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ABSTRACT

Minimax estimation procedures for the mean vector of a distribution on a
compact set under squared error type loss functions are considered. In
particular, a Dirichlet process prior is used to show that a linear function of X
is a minimax estimator in the class of all measurable estimators and all possible
distributions. This effort extends some earlier work of BUHLMANN to a more
general setting.
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1. INTRODUCTION

In an often cited paper, BUHLMANN (1976) has considered linear minimax
estimators for the mean of a univariate distribution in a nonparametric setting
under squared error loss.

To be precise, BUHLMANN assumes that Fg(x) is a family of CDF's indexed
by the one-dimensional parameter 9 and that U(6) is a CDF. BUHLMANN also
assumes that after observing the random variable X, distributed as Fg(x), the
actuary chooses a linear estimator of the form d{X) - yX+d to estimate the
mean of X. Nature chooses (a) a family of distributions Fe{x) and (b) a CDF
U{6) for 0. Because (a) and (b) together determine a joint distribution for X
and 0, a natural loss function is given by

L[(F, U), (y,S)] = E[yX+8-n{0)]2

-ti(e))2Fg(dx)U(d0)

= y2 v+(l -y)2w + [(\ -y)m-df

[

where

v = E[o2{0)], w = Var[M6>)], and m = E[fi(0)].

1 This work was partially supported by Office of Naval Research Contract N00014-83-K-0249.
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Since the loss function depends only upon v, w, and m (when considering linear
estimators), BUHLMANN takes nature's action space to be {(v,w,m); v e / , ,
we I2, me I3} where Ix, I2 and 73 are finite, closed intervals. BUHLMANN has
shown that under mild restrictions there exists a unique pure minimax strategy
for the actuary, and a mixed minimax strategy for nature. BUHLMANN also
identifies the form of the actuary's minimax estimator, and the value of the
minimax risk.

While elegantly presented and carefully done, there are some restrictions in
Professor BUHLMANN'S work which one would like to remove. In particular,
estimators are only considered in the class of linear estimators, and then only
on one observation. Conceivably, in the larger class of all estimators, the
minimax risk could be substantially reduced. Even if one were satisfied to only
consider linear estimators, BUHLMANN'S suggestion to base the estimator on X
(to reduce matters to one random variable), while reasonable, does not appear
to be necessarily optimal in any sense. Finally, one might wish to estimate
several means simultaneously if observing multivariate data.

In this paper, we show (in a necessarily slightly different setting) that when
i.i.d. multivariate observations Xx, ...,Xn are observed in a compact region ,¥ ,
a minimax estimator of fi (the vector of means) of the form yX+d exists in the
class of all measurable estimators for the family of all distributions over ,T
when using a squared error type loss function.

2. RESULTS

To set notation, we let X = {X(t, co); t e T} indicate a stochastic process
defined on the measurable space (Q, ,T) whose range is the set / , where T is
assumed to be a bounded Borel set in Rk. We assume that ||-|| is a norm defined
on a linear vector space containing J?', and that

r r
" Jr

x2(t) W{dt)

for all x e 3? where W is a finite measure over T. Our stochastic process X is
assumed to be measurable with respect to the cr-field generated by the open sets
of ||-||, and <$? and all singleton subsets of # are assumed to belong to this
cr-field. We let £? denote the set of all possible distributions of X, and also
assume that ,T is compact in the topology associated with ||-||. (Typically,

f° r positive
/ ^

Twill be the finite set {1 ,2 , . . . ,«} , so that ||JC|| = 2_, xi
\ i

weights ca = ((«!, . . . , con). This substitution can be made in the proofs to make

them more intuitive. However the additional generality is often useful, e.g., see
example 2).

We observe i.i.d. random vectors Xx, ...,Xn, and wish to estimate
ftp = EPX under the loss function

(2.1) L(ji,fi) = Wfi-fiW2,
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where fi is required to take values in the convex hull of J*"\ and be such that all
appropriate expectations exist.

The following lemma, while straightforward, is crucial.

Lemma 2.1. There exists Po^^ such that

EPJ\X-fiPo\\
2 = ŝup Ep\\X-fip\\2 = c0.

Proof. Since // is compact, ,if is tight and hence relatively compact (BIL-
LINGSLEY 1968, p. 37). Thus if {Pn} is a sequence of distributions such that
EPJ\X-fipJ\2 -> c0, there must exist a distribution Po and a subsequence «,-
such that Pn converges weakly to Po. However, since the integrands are
bounded, uniform integrability arguments (SERFLING (1980), p. 14) imply the
desired result. •

Moreover, c0 is an extreme value in the following sense:

Lemma 2.2. For all xe,:/ , \\x-/iPi)\\
2 < cQ.

Proof. Suppose there exists xe/S such that \\x — fiPo\\
2 = cx > c0. Let P be

the distribution degenerate at x, and let P* = aP0 + (l — a) A Then

= f

= f

\x-fiP,\\2dP*

•J
= a co + a(l — <x)cx

by expanding the integrand and using linearity properties of integrals. How-
ever, for 0 < a < 1,

c0 = a c0 + (1 — a)c0

if

Co

a > —,
Cl

which clearly is inconsistent with the definition of c0. •
The following lemma now follows easily from Lemma 2.1 and

Lemma 2.2.
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Lemma 2.3. It must be the the case that \\x-/iP(i\\ = c0 a.s. (P) if P -̂  Po.

A prior distribution which can be used to place probability over a large class of
distributions is the Dirichlet process prior discussed in FERGUSON (1973). In
particular, if a is a finite measure over Jf and <% (a) an associated Dirichlet
process prior, the posterior distribution given observations xx,..., xn will be

a+ 2_! dx,\ (where 3X indicates a degenerate distribution at x), from
i ' /

FERGUSON (1973). (A Dirichlet process is an extension of the Dirichlet distri-
bution to the continuous case. It has many attractive mathematical properties).

Since the loss function is of a squared error type, a Bayes rule for this prior
would be

a(JT) + «

where na(t) is the mean of X{t) with respect to the probability distribution
a/a(JT) (see FERGUSON, 1973).

Now the risk function of such an estimator can be written as

(Ma~ I
n a (J2?) + n

2 a2
P I a(,JT)

n \ a

1/2

(Ma~Mp)'

1/2

= Jn

\\[EP(X-^)

EP\\(X-fiM2

Now, if a is taken to be ^Jn Po, we have fia = fiPo, and the risk function must
n

be bounded above by c0 from Lemma 2.2.

However, this prior puts probability on distributions whose support is
contained in the support of Po with probability one, so that the Bayes risk of
the decision rule
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must be c0 (by Lemma 2.3). Since we have a Bayes rule whose risk
J2

function is bounded above by its Bayes risk, it must be minimax. This proves
the following theorem.

Theorem 2.1. For the loss function defined in (2.1), {n + yjn)~{ (nX+^Jn fiPo) is
a minimax estimator of /iP in the set of all measurable estimators for the class
of all distributions .'/.

3. EXAMPLES

(1) Suppose one observes X{,...,Xn which are i.i.d. multinomial
(1 ,P\ , . . . ,p k ) and we wish to estimatep = (p{,...,pk) under the loss function

k

L{p,p) =

Since Xu is binomial (I,pi), choosing p0 to solve sup E\\X—np\\
2 is equi-

p

valent to the problem
k

SUp 2 J Pi(l ~~Pi)wi •

p',>0 ' " '

It is straightforward to show that this is solved by

1
Pi , , , ,

2 2w,
if these values are nonnegative (if not, further adjustments are necessary). In
this case, our earlier work ensures that if

nXi + sfnpj .
P* = F — , i=l, ...,k,

then p* = (pf, ...,p*) is a minimax estimator of p.

(2) Suppose i.i.d. observations Xr,..., Xn are taken from a £-variate distribu-
tion. It is assumed that the support of the distribution is contained in the set
:?" = \ax, b{] x .. . x [ak, bk], and we wish to estimate the joint CDF under the
loss function
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L(F,F)= (F(t)-F(t))2W(dt)

where W is an arbitrary finite measure over ff'.
If we let

Y(t) = /(-co, I,]x...x(-ao,/t]W)

then E(Y(t)) = F{t), and the problem fits nicely into our earlier framework.
Clearly the solution to

sup Ep\\Y-ftP\\2

is given by the distribution that puts probability one-half on (ax,..., ak) and
{b\,..., bk). For this distribution, the mean of Y(t) is £, te,7 , t =£ b, and it
follows that

n + sjn
(with the obvious extensions elsewhere) is a minimax estimator of F where
Fn{t) is the standard empirical CDF. Note that a and b only enter into F* by
defining where certain jumps occur, and that the estimator is totally free of
W. PHADIA (1973) has obtained minimax results of this type, and HJORT (1976)
has taken a similar approach in his thesis.
(3) Suppose i.i.d. observations Xx,..., Xn are taken from a distribution with
support [a, b] x [a, b] x ... x [a, b]. It is desired to estimate /i under the restric-

tions fi{ < /u2 < • • • < Mk with loss function L(ju,/i)= 2_, (Mi~Mi)2wi- Clearly,
1=1

t h e d i s t r i b u t i o n w i t h p r o b a b i l i t y o n e - h a l f o n a = (a,..., a) a n d b = (b,... ,b)

solves sup E\\X—/iP\\2.

Then

is a minimax estimator (ignoring the order restrictions) and every other
estimator has a risk value at least as large as that of d for some distribution
which puts probability only on a = (a,..., a) and b = (b,... ,b) (and hence has
correctly ordered means). However, if fi* is the isotonic regression of X with
weights w and the linear increasing order (see ROBERTSON et al., Chap. 1), then
the isotonic regression of d{Xx,..., Xn) is

n + \/n
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and

EPL(jiP,d) > EPL(jiP,d*)

for all distributions P with correctly ordered means (ROBERTSON et al., 1988,
Section 1.6).

It follows that d* must be a minimax estimator of fi within the class of all
estimators for the set of all distributions with nondecreasing means and
support contained in [a, b] x ... x [a, b].

(4) In some situations, a Mahalanobis type loss function

i) = {fi-fi)' D(fi-fi)

(where D is a k x k symmetric, positive definite matrix) may be appropriate.
However, if D is written as O' AO where O is an orthogonal matrix of
eigenvectors and A is the diagonal matrix of eigenvalues, the loss function may
be expressed as

If one makes the change of variables Yt — OXt, then £(F,) = O/t, and Yt must
take values in the set Of = {Ox; x e tf }. Then if d{Y{,..., Yn) is a minimax
decision rule for the transformed problem, O'd(Y{,..., Yn) must be a minimax
decision rule for the original problem. Thus our results also apply to
Mahalanobis type loss functions as well as weighted squared error loss.
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