Canad. Math. Bull. Vol. 16 (4), 1973

ABSOLUTE CONTINUITY FOR GROUP-VALUED MEASURES

BY TIM TRAYNOR⁽¹⁾

In this note we generalize the following classical theorem:

If μ and ν are finite real-valued measures such that $\nu(A)=0$ implies $\mu(A)=0$, then for every $\varepsilon > 0$, there exists $\delta > 0$ such that $\mu(A) < \varepsilon$ whenever $\nu(A) < \delta$.

The corresponding result is known to hold when μ has values in a locally convex space and ν is real-valued (Rickart [1, Theorem 1.3]). We give an extension to the case of group-valued measures, valid whenever the dominating measure ν has metrizable range.

Notation. In the following, A is a σ -ring of sets, Y and Z are commutative Hausdorff topological groups (written additively), and μ and ν are σ -additive functions on A to Y and Z, respectively.

1. DEFINITIONS.

1. A is v-null iff $A \in \mathbf{A}$ and v(E)=0, whenever $A \supset E \in \mathbf{A}$.

2. μ is *v*-continuous ($\mu \ll \nu$) iff $\mu(A)=0$, whenever A is *v*-null.

3. μ is topologically *v*-continuous ($\mu \ll_t v$) iff for every neighborhood V of 0 in Y, there exists a neighborhood W of 0 in Z such that $\mu(A) \in V$, whenever $A \in \mathbf{A}$ and $v(E) \in W$, for every E in A contained in A.

(Thus, $\mu \ll_t v$ means that μ is a continuous function on A to Y when A is given the uniform topology induced by v (Cf. Sion [2]).

- 2. THEOREM.
- 1. If $\mu \ll_t v$, then $\mu \ll v$.
- 2. If $\mu \ll v$ and Z is metrizable, then $\mu \ll_t v$.

Proof. The first statement is an immediate consequence of the definitions. On the other hand, Z is metrizable iff there exists a countable base $\{W_n: n \text{ in } \mathbb{N}\}$ for the neighborhoods of 0 in Z, consisting of closed sets. (The symbol \mathbb{N} denotes the

Received by the editors February 2, 1972 and, in revised form, February 23, 1972.

⁽¹⁾ This work was supported by a National Research Council of Canada Postdoctoral Fellow-

[December

nonnegative integers.) By continuity of addition, we may assume that, for all n in \mathbb{N} , $W_{n+1} + W_{n+1} \subset W_n$, so that, by induction.

$$\sum_{i=n+1}^{m} W_i \subset W_n, \quad \text{for all } n < m \text{ in } \mathbb{N}.$$

Now, suppose $\mu \ll \nu$ but μ is not topologically ν -continuous. Then, for some neighborhood V of 0 in Y, there exists a sequence A in \mathbf{A} such that, for all n in \mathbb{N} ,

 $\nu(E \cap A_n) \in W_n$, for all E in \mathbf{A} , but $\mu(A_n) \notin V$.

For each *n*, put $B_n = \bigcup_{i \ge n} A_n$ and $B'_n = B_n \setminus B_{n+1}$. As in the standard real-valued proof, the set $\bigcap_n B_n$ is *v*-null. Indeed, if n < m and $E \in \mathbf{A}$, we have

$$\sum_{n=n+1}^m \nu(E \cap B'_i) \in \sum_{i=n+1}^m W_i \subset W_n,$$

and hence $\nu(E \cap B_{n+1}) = \sum_{i=n+1}^{\infty} \nu(E \cap B'_i) \in W_n$. Thus, $\nu(E \cap \bigcap_n B_n) = \lim_n \nu(E \cap B_n) = 0$, for all E in **A**, whence $\bigcap_n B_n$ is ν -null.

Now, since $\mu \ll \nu$, $\bigcap_n B_n$ is also μ -null. Therefore, for each E in A,

(*)
$$\lim_{n} \mu(E \cap B_n) = \mu(E \cap \bigcap_{n} B_n) = 0.$$

Let V' be a neighborhood of 0 in Y such that $V'+V' \subseteq V$. Put $n_0=0$ and use (*) to choose, by recursion, n_k in \mathbb{N} such that

$$n_{k+1} > n_k$$
 and $\mu(A_{n_k} \cap B_{n_{k+1}}) \in V'$, for all k in \mathbb{N} .

For each k in \bowtie , put $C_k = A_{n_k} \setminus B_{n_{k+1}}$. If $\mu(C_k)$ were in V', we would have $\mu(A_{n_k}) = \mu(A_{n_k} \cap B_{n_{k+1}}) + \mu(C_k) \in V' + V' \subset V$. Thus, $\mu(C_k)$ never belongs to V'. Yet, the C_k 's are disjoint, so $\mu(C_k)$ tends to 0 by σ -additivity. This contradiction completes the proof.

3. EXAMPLE. The condition that Z be metrizable cannot be eliminated.

Let A be the Lebesgue measurable sets of the unit interval *I*; let *Z* be the bounded real functions on *I* under pointwise convergence; and let v(A) be the characteristic function of *A*, for each *A* in **A**. Since \emptyset is the only *v*-null set, Lebesgue measure is *v*-continuous. On the other hand, basic neighborhoods in *Z* are of the form $W = \{f \in Z : |f(x)| \le \varepsilon$ for all $x \in T\}$, where *T* is a finite subset of *I*. For any such *W*, we have $v(E) \in W$, whenever $I \setminus T \supseteq E \in \mathbf{A}$, but $I \setminus T$ has Lebesgue measure 1. Thus, Lebesgue measure is not topologically *v*-continuous.

REMARK. The above definitions of absolute continuity make sense also for finitely additive functions. In this case they are not equivalent.

Lebesgue decompositions for these notions appear in (3).

REFERENCES

1. C. E. Rickart, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 52 (1942), 498-521.

2. M. Sion, Outer measures with values in a topological group, Proc. London Math. Soc. (3) 19 (1969), 89-106.

3. T. Traynor, Decomposition of group-valued additive set functions, Ann. Inst. Fourier, 22, 3 (1972), 131–140.

.

UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO