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Abstract

This paper describes some experiences of using fractal image compression as the subject of an
assignment for a functional programming course using Haskell. The students were fascinated by
the reproduction of images from their encodings and engaged well with the exercise which involved
only elementary functional programming techniques.

1 Introduction

Fractal image compression (Jacquin, 1989; Barnsley & Hurd, 1992) is a lossy technique
that compresses an image by finding a transformation which has a fixpoint closely approx-
imating the original image, then storing (encoding) the parameters of this transformation
in a file. The decoding process results in a reconstructed image that is a fractal, hence
the name of the technique. This paper, based on our earlier work (Curtis, 2005), describes
how a fractal image compression technique formed the basis of an undergraduate program-
ming assignment at Oxford Brookes University, using the Haskell language (Peyton Jones,
2003).

1.1 Context

Many introductory programming courses cover fundamental principles and techniques
by introducing basic language features and associated exercises that involve a certain
amount of mundane repetition. Although such tasks have a crucial educational role, they
can encourage students to look inwards and focus on computer science issues, rather
than outwards towards the range of applications that show the flexibility and strength
of programming as an activity (Rasala, 2000). One way that some educators have tried
to improve student motivation is to introduce computations that involve simple image
processing to practise essential techniques such as data abstraction and recursion, for
example see Olson (2006).
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Fractal images in particular have been used to inspire and motivate students at all levels
of education (Peitgen et al., 1991, 1992; Frame et al., 2002) ever since the first attempts
to visualise them were made (Mandelbrot, 1977). Their use in teaching remains strong
(Fractal Foundation, 2013) even though the concept is no longer novel, partly because
students with only very rudimentary skills in algebra and programming can grasp the
simplicity of the algorithm to generate fractals like the Mandelbrot set, and students can
therefore produce their own fractals and develop a visual understanding of the associated
mathematics.

The fractal image compression technique has been used before in education, for exam-
ple see the textbook by Welstead (1999), which is aimed at advanced undergraduate or
beginning postgraduate level. There are also some more theoretical books that describe the
underlying theory of the algorithm in depth (Fisher, 1995; Lu, 1997). Published implemen-
tations exist in a variety of languages, such as Java and C/C++ (Lu, 1997; Ullrich, 1999;
Welstead, 1999; Hafner, 2000; Kanakarakis et al., 2011) as well as functional languages
(Thalabard & Zahariade, 2005; Baelde et al., 2011).

This compression technique is seldom used in practice however, because the encoding
process is computationally intensive to a degree that renders it less practical for most
industrial applications than other lossy image compression standards like JPEG. It does
have some significant strengths, including the potential to achieve both a high compression
ratio and a high quality of the decoded image. In addition, the reconstructed image can be
produced at a magnification independent of the size of the original. There has been much
research on improving the efficiency of the encoding process, for example see Saupe (1994)
& Lui et al. (2007), but the enduring interest in the technique may remain theoretical.
There are some exceptions to this, including implementations like the digital encyclopedia
Microsoft Encarta (Microsoft, 2009), which used the process to allow fast access to high
quality images, and Iterated Systems’ software ClearVideo that was involved in a live
streaming broadcast of a jazz concert (Kaplan, 1997). More recently, the software Perfect
Resize (OnOne Software, 2013) has used a fractal compression algorithm to offer an
increase in image size without loss of sharpness or detail; fractal image compression has
also been applied to satellite imagery (Ghosh et al., 2004; Vaddella, 2010; Veenadevi,
2011).

One of the aims of this paper is to demonstrate that functional programming is well
suited to modelling fractal image compression. It is an inherently functional technique:
images and their transformations can be represented in a natural way by using functions
(Elliot, 2003), and the decoding process involves iterating a transformation to reach a
fixpoint image. In addition, both the compression and decompression processes involve
a simple transformation of an input image to produce an output, without need for side
effects or mutation.

Fractals have been used previously for educational purposes in functional programming,
for example see Hudak (2000) & Jones (2004). However, we are not aware of any other uses
of fractal image compression in the teaching of Haskell. We hope that this paper illustrates
how students can use functional programming to model a sophisticated image manipulation
technique as part of a student assignment that we hope might be considered as “nifty”
(Stanford, 2013). One of its pedagogical strengths is that there is a natural separation of
concerns between different parts of the algorithm which makes it easy to split it up into
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independent tasks that are achievable by most students, thus reinforcing the importance of
compositional program construction. In addition, many of the tasks involve higher order
functions such as map, which abstract over traversal to eliminate the need for recursion,
so this encourages students to develop a style of writing code that is concise and readable.
One possible drawback of this exercise is that it can be time-consuming for students to
develop, because the compression process is computationally intensive.

The paper is structured as follows: The basic fractal image compression concepts are
explained in Section 2, and then implemented in Section 3. Testing and debugging is
discussed in Section 4, followed by some suggestions for more challenging exercises
in Section 5, based upon variants of the basic compression scheme. Finally, Section 6
provides additional pedagogical discussion of the work.

2 Fractal image compression primer

Fractal image compression involves concepts that are potentially challenging to computer
science novices, many of whom have no mathematical training beyond a first year under-
graduate course in discrete mathematics. The delivery of this assignment therefore included
a primer to describe the basic algorithm, which incorporated plenty of visual examples to
build students’ intuition and ensure that the coursework was sufficiently accessible. We
reprise this material in the following section, for the reader’s benefit.

