z-direction) are performed according to a shortcut

∂

∂t
↔−iω; ∂z↔ ik‖; ∂x↔ ik⊥. (A 2)

The transformation (A 1) is technically the inverse/backward Fourier transform
F−1 f̂ (k, ω). The forward Fourier transform reads

f (k, ω)=
∫
∞

−∞

∫
∞

−∞

f̂ (x, t)e−ik·x+iωt d3x dt. (A 3)

The location of the normalization constants 1/(2π) is an ad hoc choice, one just needs
to be consistent in using them, especially when calculating convolutions.

Appendix B. Generalized vector (cross) product

In the collisionless fluid hierarchy one encounters a vector product between vectors
and tensors, as for example in the pressure tensor equation (2.26). It is useful to clarify
the definition of this generalized vector product. Consider matrix A, which is written
as a tensor product between vectors a, b, so A = a ⊗ b = ab, where, as everywhere
in this text, we omit writing the tensor product ⊗. Or in the index notation Aij= aibj.
Now consider vector c, and how can one define a generalized vector product c×A, by
using the usual vector product between two vectors. The natural definition is c×A=
c× (ab)≡ (c× a)b, or in the index notation (c× A)ij = εiklckalbj = εiklckAlj. Now let
us consider how to define the much more confusing A× c. The natural definition is
A× c= (ab)× c≡ a(b× c), and in the index notation (A× c)ij = aiεjklbkcl = εjklAikcl.
Now it is straightforward to show that

A× c=−(c× AT)T. (B 1)

Generalizing the vector product to higher-order tensors is easy and in the fluid
hierarchy we always encounter a vector b̂, and tensors p, q, r, let us therefore write

(b̂× p)ij = εirsb̂rpsj; (p× b̂)ij = εjrspirb̂s;

(b̂× q)ijk = εirsb̂rqsjk; (q× b̂)ijk = εkrsqijrb̂s;

(b̂× r)ijkl = εirsb̂rrsjkl; (r× b̂)ijkl = εlrsrijkrb̂s.

 (B 2)

The vector product is very useful for decomposing quantities to the directions parallel
and perpendicular with respect to b̂. For example, the usual decomposition of the
velocity u reads

u= (u · b̂)b̂︸ ︷︷ ︸
u‖

+ u · (I − b̂b̂)︸ ︷︷ ︸
u⊥

. (B 3)

Nevertheless, it is possible to directly obtain u⊥, by applying b̂× twice on u, so that

u= (u · b̂)b̂− b̂× (b̂× u), (B 4)
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or u⊥ = b̂× u× b̂. Similar decompositions can be made for tensors. For example, a
general matrix Π can be decomposed according to

Π = (Π · b̂)b̂+Π · (I − b̂b̂), (B 5)

where the perpendicular component can be written as Π · (I − b̂b̂)=−(Π× b̂)× b̂, i.e.
where all the b̂ act on Π from the right. Alternatively, one can write a decomposition
when all the b̂ act on the Π from the left, Π = b̂(b̂ · Π) + (I − b̂b̂) · Π, where the
perpendicular part (I − b̂b̂) ·Π =−b̂× (b̂×Π).

Appendix C. MHD dispersion relation
We assume that many people reading this text will have some previous experience

with MHD. It is therefore beneficial to obtain the MHD dispersion relation, so that
it will be clear how more advanced fluid models are treated in this text. The MHD
fluid model reads

∂ρ

∂t
+∇ · (ρu)= 0; (C 1)

∂u
∂t
+ u · ∇u+

1
ρ
∇p−

1
4πρ

(∇×B)×B= 0; (C 2)

∂B
∂t
=∇× (u×B); (C 3)

∂p
∂t
+ u · ∇p+ γ p∇ · u= 0, (C 4)

where γ = 5/3. As in advanced fluid models, it is beneficial to normalize the speed
with respect to the Alfvén speed VA, and normalize the length with respect to the ion
inertial length di=VA/Ωp, i.e. by using normalizations (3.23)–(3.28), which in Fourier
space yields k̃ = kdi, ω̃ = ω/Ωp. Normalizing the MHD equations and dropping the
tilde yields unchanged density, induction and pressure equations, and the momentum
equation reads

∂u
∂t
+ u · ∇u+

p(0)

ρ0V2
A

1
ρ
∇p−

1
ρ
(∇×B)×B= 0. (C 5)

One can decide how to rewrite p(0)/(ρ0V2
A), either by introducing the usual MHD

sound speed C2
s = γ p(0)/ρ0, or by introducing the plasma beta

β =
v2

th

V2
A
=

2T (0)/mp

V2
A
=

2p(0)/ρ0

V2
A
=

p(0)

B2
0/(8π)

; ⇒
p(0)

ρ0V2
A
=

1
γ

C2
s

V2
A
=
β

2
, (C 6)

where we use the Boltzmann constant kB= 1, see the footnote 3 after the definition of
thermal speeds (3.30). By specifying the mean magnetic field to be in the z-direction,
the normalized equations are linearized according to

∂ρ

∂t
+∇ · u= 0; (C 7)

∂ux

∂t
+
β

2
∂xp+ ∂xBz − ∂zBx = 0; (C 8)
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∂uy

∂t
+
β

2
∂yp+ ∂yBz − ∂zBy = 0; (C 9)

∂uz

∂t
+
β

2
∂zp= 0; (C 10)

∂Bx

∂t
= ∂zux;

∂By

∂t
= ∂zuy;

∂Bz

∂t
=−∂xux − ∂yuy; (C 11)

∂p
∂t
+ γ∇ · u= 0, (C 12)

and without a loss of generality, we consider propagation in the x–z plane (with ∂y=

0). By considering a wave propagating with wavenumber k = (k sin θ, 0, k cos θ) =
(kx, 0, kz)= (k⊥, 0, k‖), i.e. a wave propagating in the direction that makes an angle θ
with respect to B0, the MHD system written in Fourier space reads

−ωρ + (k sin θ)ux + (k cos θ)uz = 0; (C 13)

−ωux +
β

2
(k sin θ)p+ (k sin θ)Bz − (k cos θ)Bx = 0; (C 14)

−ωuy − (k cos θ)By = 0; −ωuz +
β

2
(k cos θ)p= 0; (C 15)

−ωBx − (k cos θ)ux = 0; −ωBy − (k cos θ)uy = 0; −ωBz + (k sin θ)ux = 0; (C 16)
−ωp+ γ (k sin θ)ux + γ (k cos θ)uz = 0. (C 17)

Calculating the determinant of this system yields the MHD dispersion relation in
normalized units (bringing back tildes for clarity) that reads

(ω̃2
− k̃2 cos2 θ)

(
ω̃4
−

(
1+ γ

β

2

)
k̃2ω̃2
+ γ

β

2
k̃4 cos2 θ

)
= 0, (C 18)

or alternatively by using (C 6) with the sound speed

(ω̃2
− k̃2 cos2 θ)

(
ω̃4
−

(
1+

C2
s

V2
A

)
k̃2ω̃2
+

C2
s

V2
A

k̃4 cos2 θ

)
= 0, (C 19)

or in physical units

(ω2
− V2

Ak2 cos2 θ)(ω4
− (V2

A +C2
s )k

2ω2
+ V2

AC2
s k4 cos2 θ)= 0, (C 20)

yielding the MHD dispersion relation for the Alfvén mode ωA =±VAk cos θ =±VAk‖
(sometimes called the shear Alfvén mode), and the slow and fast modes (3.110).

In the limit β→ 0 that corresponds to a cold plasma (Cs→ 0) or a plasma with a
very strong magnetic field (VA→∞), the slow mode ωs =±Csk‖, and the fast mode
ωf =±VAk (sometimes called the compressional Alfvén mode). In the limit β→∞
that corresponds to the incompressible MHD (Cs→∞) or a plasma with vanishing
magnetic field (VA→ 0), the slow mode ωs = ±VAk‖, and the fast mode ωf = ±Csk.
Note the difference in k‖ and k in these two limits.

Appendix D. Non-gyrotropic heat flux tensor qng

The heat flux tensor equation (7.33) is rewritten as

(b̂× qng)S =−
B0

Ω|B|

[
d
dt

q+∇ · r+ q∇ · u+ (q · ∇u)S −
1
ρ
(p(∇ · p))S

]
. (D 1)
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The ‘inversion’ procedure for the left-hand side of this is equation is very complicated,
and will not be addressed here. Nevertheless, the inversion procedure exists, and an
interested reader can check equation (43) of Ramos (2005). The leading-order qng (first
order in frequency and wavenumber) can be obtained by making the quantities q, r, p
on the right-hand side gyrotropic, and we want to solve

(b̂× qng)S =−
B0

Ω|B|

[
d
dt

qg
+∇ · rg

+ qg
∇ · u+ (qg

· ∇u)S −
1
ρ
(pg(∇ · pg))S

]
. (D 2)

The heat flux tensor decomposition is q= qg
+ qng, or alternatively q= S+ σ , where

σ : b̂b̂= 0, σ : I = 0. Since

q : b̂b̂︸ ︷︷ ︸
S‖

= qg
: b̂b̂︸ ︷︷ ︸

q‖b̂

+qng
: b̂b̂; (D 3)

q : (I − b̂b̂)/2︸ ︷︷ ︸
S⊥

= qg
: (I − b̂b̂)/2︸ ︷︷ ︸

q⊥b̂

+qng
: (I − b̂b̂)/2, (D 4)

one can define perpendicular components of the heat flux vectors

S‖⊥ = qng
: b̂b̂; (D 5)

S⊥
⊥
= qng

: (I − b̂b̂)/2. (D 6)

Therefore, to obtain these vectors, we want to apply : b̂b̂, and : (I − b̂b̂)/2 to the entire
equation (D 2). A very useful expression also is

Tr qng
= qng

: I = S‖⊥ + 2S⊥
⊥
, (D 7)

and the trace of the entire heat flux tensor reads

Tr q= q‖b̂+ 2q⊥b̂+ S‖⊥ + 2S⊥
⊥
. (D 8)

D.1. Non-gyrotropic heat flux vector S‖⊥
Applying : b̂b̂ to the left-hand side of (D 2) yields

(b̂× qng)Sijkb̂ib̂j = (εirsb̂rq
ng
sjk + εjrsb̂rq

ng
ski + εkrsb̂rq

ng
sij)b̂ib̂j

= ������
εirsb̂rb̂ib̂jq

ng
sjk +������

εjrsb̂rb̂ib̂jq
ng
ski + εkrsb̂rq

ng
sij b̂ib̂j

= εkrsb̂r(S‖⊥)s = (b̂× S‖⊥)k. (D 9)

Terms on the right-hand side of (D 2) calculate as(
d
dt

qg

)
ijk

b̂ib̂j =
dq‖
dt

b̂k + q‖
db̂k

dt
− 2q⊥

db̂k

dt
; (D 10)

(∇ · rg)ijkb̂ib̂j = b̂kb̂ · ∇r‖‖ + (r‖‖ − 3r‖⊥)(b̂ · ∇b̂k + b̂k∇ · b̂)− b̂kb̂ · ∇r‖⊥ + ∂kr‖⊥;
(D 11)

qg
ijkb̂i = q‖b̂jb̂k + q⊥(δjk − b̂jb̂k); (D 12)
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qg
ijkb̂ib̂j∇ · u= q‖b̂k∇ · u; (D 13)

(qg
· ∇u)Sijkb̂ib̂j = q‖b̂ · ∇uk + 2(q‖ − q⊥)b̂kb̂ · (∇u) · b̂+ 2q⊥(∂ku) · b̂. (D 14)

For the last term on the right-hand side of (D 2)

(p(∇ · p))Sijkb̂ib̂j = p‖(∇ · p)k + 2(p‖b̂k +Πjkb̂j)(∇ · p) · b̂; (D 15)

(∇ · p)k = b̂kb̂ · ∇(p‖ − p⊥)+ (p‖ − p⊥)(b̂ · ∇b̂k + b̂k∇ · b̂)+ ∂kp⊥ + (∇ ·Π)k; (D 16)

(∇ · p) · b̂= b̂ · ∇p‖ + (p‖ − p⊥)∇ · b̂+ (∇ ·Π) · b̂, (D 17)

and so for the gyrotropic

(pg(∇ · pg))Sijkb̂ib̂j = p‖b̂kb̂ · ∇(3p‖ − p⊥)+ p‖(p‖ − p⊥)(b̂ · ∇b̂k + 3b̂k∇ · b̂)+ p‖∂kp⊥.
(D 18)

Collecting all the results together yields

(b̂× S‖⊥)k = −
B0

Ω|B|

[
dq‖
dt

b̂k + q‖
db̂k

dt
− 2q⊥

db̂k

dt
+ b̂kb̂ · ∇r‖‖

+(r‖‖ − 3r‖⊥)(b̂ · ∇b̂k + b̂k∇ · b̂)− b̂kb̂ · ∇r‖⊥ + ∂kr‖⊥
+ q‖b̂k∇ · u+ q‖b̂ · ∇uk + 2(q‖ − q⊥)b̂kb̂ · (∇u) · b̂+ 2q⊥(∂ku) · b̂

−
p‖
ρ

b̂kb̂ · ∇(3p‖ − p⊥)−
p‖
ρ
(p‖ − p⊥)(b̂ · ∇b̂k + 3b̂k∇ · b̂)−

p‖
ρ
∂kp⊥

]
.

(D 19)

The equation appears very complicated, however, it is not overly so, since it is only
a vector equation. The equation just describes perpendicular components of S‖⊥. By
multiplying it with b̂k, the left-hand side is zero, and on the right-hand side one
recovers the gyrotropic parallel heat flux equation (7.102). To understand the equation
better, let us simplify for a moment and evaluate it with respect to b̂0= (0, 0, 1). The
x-component (b̂0 × S‖⊥)x =−(S

‖

⊥)y, so that

(S‖⊥)y =
1
Ω

[
q‖

db̂x

dt
− 2q⊥

db̂x

dt
+ (r‖‖ − 3r‖⊥)∂zb̂x + ∂xr‖⊥

+ q‖∂zux + 2q⊥∂xuz −
p‖
ρ
(p‖ − p⊥)∂zb̂x −

p‖
ρ
∂xp⊥

]
(D 20)

and similarly for the y-component (b̂0 × S‖⊥)y =+(S
‖

⊥)x, yielding

(S‖⊥)x = −
1
Ω

[
q‖

db̂y

dt
− 2q⊥

db̂y

dt
+ (r‖‖ − 3r‖⊥)∂zb̂y + ∂yr‖⊥

+ q‖∂zuy + 2q⊥∂yuz −
p‖
ρ
(p‖ − p⊥)∂zb̂y −

p‖
ρ
∂yp⊥

]
. (D 21)
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Now, by using the leading-order MHD induction equation db̂x/dt = ∂zux and
db̂y/dt = ∂zuy (which was for example used to get the FLR1 pressure tensor),
and further considering specific example of a bi-Maxwellian expressions for the
fourth-order moments, i.e. r‖‖ = 3p2

‖
/ρ + r̃‖‖ etc., yields

(S‖⊥)y =
1
Ω

[
p⊥∂x

(
p‖
ρ

)
+ 2

p‖
ρ
(p‖ − p⊥)∂zb̂x + 2q‖∂zux + 2q⊥(∂xuz − ∂zux)

+ (̃r‖‖ − 3r̃‖⊥)∂zb̂x + ∂xr̃‖⊥

]
; (D 22)

(S‖⊥)x = −
1
Ω

[
p⊥∂y

(
p‖
ρ

)
+ 2

p‖
ρ
(p‖ − p⊥)∂zb̂y + 2q‖∂zuy + 2q⊥(∂yuz − ∂zuy)

+ (̃r‖‖ − 3r̃‖⊥)∂zb̂y + ∂yr̃‖⊥

]
. (D 23)

The above equations are very useful if we ever need linearized expressions for S‖⊥,
which is beneficial to do right now, and the partially linearized expressions read

(S‖⊥)y
lin
=

1
Ω

[
p⊥∂x

(
p‖
ρ

)
+ 2

p‖
ρ
(p‖ − p⊥)∂zb̂x + ∂xr̃‖⊥

]
; (D 24)

(S‖⊥)x
lin
=−

1
Ω

[
p⊥∂y

(
p‖
ρ

)
+ 2

p‖
ρ
(p‖ − p⊥)∂zb̂y + ∂yr̃‖⊥

]
. (D 25)

Note that the mean values of perturbations r̃(0) = 0. It is also noteworthy to point
out that the contributions from the induction equation db̂/dt are completely eliminated
by the linearization process, and more elaborate forms of induction equation will not
bring additional precision at the linear level. Coming back to the expressions (D 22),
(D 23), it is also possible to introduce vorticity ω = ∇ × u, with components ωx =

(∂yuz − ∂zuy) and ωy =−(∂xuz − ∂zux). By noting that (b̂0 × ω)x =−ωy = (∂xuz − ∂zux)

and (b̂0 ×ω)y =ωx = (∂yuz − ∂zuy), both equations can be written together as

S‖⊥ =
1
Ω

b̂0 ×

[
p⊥∇

(
p‖
ρ

)
+ 2

p‖
ρ
(p‖ − p⊥)∂zb̂+ 2q‖∂zu+ 2q⊥b̂0 ×ω

+ (̃r‖‖ − 3r̃‖⊥)∂zb̂+∇r̃‖⊥

]
. (D 26)

Now that we understand that equation (D 19) just describes the perpendicular
components of S‖⊥ with respect to b̂, since the parallel components are zero (directly
from the decomposition of S‖)

S‖⊥ · b̂= 0; S⊥
⊥
· b̂= 0, (D 27)

we actually do not have to evaluate equation (D 19) with respect to b̂0. For a general
vector a, the following identity holds b̂ × (b̂ × a) = b̂(b̂ · a) − a. So for a vector a
which does not have any parallel components to b̂, so that b̂ · a = 0, the identity is
b̂× (b̂× a)=−a, and

b̂× (b̂× S‖⊥)=−S‖⊥; b̂× (b̂× S⊥
⊥
)=−S⊥

⊥
. (D 28)
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We can apply b̂× to the entire equation (D 19), and get the fully nonlinear expression
for S‖⊥. Let us apply b̂× to each term separately, since we will need these results later,
the terms calculate as

b̂×
[(

d
dt

qg

)
: b̂b̂
]
= b̂×

[
q‖

db̂
dt
− 2q⊥

db̂
dt

]
; (D 29)

b̂× [(∇ · rg) : b̂b̂] = b̂× [(r‖‖ − 3r‖⊥)b̂ · ∇b̂+∇r‖⊥]; (D 30)

b̂× [qg(∇ · u) : b̂b̂] = 0; (D 31)

b̂× [(qg
· ∇u)S : b̂b̂] = b̂× [q‖b̂ · ∇u+ 2q⊥(∇u) · b̂]; (D 32)

b̂× [(pg(∇ · pg))S : b̂b̂] = b̂× [p‖(p‖ − p⊥)b̂ · ∇b̂+ p‖∇p⊥]. (D 33)

To summarize, applying : b̂b̂ and b̂× to equation (D 2), yields the following nonlinear
expression

S‖⊥ =
B0

Ω|B|
b̂×

[
q‖

(
db̂
dt
+ b̂ · ∇u

)
+ 2q⊥

(
(∇u) · b̂−

db̂
dt

)
+ (r‖‖ − 3r‖⊥)b̂ · ∇b̂

−
p‖
ρ
(p‖ − p⊥)b̂ · ∇b̂+∇r‖⊥ −

p‖
ρ
∇p⊥

]
. (D 34)

Now the calculations proceed in a similar way as before. The usual (MHD) induction
equation can be written as

db̂
dt
= b̂ · ∇u− b̂

[
b̂ · (∇u) · b̂

]
; ⇒ b̂×

db̂
dt
= b̂× (b̂ · ∇u), (D 35)

and since (∇u) · b̂− b̂ · ∇u= b̂× (∇× u)= b̂×ω,

S‖⊥ =
B0

Ω|B|
b̂×

[
2q‖b̂ · ∇u+ 2q⊥b̂×ω+ (r‖‖ − 3r‖⊥)b̂ · ∇b̂

−
p‖
ρ
(p‖ − p⊥)b̂ · ∇b̂+∇r‖⊥ −

p‖
ρ
∇p⊥

]
. (D 36)

Finally, by prescribing bi-Maxwellian perturbations for the fourth-order moment
yields

S‖⊥ =
B0

Ω|B|
b̂×

[
p⊥∇

(
p‖
ρ

)
+ 2

p‖
ρ
(p‖ − p⊥)b̂ · ∇b̂+ 2q‖b̂ · ∇u+ 2q⊥b̂×ω

+ (̃r‖‖ − 3r̃‖⊥)b̂ · ∇b̂+∇r̃‖⊥

]
. (D 37)

We can report a sign typo in (3.7) of Sulem & Passot (2015), whose term 3r̃‖⊥ has
the opposite sign.
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D.2. Conversion of other notations
In the paper of Ramos (2005), the following notation is used

qB‖ =
1
2 q‖; qT‖ = q⊥; qB⊥ =

1
2 S‖⊥; qT⊥ = S⊥

⊥
;

r̃(0)‖ =m
(

1
2 r̃‖‖ + r̃‖⊥

)
; r̃(0)B⊥ =

m
2

r̃‖⊥; r̃(0)⊥ =m
(

1
2 r̃‖⊥ + r̃⊥⊥

)
,

 (D 38)

and his equations (54), (57) are indeed equivalent to (D 37).
In the paper by Macmahon (1965), the following notation is used

q‖ = 1
2 S‖; q⊥ = S⊥; q‖‖ =

1
2 q‖; q⊥

‖
= q⊥; q‖⊥ =

1
2

S‖⊥; q⊥
⊥
= S⊥

⊥
;

R1 = r‖‖; R2 = r‖⊥; R3 = 2r⊥⊥.

 (D 39)

and his equation (14) is equivalent to (D 36), if in Macmahon (1965) we continue the
calculation of

b̂× (∇ · pg)= b̂× [(p‖ − p⊥)b̂ · ∇b̂+∇p⊥]. (D 40)

D.3. Non-gyrotropic heat flux vector S⊥
⊥

Now we want to apply : (I − b̂b̂)/2 to equation (D 2). Additionally, we now know that
S⊥
⊥

has only perpendicular components, and that afterward we will be also applying
b̂×. The left-hand side calculates trivially as

δij(b̂× qng)Sijk = δij(εirsb̂rq
ng
sjk + εjrsb̂rq

ng
ski + εkrsb̂rq

ng
sij)

= b̂r�
��

εirsq
ng
sik + b̂r���

εirsq
ng
ski + εkrsb̂rq

ng
sii = (b̂× (qng

: I))k; (D 41)

(b̂× qng)S : (I − b̂b̂)/2= b̂× S⊥
⊥

(D 42)

and applying b̂× therefore yields

b̂× [(b̂× qng)S : (I − b̂b̂)/2] =−S⊥
⊥
. (D 43)

Let us continue with applying trace to equation (D 2) term by term

δij

(
d
dt

qg

)
ijk

= b̂k
d
dt
(q‖ + 2q⊥)+ (q‖ + 2q⊥)

d
dt

b̂k; (D 44)

δij(∇ · rg)ijk = b̂kb̂ · ∇(r‖‖ + r‖⊥ − 2r⊥⊥)

+ (r‖‖ + r‖⊥ − 2r⊥⊥)(b̂ · ∇b̂k + b̂k∇ · b̂)+ ∂kr‖⊥ + 2∂kr⊥⊥; (D 45)

δijq
g
ijk∇ · u= (q‖ + 2q⊥)b̂k∇ · u; (D 46)

δij(qg
· ∇u)Sijk = q‖b̂ · ∇uk + 2q‖b̂kb̂ · (∇u) · b̂

+ 2q⊥[2b̂ · ∇uk + (∂ku) · b̂+ b̂k∇ · u− 3b̂kb̂ · (∇u) · b̂]; (D 47)
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δij(pg(∇ · pg))Sijk = (3p‖ + 2p⊥)(p‖ − p⊥)b̂k∇ · b̂+ (p‖ + 4p⊥)(p‖ − p⊥)b̂ · ∇b̂k

