RINGS OF INVARIANTS AND p-SYLOW SUBGROUPS

H. E. A. CAMPBELL, I. HUGHES, AND R. D. POLLACK

Abstract

Let V be a vector space of dimension n over a field k of characteristic p. Let $G \subseteq G l(V)$ be a finite group with p-Sylow subgroup P. G and P act on the symmetric algebra R of V. Denote the respective rings of invariants by R^{G} and R^{P}. We show that if R^{P} is Cohen-Macaulay (CM) so also is R^{G}, generalizing a result of M. Hochster and J. A. Eagon. If P is normal in G and G is generated by P and pseudo-reflections, we show that if R^{G} is CM so also is R^{P}. However, in general, R^{G} may even be polynomial with R^{P} not CM. Finally, we give a procedure for determining a set of generators for R^{G} given a set of generators for R^{P}.

Introduction. Let V be a vector space of dimension n over a field k of characteristic $p \geq 0$ with basis $\left\{x_{1}, \ldots, x_{n}\right\}$. Suppose $G \subset G l(V)$ is finite group with a p-Sylow subgroup P. In what follows, if $p=0$, set $P=\{1\} . G$ and P act on the symmetric algebra $R \cong k\left[x_{1}, \ldots, x_{n}\right]$ of V as algebra automorphisms. Denote the respective rings of invariants by R^{G} and R^{P}. These rings are known to be finitely generated by a fundamental result due to Hilbert, see for example the beautiful survey paper of R. P. Stanley [10].

In this paper the relations between R^{G} and R^{P} are investigated; the philosophy has been to try and locate the difficulties at R^{P}. For example, it is well-known that R^{G} is CohenMacaulay (CM) when $p \chi|G|$ (here $|G|$ denotes the order of G) and G is finite-see the fundamental paper of Eagon and Hochster [4]. However, when $p>0$ and p divides the order of G, R^{G} need not be CM. In fact, H. Nakijima [7, example 4.1, pgs. 211-212] gives examples of elementary abelian p-groups generated by pseudo-reflections ($g \in G$ is a pseudo-reflection if $\operatorname{rank}(1-g) \leq 1)$ with R^{G} not CM .

In section one a proof that R^{P} CM forces R^{G} to be CM is given. First a Reynold's or averaging operator $\rho: R^{P} \rightarrow R^{G}$ is built using the cosets of G / P and then the proof is word for word that of $[10$, theorem $3.2, \mathrm{pg} .482]$. In fact, in the cases $p=0$ or $p \nmid G \mid, P=$ $\{1\}$, so $R^{P}=R$ is polynomial and the original proof in [10] is recovered. If P is normal in G, and G is generated by P and pseudo-reflections, the converse is true, see Proposition 2.

In general, R^{G} may even be polynomial (and so CM) with R^{P} not CM . See the example following the proof of Proposition 2.

In section two a procedure for determining a set of generators for R^{G} given any set of generators for R^{P} is described. In turn, this relies on the paper [1]. This is perhaps

[^0]the most interesting result of the paper for the following reason. Invariant theorists are familiar with two cases:
(1) $p=0$ or $p \chi|G|$, the so-called non-modular case,
(2) $p||G|$, the modular case.

In the non-modular case the proofs of many classical $(p=0)$ theorems work word for word in the more general setting $p \chi|G|$. However, E. Noether (see H. Weyl's description [11, pgs. 275-276]) shows that when $p=0$, then R^{G} is generated by the $\binom{|G|+n}{n}$ polynomials $\frac{1}{|G|} \sum_{g \in G} g(f)$, as f ranges over all monomials in the variables x_{1}, \ldots, x_{n} of degree at most $|G|$. The procedure described below requires averaging polynomials of degree at most $\max \left(|G|, n\binom{|G|}{2}\right)$ to achieve a proof that works also for $p \nmid|G|$, see proposition 3 in section two. Finally, an attempt is made to obtain generators for R^{P}.

We would like to point out that this paper relies heavily on the papers of R. P. Stanley [10] and J. A. Eagon and M. Hochster [4].

Section One. Recall that a finitely generated \mathbf{N}-graded commutative k-algebra $A=$ $\oplus_{\ell \geq 0} A_{\ell}$ with $A_{0}=k$ has Krull dimension n if n is the maximum number of algebraically independent elements of A over k. Further, if A has Krull dimension n, then a set f_{1}, \ldots, f_{n} of algebraically independent homogeneous elements of positive degree is said to be a homogeneous system of parameters (hsop) if A is finitely generated as a module over the polynomial subalgebra $B=k\left[f_{1}, \ldots, f_{n}\right]$. If A is a domain then the Noether normalization lemma, see [13, theorem $25, \mathrm{pg}$. 200] implies that a hsop for A exists.

Let $\left\{f_{1}, \ldots, f_{n}\right\}$ be a hsop for A. A is said to be Cohen-Macaulay (CM) if A is free as a module over the polynomial subalgebra $B=k\left[f_{1}, \ldots, f_{n}\right]$. In other words, A is CM if there exist homogeneous elements g_{1}, \ldots, g_{m} such that $A=\oplus_{l \geq 0}^{m} B g_{l}$ as B-modules. Further, if A is CM this holds if and only if the images of g_{1}, \ldots, g_{m} in A / I form a vector space basis for A / I over k, where I is the ideal of A generated by $\left\{f_{1}, \ldots, f_{n}\right\}$. Finally, a standard result is that if A is free over one hsop then it is free for every hsop, see [9,theorem 2, p.IV-20].

Now $P \subset G \subset G l(V)$ with P a p-Sylow subgroup of the finite group G. Further R is the symmetric algebra of V, so that $R^{G} \subset R^{P}$. Suppose $[G: P]=m$ so that $p \nmid m$, and let $\alpha_{1}, \ldots, \alpha_{m}$ be coset representatives, i.e. $G=\cup \alpha_{\ell} P$. Define $\rho: R^{P} \rightarrow R^{G}$ by $\rho(f)=\frac{1}{m} \sum_{\ell=1}^{m} \alpha_{\ell}(f)$. It is easy to see that ρ is independent of the choice of coset representatives and that $\rho(f) \in R^{G}$. It is also easy to see that ρ is a map of R^{G}-modules, $\rho(1)=1$ and $\rho^{2}=\rho$. It follows that $R^{P}=R^{G} \oplus U$ as R^{G}-modules where $U=\operatorname{ker}(\rho)$.

THEOREM 1. If R^{P} is $C M$ then so also is R^{G}.
Proof. By the Noether Normalization theorem, a hsop f_{1}, \ldots, f_{n} exists for R^{G} since it is finitely generated. Since R is integral over R^{G}, so also is R^{P} and so both are finitely generated as R^{G}-modules and so R^{P} is finitely generated as a module over $B=$ $k\left[f_{1}, \ldots, f_{n}\right]$. Consequently $\left\{f_{1}, \ldots, f_{n}\right\}$ is hsop for R^{P}. But R^{P} is CM and so R^{P} is a free module over $B . R^{G}$ is projective over the polynomial algebra B since as shown above it is a direct summand in the free module R^{P}, so R^{G} is a free B-module by Quillen's or

Suslin's solutions of Serre's conjecture, see for example [5]. Alternately, the decomposition $R^{P}=R^{G} \oplus U$ yields $R^{P} / I \cong R^{G} / J \oplus U / K$ where I is the ideal of R^{P} generated by $\left\{f_{1}, \ldots, f_{n}\right\}, J$ is the ideal of R^{G} generated by $\left\{f_{1}, \ldots, f_{n}\right\}$, and $K=f_{1} U+\cdots+f_{n} U$. Choose homogeneous elements g_{1}, \ldots, g_{r} in R^{G} which project to a basis for R^{G} / J and homogeneous elements g_{r+1}, \ldots, g_{s} in U which project to a basis for U / K so that R^{P} / I has basis $\left\{\bar{g}_{1}, \ldots, \bar{g}_{s}\right\}$. But R^{P} is CM and R^{P} / I has $\left\{\bar{g}_{1}, \ldots, \bar{g}_{s}\right\}$ as a basis so $R^{P}=\oplus_{l=1}^{s} B g_{l}$ and consequently $R^{G}=\oplus_{l=1}^{r} B g_{l}$ and so is a free B-module. Thus R^{G} is CM.

Proposition 2. Suppose P is normal in G and that G is generated by P and pseudoreflections. Then R^{P} is $C M$ if and only if R^{G} is $C M$.

PROOF. The proposition follows immediately from [4, proposition 16, pg 1035] provided we show each pseudo-reflection of G acts as a generalized reflection on $R^{P}(\alpha \in G$ acts as a generalized reflection on R^{P} if there is a homogeneous positive degree element f in R^{P} with $\left.(\alpha-1) R^{P} \subset f R^{P}\right)$.

Let $\alpha \in G$ be a non-trivial pseudo-reflection; then there is an $x \in V$ with $(\alpha-1) R \subset$ $x R$. Let $\operatorname{Stab}_{P}(x)=\{\beta \in P \mid \beta(x)=x\}$ and let Ω be a set of left coset representatives of $\operatorname{Stab}_{P}(x)$ in P containing $1 \in P$. Set $f=\Pi_{\beta \in \Omega} \beta(x)$ so that $f \in R^{P}$. If $g \in R^{P}$ then $\alpha(g) \in R^{P}$, so $(\alpha-1)(g) \in R^{P} \cap x R$. But $R^{P} \cap x R \subset \cap_{\beta \in \Omega} \beta(x R)=\cap_{\beta \in \Omega} \beta(x) R=f R$ (the last equality since P acts unipotently on V). Thus ($\alpha-1$) $g \in R^{P} \cap x R \subset f R^{P}$.

In general, R^{G} may even be polynomial, with R^{P} not CM . For example, consider the symmetric group Σ_{p} acting on V of dimension p over k as permutations of a basis X. The subgroup P of order p generated by a fixed cyclic permutation of X is a p-Sylow subgroup of $\Sigma_{p} . R^{\Sigma_{p}}$ is the polynomial algebra on the elementary symmetric functions $\sigma_{1}, \ldots, \sigma_{p}$ while R^{P} is not CM for $p>3$ by a result of Fossum and Griffith [2, corollary 1.8, pg. 193].

Section Two. As in Section One, let $G \subset G l(V)$ be a finite group with a p-Sylow subgroup P. Let R^{P} be generated as a k-algebra by $\left\{f_{1}, \ldots, f_{s}\right\}$ for some $s \geq n$. Choose a set of coset representatives of P in $G, \alpha_{1}, \ldots, \alpha_{m}, m=[G: P]$. Let T denote the subalgebra of R generated by the $m s$ elements $\alpha_{i}\left(f_{j}\right) . G$ acts on T, since for fixed j, the elements of G act as permutations of the $\alpha_{i} f_{j}$. Consequently, we obtain a group homomorphism $\xi: G \rightarrow \Sigma_{m}$ where Σ_{m} denotes the symmetric group on m letters. If S is the polynomial algebra $k\left[z_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq s\right]$ the algebra homomorphism $\theta: S \rightarrow R$ defined by $\theta\left(z_{i j}\right)=\alpha_{i}\left(f_{j}\right)$ has image $T . \Sigma_{m}$ acts on S by $\sigma\left(z_{i j}\right)=z_{\sigma(i) j}$ so G acts on S via ξ. Consequently $S^{\Sigma_{m}} \subset S^{G} \subset S$. It is not difficult to see that the $\operatorname{map} \theta$ is G-equivariant and so there is a commutative diagram

We claim that θ restricted to $S^{\Sigma_{m}}$ maps onto R^{G}. To see this take $h=h\left(f_{1}, \ldots, f_{s}\right) \in$ $R^{G} \subset R^{P}$ and form $g \in S$ by defining

$$
g=\frac{1}{m}\left(h\left(z_{11}, \ldots, z_{1 s}\right)+\cdots+h\left(z_{m 1}, \ldots, z_{m s}\right)\right)
$$

(recall $p \nmid m)$. It is easy to see that $g \in S^{\Sigma_{m}}$ since $\sigma\left(h\left(z_{i 1}, \ldots, z_{i s}\right)\right)=h\left(z_{\sigma(i) 1}, \ldots, z_{\sigma(i) s}\right)$ so that $\sigma \in \Sigma_{m}$ simply permutes the terms of g.

Now

$$
\begin{aligned}
\theta(g) & =\frac{1}{m}\left[\theta\left(h\left(z_{11}, \ldots, z_{1 s}\right)\right)+\cdots+\theta\left(h\left(z_{m 1}, \ldots, z_{m s}\right)\right)\right] \\
& =\frac{1}{m}\left[h\left(\theta\left(z_{11}\right), \ldots, \theta\left(z_{1 s}\right)\right)+\cdots+h\left(\theta\left(z_{m 1}\right), \ldots, \theta\left(z_{m s}\right)\right)\right] \\
& =\frac{1}{m}\left[h\left(\alpha_{1}\left(f_{1}\right), \ldots, \alpha_{1}\left(f_{s}\right)\right)+\cdots+h\left(\alpha_{m}\left(f_{1}\right), \ldots, \alpha_{m}\left(f_{s}\right)\right)\right] \\
& =\frac{1}{m}\left[\alpha_{1}(h)+\cdots+\alpha_{m}(h)\right] \\
& =\frac{1}{m}(m h) \\
& =h .
\end{aligned}
$$

Thus $\theta: S^{\Sigma_{m}} \rightarrow R^{G}$ is onto and is a map of algebras, so if generators for $S^{\Sigma_{m}}$ are known generators for R^{G} are obtained by using the map θ.

Generators for $S^{\Sigma_{m}}$ valid over any ring are described in [1]. Here is the result. Let $I=\left[a_{i j}\right]$ be a $m \times s$ matrix of non-negative integers, and let $z^{I}=z_{11}^{a_{11}} \cdots z_{m s}^{a_{m s}}$ denote the corresponding monomial in $S . I$ is said to be an exponent matrix. Let $O(I)=\{J \mid \exists \alpha \in$ Σ_{m} with $\left.\alpha\left(z^{I}\right)=z^{J}\right\}$ so that $\left\{z^{J} \mid J \in O(I)\right\}$ is the orbit of z^{I} under the action of Σ_{m} given above. Then $s(I)=\sum_{J \in O(I)} z^{J}$ is an invariant.

Let $K_{i j}$ be the $m \times s$ matrix which is everywhere zero except in its j th column $K_{i j}^{j}=$ $(1, \ldots, 1,0, \ldots, 0)$ (i ones). Denote by $\sigma_{i j}$ the orbit polynomial $s\left(K_{i j}\right)$. This is the i -th elementary symmetric function in the variables $z_{1 j}, \ldots, z_{m j}$. Set $B=k\left[\sigma_{i j} \mid 1 \leq i \leq\right.$ $m, 1 \leq j \leq s]$.

Just for the moment view each column, I^{j}, of an exponent matrix, I, as a function $I^{j}:\{1, \ldots, n\} \rightarrow \mathbf{N}$. Define $\operatorname{Ker}\left(I^{j}\right)=\left\{i \mid{ }^{I^{j}}(i)=0\right\}$. Let Ω be the set of exponent matrices $I=\left[I^{1}|\ldots| I^{s}\right]$ satisfying $I=0$ or both of
(1) the image of I is an interval in \mathbf{N} and,
(2) $\left\{\operatorname{Ker}\left(I^{\prime}\right) \mid 1 \leq j \leq s\right\}$ has no minimum element.

Theorem. Let A be the B-module generated by $\{s(I) \mid I \in \Omega\}$. Then $A=S^{\Sigma_{m}}$.
Proof. See [1, theorem 4.1]
Remark. This method is a generalization of Emmy Noether's method for $k=\mathbf{Q}$, \mathbf{R} or \mathbf{C} (see H. Weyl's description [11, pgs. 275-276]).

Proposition 3. If $p \chi|G|$ then R^{G} is generated by polynomials of degree at most $\max \left(|G|, n\binom{|G|}{2}\right.$.

Proof. If $n=1, G$ is a finite subgroup of k^{*} and hence cyclic. It follows that R^{G} is generated by $x_{1}^{|G|}$.

We take each $z_{i j}$ to have degree 1 so that θ is degree-preserving. A is generated as an algebra by the algebra generators of B (which have degree at most $m=|G|$) and the B module generators of A. Property (2) above guarantees that each column of an exponent matrix in Ω has a zero entry, while property (1) then implies that a maximal entry in any column is $m-1$. Hence the result.

Scholium. On generators for rings of invariants of p-groups $G=P$ over a finite field of characteristic p.

The following is an attempt to obtain generators for R^{P} when k is a finite field of characteristic $p>0$. Suppose $P=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ so $r=p^{t}$, for some t. Then P acts on itself via left multiplication and we obtain $\xi: P \rightarrow \Sigma_{r}$. Fix a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for V and let U denote the upper triangular p-Sylow subgroup of $G l(V)$. Replacing P by some conjugate of P if necessary assume that $P \subset U$. Now R^{U} is the polynomial algebra $k\left[v_{1}, \ldots, v_{n}\right]$ where $v_{i}=\Pi_{\gamma \in U / \operatorname{Stab}_{U}\left(x_{i}\right)} \gamma\left(x_{i}\right)$. This result is well-known, see for example [6,theorem 3.4, pg. 328] or [8, proposition 4.1 and example 4.3, pgs. 265 and 269] or [12, theorem 3.1(c), pg. 428]). Set $S=k\left[z_{i j} \mid 1 \leq i \leq r, 1 \leq j \leq n\right]$ and define $\theta\left(z_{i j}\right)=\alpha_{i}\left(x_{j}\right) \in R$. Then Σ_{r} acts on S by $\sigma\left(z_{i j}\right)=z_{\sigma(i) j}$, and so P acts on S via ξ, and θ is equivariant as before.