+ (p‖ + 4p⊥)∂kp⊥ − (p‖ + 4p⊥)b̂kb̂ · ∇p⊥ + (3p‖ + 2p⊥)b̂kb̂ · ∇p‖,
(D 48)

and by further applying b̂× to these terms yields

b̂× Tr
(

d
dt

qg

)
= b̂×

[
(q‖ + 2q⊥)

d
dt

b̂
]
; (D 49)

b̂× Tr(∇ · rg)= b̂× [(r‖‖ + r‖⊥ − 2r⊥⊥)b̂ · ∇b̂+∇r‖⊥ + 2∇r⊥⊥]; (D 50)

b̂× Tr qg
∇ · u= 0; (D 51)

b̂× Tr(qg
· ∇u)S = b̂× [q‖b̂ · ∇u+ 2q⊥(2b̂ · ∇u+ (∇u) · b̂)]; (D 52)

b̂× Tr(pg(∇ · pg))S = b̂× [(p‖ + 4p⊥)(p‖ − p⊥)b̂ · ∇b̂+ (p‖ + 4p⊥)∇p⊥], (D 53)

and direct subtraction with results (D 29)–(D 33) gives

b̂×
[(

d
dt

qg

)
: (I − b̂b̂)/2

]
= b̂×

[
2q⊥

db̂
dt

]
; (D 54)

b̂× [(∇ · rg) : (I − b̂b̂)/2] = b̂× [(2r‖⊥ − r⊥⊥)b̂ · ∇b̂+∇r⊥⊥]; (D 55)

b̂× [(qg
· ∇u)S : (I − b̂b̂)/2] = b̂× [2q⊥b̂ · ∇u]; (D 56)

b̂× [(pg(∇ · pg))S : (I − b̂b̂)/2] = b̂× [2p⊥(p‖ − p⊥)b̂ · ∇b̂+ 2p⊥∇p⊥]. (D 57)

To summarize, applying : (I − b̂b̂)/2 and b̂× to equation (D 2) yields the following
nonlinear expression

S⊥
⊥
=

B0

Ω|B|
b̂×

[
2q⊥

db̂
dt
+ (2r‖⊥ − r⊥⊥)b̂ · ∇b̂+∇r⊥⊥ + 2q⊥b̂ · ∇u

− 2
p⊥
ρ
(p‖ − p⊥)b̂ · ∇b̂− 2

p⊥
ρ
∇p⊥

]
. (D 58)

Using the simple MHD induction equation gives

S⊥
⊥
=

B0

Ω|B|
b̂×

[
(2r‖⊥ − r⊥⊥)b̂ · ∇b̂+∇r⊥⊥ + 4q⊥b̂ · ∇u

− 2
p⊥
ρ
(p‖ − p⊥)b̂ · ∇b̂− 2

p⊥
ρ
∇p⊥

]
, (D 59)

and finally prescribing bi-Maxwellian values for the fourth-order moments yields

S⊥
⊥
=

B0

Ω|B|
b̂×

[
2p⊥∇

(
p⊥
ρ

)
+ 4q⊥b̂ · ∇u+ (2r̃‖⊥ − r̃⊥⊥)b̂ · ∇b̂+∇r̃⊥⊥

]
. (D 60)

Additionally, evaluation from linear kinetic theory in the gyrotropic limit (at long
wavelengths) yields r̃⊥⊥= 0, as we will see in Part 2. With this requirement, equation
(D 60) is equivalent to (3.6) of Sulem & Passot (2015). The result (D 60) is also
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equivalent to expressions (55), (58) of Ramos (2005). However, equation (15) of
Macmahon (1965) appears to have a typo, where in comparison to our (D 59), his
definition of T appears to be missing a factor of 2 in front of the ∇u term. Ramos
(2005) however states that his results are equivalent to those of Macmahon (1965),
so we might not correctly understand the notation in that paper.

Partial linearization of result (D 60) yields that by components

(S⊥
⊥
)y

lin
=

1
Ω

[
2p⊥∂x

(
p⊥
ρ

)
+ ∂xr̃⊥⊥

]
; (D 61)

(S⊥
⊥
)x

lin
=−

1
Ω

[
2p⊥∂y

(
p⊥
ρ

)
+ ∂yr̃⊥⊥

]
, (D 62)

where we have kept the r̃⊥⊥ contributions, just in case we need them in the future.
Note that, similarly to the linearization of the vector S‖⊥, the induction equation is
completely eliminated at the linear level, and more elaborate forms of induction
equation will not have additional contributions.

D.4. Second-order heat flux vectors

In a previous section we have seen that by applying : b̂b̂, : (I − b̂b̂)/2 and b̂× to
equation (D 1), the fully nonlinear (but implicit) expressions for the non-gyrotropic
heat flux vectors read

S‖⊥ =
B0

Ω|B|
b̂×

{
b̂b̂ :

[
d
dt

q+∇ · r+ q∇ · u+ (q · ∇u)S −
1
ρ
(p(∇ · p))S

]}
; (D 63)

S⊥
⊥
=

B0

Ω|B|
b̂×

{
(I − b̂b̂)/2 :

[
d
dt

q+∇ · r+ q∇ · u+ (q · ∇u)S −
1
ρ
(p(∇ · p))S

]}
.

(D 64)

Here, we are interested only in the linear level contributions, which we want to use
in the FLR pressure tensor. Therefore, since we know that here we will linearize
everything at the end, we can immediately get rid of the two heat flux terms q∇ · u
and (q · ∇u)S, and also replace the d/dt by ∂/∂t, so partial linearization yields

S‖⊥
lin
=

1
Ω

b̂×
{

b̂b̂ :
[
∂

∂t
q+∇ · r−

1
ρ
(p(∇ · p))S

]}
; (D 65)

S⊥
⊥

lin
=

1
Ω

b̂×
{
(I − b̂b̂)/2 :

[
∂

∂t
q+∇ · r−

1
ρ
(p(∇ · p))S

]}
. (D 66)

Additionally, the ∂q/∂t term can be easily precalculated as(
∂

∂t
q
)
: b̂b̂=

∂

∂t
(q‖b̂+ S‖⊥)− q :

∂

∂t
(b̂b̂) lin
=
∂q‖
∂t

b̂+
∂

∂t
S‖⊥; (D 67)(

∂

∂t
q
)
: (I − b̂b̂)/2=

∂

∂t
(q⊥b̂+ S⊥

⊥
)+ q :