Proceeding as above obtain a map of algebras $\theta: S^{\Sigma_{r}} \rightarrow R^{P}$. Construct a subalgebra A of R^{P} by adjoining the elements v_{1}, \ldots, v_{n} to the subalgebra $\operatorname{im}\left(\left.\theta\right|_{S^{\Sigma r}}\right)$. Then $R^{U} \subset A \subset$ R^{P}. Since generators for $S^{\Sigma_{r}}$ are known (see [1]) a set of generators for A is obtained.

Proposition 4. $\quad R^{P}=\left\{f \in R \mid \exists \ell \in \mathbf{N}\right.$ with $\left.f^{p^{\ell}} \in A\right\}$.
Proof. For each ℓ set $B_{\ell}=\left\{f \in R \mid f^{p^{\ell}} \in A\right\}$. If $f \in B_{\ell}$ then $f^{p^{\ell}} \in A \subset R^{P}$ so $\alpha\left(f^{p^{\ell}}\right)=f^{p^{\ell}}$ for all $\alpha \in P$. Thus $(\alpha(f)-f)^{p^{\ell}}=0$ and consequently $(\alpha-1) f=0$ since R is a domain. Hence $B_{\ell} \subset R^{P}$. On the other hand, if $f=f\left(x_{1}, \ldots, x_{n}\right) \in R^{P}$ then the element $g=\prod_{i=1}^{r} f\left(z_{i 1}, \ldots, z_{i n}\right) \in S^{\Sigma_{r}}$ and $\theta(g)=f^{r}$.

Let $\mathrm{Q}(\mathrm{S})$ denote the field of fractions of a domain S .
PROPOSITION 5. $\quad R^{P}=Q(A) \cap R$.
Proof. Now $Q\left(R^{U}\right) \subset Q(A) \subset Q\left(R^{P}\right) \subset Q(R)$, and $Q(R)$ is Galois over $Q\left(R^{U}\right)=$ $Q(R)^{U}$ with Galois group U. So $Q(A)=Q(R)^{H}$ for some subgroup H of U with $P \subset H$. Consider $f \in R^{P}$ and $h \in H$. Since $f^{r} \in A$ we have $((h-1) f)^{r}=(h-1)\left(f^{r}\right)=0$ so $h(f)=f$ for $f \in R^{P}$. It follows that $H=P$ and $Q\left(R^{P}\right)=Q(A)$, hence the result.

References

1. H. E. A. Campbell, I. Hughes, R. D. Pollack, On the vector invariants of the symmetric groups preprint.
2. R. M. Fossum, P. A. Griffith, Complete local factorial rings which are not Cohen-Macaulay in characteristic p, Ann. scient. Èc. Norm. Sup. 4^{e} sèrie 8(1975) 189-200.
3. M. Hochster, The invariant theory of commutative rings, Contemp. Math. 43(1985) 161-179.
4. M. Hochster, J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93(1971) 1020-1058.
5. T. Y. Lam, Serre's conjecture, Lecture Notes in Math. 635 Springer-Verlag New York.
6. H. Mùi, Modular invariant theory and the cohomology algebras of symmetric groups, J. Fac. Sci., Univ. Tokyo, Sec. IA, 22 (1975) 319-369.
7. H. Nakajima, Invariants of finite abelian groups generated by transvections, Tokyo Journal of Math. (2)3 (1980) 201-214.
8. -, Regular rings of invariants of unipotent groups, Journal of Algebra 85(1986) 253-286.
9. J. P. Serre, Algèbre Locale Multiplicités, Lecture Notes in Math. 11 Springer-Verlag, New York 1975 .
10. R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. A.M.S. (3)1 May 1979 475-511.
11. H. Weyl, Classical Groups, Princeton University Press, Princeton, New Jersey, U.S.A. 1939.
12. C. Wilkerson, A primer on the Dickson invariants, Contemp. Math. 19(1983) 421-434.
13. O. Zariski, P. Samuel, Commutative Algebra, Vol. II van Nostrand Princeton, New Jersey, U.S.A. 1960.

Department of Mathematics and Statistics
Queen's University
Kingston, Ontario, K7L 3N6

[^0]: The first author gratefully acknowledges the support of NSERC.
 Key words and phrases: Invariant theory
 Received by the editors June 26, 1990.
 AMS subject classification: 13F20.
 (c)Canadian Mathematical Society 1991.