∂

∂t
(b̂b̂/2) lin

=
∂q⊥
∂t

b̂+
∂

∂t
S⊥
⊥
, (D 68)

and by applying b̂×, terms proportional to b̂ disappear, yielding

S‖⊥
lin
=

1
Ω

b̂×
{
∂

∂t
S‖⊥ + b̂b̂ :

[
∇ · r−

1
ρ
(p(∇ · p))S

]}
; (D 69)
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S⊥
⊥

lin
=

1
Ω

b̂×
{
∂

∂t
S⊥
⊥
+ (I − b̂b̂)/2 :

[
∇ · r−

1
ρ
(p(∇ · p))S

]}
. (D 70)

The first-order vectors were obtained by keeping only gyrotropic quantities on the
right-hand side. Linearizing results (D 37), (D 60) indeed yields that at the linear level

S‖(1)⊥
lin
=

1
Ω

b̂0 ×

[
p(0)⊥ ∇

(
p‖
ρ

)
+ 2

p(0)‖
ρ0
(p(0)‖ − p(0)⊥ )∂zb̂

]
; (D 71)

S⊥(1)⊥

lin
=

1
Ω

b̂0 ×

[
2p(0)⊥ ∇

(
p⊥
ρ

)]
, (D 72)

where the gradients are meant to be further linearized, and where we also neglected
perturbations r̃, since right now we do not want to calculate these quantities from
linear kinetic theory. To obtain the second-order heat flux vectors at the linear level,
we need to calculate

S‖(2)⊥
lin
=

1
Ω

b̂×
{
∂

∂t
S‖(1)⊥ + b̂b̂ :

[
∇ · rng

−
1
ρ
(pg(∇ ·Π))S

]}
; (D 73)

S⊥(2)⊥

lin
=

1
Ω

b̂×
{
∂

∂t
S⊥(1)⊥ + (I − b̂b̂)/2 :

[
∇ · rng

−
1
ρ
(pg(∇ ·Π))S

]}
. (D 74)

To calculate the rng contributions it is enough to work with the partially linearized
(valid only for bi-Maxwellian)

∂lr
ng
ijkl

lin
=

1
ρ0
[pg

ij∂lΠkl + pg
ik∂lΠjl + pg

il∂lΠjk + pg
kl∂lΠij + pg

jl∂lΠik + pg
jk∂lΠil], (D 75)

which further yields

(∂lr
ng
ijkl)b̂ib̂j

lin
=

1
ρ0
[p‖∂lΠkl + 2p‖b̂k(∂lΠil)b̂i + 2p‖b̂l(∂lΠik)b̂i + pg

kl(∂lΠij)b̂ib̂j]; (D 76)

(∂lr
ng
ijkl)δij

lin
=

1
ρ0
[(p‖ + 6p⊥)∂lΠkl + 2(p‖ − p⊥)b̂k(∂lΠil)b̂i + 2(p‖ − p⊥)b̂l(∂lΠik)b̂i],

(D 77)

and further evaluation with b̂0 (e.g. b̂l∂l→ ∂z, or Πikb̂i→Πzk, but keeping the b̂k intact
for now) yields

[b̂b̂ : (∇ · rng)]k
lin
=

1
ρ0
[p‖∂lΠkl + 2p‖b̂k∂lΠzl + 2p‖∂zΠzk]; (D 78)

[I : (∇ · rng)]k
lin
=

1
ρ0
[(p‖ + 6p⊥)∂lΠkl + 2(p‖ − p⊥)b̂k∂lΠzl + 2(p‖ − p⊥)∂zΠzk]; (D 79)

[(I − b̂b̂)/2 : (∇ · rng)]k
lin
=

1
ρ0
[3p⊥∂lΠkl − p⊥b̂k∂lΠzl − p⊥∂zΠzk]. (D 80)

We purposely kept the b̂k for now, since multiplying the results by b̂k and further
linearizing yields

b̂ · [b̂b̂ : (∇ · rng)]
lin
= 3

p(0)‖
ρ0
∂lΠzl; (D 81)
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b̂ · [(I − b̂b̂)/2 : (∇ · rng)]
lin
= 2

p(0)⊥
ρ0
∂lΠzl, (D 82)

which verifies that the contributions (7.100), (7.101) to the gyrotropic heat flux
equations were indeed calculated correctly. In contrast, applying b̂× eliminates terms
proportional to b̂k, implying

b̂× [b̂b̂ : (∇ · rng)]k
lin
= b̂0 ×

p(0)‖
ρ0
[∂lΠkl + 2∂zΠkz]; (D 83)

b̂× [(I − b̂b̂)/2 : (∇ · rng)]k
lin
= b̂0 ×

p(0)⊥
ρ0
[3∂lΠkl − ∂zΠkz], (D 84)

where we have used perhaps a somewhat strange mixture of vector and index
notations, but which should be otherwise clear. For any vector a, the notation just
means b̂0 × a= (−ay, ax, 0). Similarly straightforward calculation yields

b̂× [b̂b̂ : (pg
∇ ·Π)S)]k

lin
= b̂0 × p(0)‖ ∂lΠlk; (D 85)

b̂× [I : (pg
∇ ·Π)S)]k

lin
= b̂0 × (p

(0)
‖ + 4p(0)⊥ )∂lΠlk; (D 86)

b̂× [(I − b̂b̂)/2 : (pg
∇ ·Π)S)]k

lin
= b̂0 × 2p(0)⊥ ∂lΠlk. (D 87)

The final form of the second-order non-gyrotropic heat flux vectors reads

(S‖⊥)
(2)
k

lin
=

1
Ω

b̂0 ×

[
∂

∂t
(S‖⊥)

(1)
k + 2

p(0)‖
ρ0
∂zΠkz

]
; (D 88)

(S⊥
⊥
)
(2)
k

lin
=

1
Ω

b̂0 ×

[
∂

∂t
(S⊥
⊥
)
(1)
k +

p(0)⊥
ρ0
(∂lΠlk − ∂zΠkz)

]
. (D 89)

Alternatively, one can write ∂lΠlk − ∂zΠkz = ∂xΠxk + ∂yΠyk. The second-order heat
flux vectors contribute to the scalar (gyrotropic) pressure equations, and also to the
FLR pressure tensor Π. The non-gyrotropic pressure tensor Π, and the non-gyrotropic
heat flux vectors S‖⊥, S⊥

⊥
are therefore generally coupled. To make the system easily

solvable, terms with Π on the right-hand side of (D 88), (D 89) are approximated by
Π(1). The equations (D 88), (D 89) can be written in a more elegant vector form, see
equations (5.153), (5.154), and the result is equivalent to equations (53), (54) of Passot
et al. (2012).

Instead of splitting of Π, S‖⊥ and S⊥
⊥

into the first- and second-order components,
one might be interested in the future to check the behaviour of the coupled system,
i.e. one might be interested in solving the pressure tensor equation, that is coupled to
the heat flux vectors, by making the associated variables independent quantities. For
example, one might be interested to double check the solutions for the parallel firehose
instability. The procedure of how to obtain time-dependent equations for S‖⊥ and S⊥

⊥

can be perhaps a bit blurry from the steps outlined above, so let us write it one more
time, only for S‖⊥. One can work directly with the heat flux tensor equation (7.33),
and keeping only terms that contribute at the linear level, the partially linearized heat
flux tensor equation reads

∂

∂t
q+Ω(b̂× qng)S +∇ · r−

1
ρ0
(p(∇ · p))S = 0. (D 90)
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Applying : b̂b̂ and b̂×, yields that, at the linear level,

b̂0 ×
∂

∂t
S‖⊥ −ΩS‖⊥ + b̂0 ×

[
p(0)⊥ ∇

(
p‖
ρ

)
+ 2

p(0)‖
ρ0
(p(0)‖ − p(0)⊥ )∂zb̂

]
+ b̂0 × 2

p(0)‖
ρ0
∂z EΠz = 0,

(D 91)

or in the index notation

∂

∂t
(S‖⊥)x −Ω(S

‖

⊥)y + p(0)⊥ ∂x

(
p‖
ρ

)
+ 2

p(0)‖
ρ0
(p(0)‖ − p(0)⊥ )∂zb̂x + 2

p(0)‖
ρ0
∂zΠxz = 0; (D 92)

∂

∂t
(S‖⊥)y +Ω(S

‖

⊥)x + p(0)⊥ ∂y

(
p‖
ρ

)
+ 2

p(0)‖
ρ0
(p(0)‖ − p(0)⊥ )∂zb̂y + 2

p(0)‖
ρ0
∂zΠyz = 0. (D 93)

Importantly, bi-Maxwellian distribution function was assumed. Normalizing the
equations, writing them in the x–z plane and Fourier transforming yields

−iω(S‖⊥)x − (S
‖

⊥)y +
β‖

2
apik⊥(p‖ − ρ)+ β‖(1− ap)ik‖Bx + β‖ik‖Πxz = 0; (D 94)

−iω(S‖⊥)y + (S
‖

⊥)x + β‖(1− ap)ik‖By + β‖ik‖Πyz = 0. (D 95)

Considering parallel propagation (k⊥= 0), these equations are coupled with equations
for Πxz, Πyz, equations (5.157), (5.158), and also with equations for ux, uy, Bx, By,
system (6.1). Now, it should be easy to derive the dispersion relation and, for example,
check if the solutions for the parallel firehose instability are improved.

D.5. Contributions of qng to various equations
Here we calculate contributions of qng to the FLR pressure tensor, scalar heat flux
equation and scalar pressure equations. Contributions to the FLR pressure tensor
are calculated at the linear level by neglecting σ . Contributions to scalar heat
flux equations and scalar pressure equations are calculated nonlinearly. In these
calculations, no specific form of a distribution function is assumed.

D.5.1. Contributions to FLR pressure tensor
For contributions to the FLR tensor Π, we need to calculate ∇ · qng. To calculate

it, we will neglect the heat flux tensor σ , and use the decomposition of the heat flux
tensor S, that can be figured out to be

S= q‖b̂b̂b̂+ q⊥[b̂(I − b̂b̂)]S + [S‖⊥b̂b̂]S + 1
2 [S
⊥

⊥
(I − b̂b̂)]S, (D 96)

or in the index notation

Sijk = q‖b̂ib̂jb̂k + q⊥[b̂iδjk + b̂jδik + b̂kδij − 3b̂ib̂jb̂k]

+ (S‖⊥)ib̂jb̂k + (S
‖

⊥)jb̂ib̂k + (S
‖

⊥)kb̂ib̂j

+
1
2 [(S

⊥

⊥
)i(δjk − b̂jb̂k)+ (S⊥⊥)j(δik − b̂ib̂k)+ (S⊥⊥)k(δij − b̂ib̂j)]. (D 97)
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Here, we want to calculate only contributions at the linear level, and linearizing ∇ · S
yields

∂kSijk
lin
= b̂ib̂j∂zq‖ + b̂i∂jq⊥ + b̂j∂iq⊥ + δij∂zq⊥ − 3b̂ib̂j∂zq⊥
+ b̂j∂z(S

‖

⊥)i + b̂i∂z(S
‖

⊥)j + b̂ib̂j∂k(S
‖

⊥)k

+
1
2 [∂j(S⊥⊥)i − b̂j∂z(S⊥⊥)i + ∂i(S⊥⊥)j − b̂i∂z(S⊥⊥)j + δij∂k(S⊥⊥)k − b̂ib̂j∂k(S⊥⊥)k],

(D 98)

and straightforward evaluation gives

(∇ · S)xx = ∂zq⊥ + 1
2 [3∂x(S⊥⊥)x + ∂y(S⊥⊥)y]; (D 99)

(∇ · S)xy =
1
2 [∂y(S⊥⊥)x + ∂x(S⊥⊥)y]; (D 100)

(∇ · S)xz = ∂xq⊥ + ∂z(S
‖

⊥)x; (D 101)
(∇ · S)yy = ∂zq⊥ + 1

2 [∂x(S⊥⊥)x + 3∂y(S⊥⊥)y]; (D 102)

(∇ · S)yz = ∂yq⊥ + ∂z(S
‖

⊥)y; (D 103)

(∇ · S)zz = ∂zq‖ + ∂x(S
‖

⊥)x + ∂y(S
‖

⊥)y. (D 104)

D.5.2. Contributions to scalar heat flux equations
When we calculated the scalar heat flux equations, we separated the non-gyrotropic

heat flux qng by defining a quantity

Qng
=

d
dt

qng
+ qng
∇ · u+

[
qng
· ∇u+Ω

|B|
B0

b̂× qng

]S

,

and we need to calculate

Qng
‖ ≡ (Q

ng
: b̂b̂) · b̂; Qng

⊥ ≡ (Q
ng
: (I − b̂b̂)/2) · b̂. (D 105)

Here, we want to obtain exact nonlinear expressions. Direct calculations yield(
d
dt

qng
ijk

)
b̂ib̂jb̂k =

d
dt
(qng

ijkb̂ib̂jb̂k︸ ︷︷ ︸
=0

)− qng
ijk

d
dt
(b̂ib̂jb̂k)=−3S‖⊥ ·

db̂
dt
; (D 106)

(qng
· ∇u)Sijkb̂ib̂jb̂k = 3S‖⊥ · (∇u) · b̂; (D 107)

(b̂× qng)Sijkb̂ib̂jb̂k = 0, (D 108)

and the final fully nonlinear result reads

Qng
‖ =−3S‖⊥ ·

db̂
dt
+ 3S‖⊥ · (∇u) · b̂. (D 109)

Similar calculations yield a nonlinear expression for Qng
⊥ , which calculates as(

d
dt

qng
ijk

)
δijb̂k =

d
dt
(qng

ijkδijb̂k︸ ︷︷ ︸
=0

)− qng
ijkδij

d
dt

b̂k =−(qng
: I) ·

db̂
dt
=−(S‖⊥ + 2S⊥

⊥
) ·

db̂
dt
;

(D 110)
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d
dt

qng
ijk

)
(δij − b̂ib̂j)b̂k/2= (S‖⊥ − S⊥

⊥
) ·

db̂
dt
; (D 111)

(b̂× qng)Sijkδijb̂k = 0; (D 112)

(qng
· ∇u)Sijkδijb̂k = (qng

ijl ∂luk + qng
jkl∂lui + qng

kil∂luj)δijb̂k = (qng
: I)l(∂luk)b̂k + 2qng

ilkb̂k∂lui

= (S‖⊥ + 2S⊥
⊥
) · (∇u) · b̂+ 2(qng

· b̂) :∇u. (D 113)

To continue the calculation, we need to use (an exact expression)

qng
= [S‖⊥b̂b̂]S + 1

2 [S
⊥

⊥
(I − b̂b̂)]S + σ , (D 114)

which allows us to calculate

qng
ijkb̂k = (S

‖

⊥)ib̂j + (S
‖

⊥)jb̂i + σijkb̂k; (D 115)

qng
ilkb̂k∂lui = (S‖⊥)ib̂l∂lui + (S

‖

⊥)l(∂lui)b̂i + σilkb̂k∂lui

= S‖⊥ · (b̂ · ∇u)+ S‖⊥ · (∇u) · b̂+ (σ · b̂) :∇u, (D 116)

and therefore

(qng
· ∇u)Sijkδijb̂k = (3S‖⊥ + 2S⊥

⊥
) · (∇u) · b̂+ 2S‖⊥ · (b̂ · ∇u)+ 2(σ · b̂) :∇u; (D 117)

(qng
· ∇u)Sijk(δij − b̂ib̂j)b̂k/2= S⊥

⊥
· (∇u) · b̂+ S‖⊥ · (b̂ · ∇u)+ b̂ · σ :∇u. (D 118)

The final fully nonlinear result reads

Qng
⊥ = (S

‖

⊥ − S⊥
⊥
) ·

db̂
dt
+ S⊥

⊥
· (∇u) · b̂+ (b̂ · ∇u) · S‖⊥ + b̂ · σ :∇u. (D 119)

However, it is easy to see that, at the linear level, both Qng
‖

lin
= 0 and Qng

⊥

lin
= 0.

D.5.3. Contributions to scalar pressure equations
The non-gyrotropic heat flux term entering the parallel pressure equation calculates

as

(∇ · qng) : b̂b̂ = (∂kq
ng
kij)b̂ib̂j = ∂k(q

ng
kijb̂ib̂j)− qng

kij∂k(b̂ib̂j)

= ∂k(S
‖

⊥)k − 2qng
kijb̂i∂kb̂j, (D 120)

and since

qng
ijkb̂i = (S

‖

⊥)jb̂k + (S
‖

⊥)kb̂j + σijkb̂i; (D 121)

qng
ijkb̂i∂kb̂j = (S

‖

⊥)jb̂k∂kb̂j + (S
‖

⊥)k b̂j∂kb̂j︸ ︷︷ ︸
=0

+σijkb̂i∂kb̂j = (b̂ · ∇b̂) · S‖⊥ + b̂ · σ :∇b̂, (D 122)

which yields the final nonlinear result

(∇ · qng) : b̂b̂=∇ · S‖⊥ − 2(b̂ · ∇b̂) · S‖⊥ − 2b̂ · σ :∇b̂. (D 123)
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Similarly, the term entering the perpendicular pressure equation calculates as

(∇ · qng) : I = (∂kq
ng
kij)δij =∇ · (qng

: I)=∇ · (S‖⊥ + 2S⊥
⊥
); (D 124)

(∇ · qng) : (I − b̂b̂)/2=∇ · S⊥
⊥
+ (b̂ · ∇b̂) · S‖⊥ + b̂ · σ :∇b̂. (D 125)

The nonlinear results (D 124), (D 126) are exact, and here we do not address how to
further decompose the tensor σ . Finally, considering contributions at the linear level
(assuming that the mean values of the entire heat flux q(0)= 0), it is easy to see that

(∇ · qng) : b̂b̂ lin
=∇ · S‖⊥ = ∂x(S

‖

⊥)x + ∂y(S
‖

⊥)y; (D 126)

(∇ · qng) : (I − b̂b̂)/2 lin
=∇ · S⊥

⊥
= ∂x(S⊥⊥)x + ∂y(S⊥⊥)y. (D 127)

The heat flux tensor σ therefore does not contribute to the gyrotropic pressure
equations at the linear level.
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