2.1 Fractals

Fractals occur throughout nature (Mandelbrot, 1983; Barnsley, 1988), for example, in
clouds and coastlines, in ferns and blood vessels, and also in biological spirals like those
found in ammonites and cacti. The fractal patterns of many repeated branching processes
can be modelled by L-systems, which are formal string rewriting systems introduced in
1968 by botanist Lindenmayer (1968) to model the growth of plants. These provide a link
to formal languages and grammars elsewhere in the computer science curriculum.

There are many resources to help students become more familiar with fractals. Online
resources include the educators pack from the Fractal Foundation (2013), which contains
numerous illustrations along with applications of fractals to medicine and engineering.
Barnsley’s (2011) website Superfractals has a gallery of recent fractals inspired by nature.
Activities to construct fractals include building a Menger sponge out of business cards
using Jeannine Mosley’s technique (Wertheim, 2006), and drawing a Koch snowflake or
Hilbert curve (Peitgen et al., 1992) before writing program code to generate them. Some
nice Haskell exercises for producing fractals include creating Mandelbrot sets (Jones,
2004), and snowflake fractals (Hudak, 2000).

2.2 Representing images

The ideas behind fractal image compression originated from Barnsley (1988) and were
further developed by Jacquin (1989). In this section, we give a brief overview of Barnsley’s
work on the Iterated Function System (IFS) to show how images can be represented by
using the fixpoint of an image transformation. The following section covers Jacquin’s work
which enables the compression of greyscale images in general.
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Fig. 1. The Sierpinski triangle.

Fig. 2. Iterations of the transformation.

Consider the well-known Sierpinski triangle fractal, illustrated in Figure 1. This image
is self-similar, because it consists of smaller copies of itself, positioned at top centre, lower
left and lower right.

Let t1 be the transformation that maps the whole image onto the shrunken copy of itself
centred at the top of the image, in the style of a photocopying machine loaded with plain
white paper, and set to × 1

2 magnification, with positioning set to top and centre. Similarly,
let t2 and t3 be the transformations that map the whole image onto the half-size copies at
lower left and lower right, respectively. Now define the image transformation t to be

t = t1 ∪ t2 ∪ t3,

where the ∪ operation has the effect of overlaying the results of the individual transforma-
tions onto one piece of paper. Then the Sierpinski triangle is a fixed point of t because the
effect of applying t leaves it unchanged. Furthermore, given any non-blank square image
x, the Sierpinski triangle is the limit of the following sequence of images:

x, tx, t2x, . . . ,

where ti denotes the composition of t with itself i times. Thus, the Sierpinski triangle can be
generated to any required level of detail by repeatedly applying t to any non-blank starting
image, as illustrated in Figure 2. In this way, the transformation t can be said to represent
the Sierpinski triangle. A Haskell implementation of this process can be found in Hudak
(2000).

The above illustrates the concept of an IFS, which consists of a collection of contractive
image transformations. A transformation is contractive if its application to any two points
brings them closer together (in this context, “closer” means with respect to Euclidean
distance). An IFS represents the image that is a fixpoint of the union of its transforms.
Thus, the above collection {t1, t2, t3} of transforms is an IFS representing the Sierpinski
triangle. Self-similar images can be described compactly by using an IFS. For further
technical details about contractive transforms and the existence of unique fixpoints, see
Section 2.5.
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Fig. 3. Self-similarity between large and small portions of an image (enlarged).

Fig. 4. Partitioning an image into range regions (left), and two possible domain regions (right).

2.3 Partitioned iterated function systems

Not many images are as conveniently self-similar as the Sierpinski triangle, so how can
more general images be represented? We now consider greyscale images, many of which
– especially photographs – do have areas that are almost self-similar, as illustrated in
Figure 3. This leads to the concept of a Partitioned Iterated Function System (PIFS), which,
like an IFS, consists of a collection of contractive transformations, representing the image
that is a fixpoint of the union of the transforms. However, unlike an IFS, the transforms
in a PIFS each operate on a separate part of the image, not the whole. This works by first
partitioning the image into small regions (known as ranges), then matching each as closely
as possible to one of several larger regions (domains), using a contractive transformation
that includes contrast and brightness adjustments. These transformations collectively form
the PIFS representing the image.

To illustrate, one way to partition an image for a PIFS is to divide it into a grid of
small squares to form the range regions, as illustrated on the left-hand side of Figure 4.
The domain regions are not as restricted: they can overlap, and need not cover the whole
image, although in practice spreading them evenly across the whole image may result in
a more varied selection for matching against range regions. However, the domain regions
should be larger than the range regions (this helps produce detail in the compressed image),
and shaped so that they map onto the same shape as the range regions under the chosen
transforms.

For example, if range regions are small squares, then possible domain regions could be
all the squares twice as wide, such as those on the right-hand side of Figure 4. To find the
transforms, each range region is compared with all domain regions to seek a best match (for
details, see Section 2.4). As well as shrinking the domain blocks, they are also considered in
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Fig. 5. Steps of the decoding process.

rotated and reflected orientations, and contrast and brightness can be adjusted. For example,
Figure 3 illustrates a square range region of size 8× 8 pixels in the lower centre of the
image, along with a larger 16×16-pixel domain region at upper left. This domain region,
unrotated and unreflected, is a reasonably good match for the range region, needing only a
modest contrast and brightness adjustment.

Labelling the range regions for the image as p1, p2, . . . pn, let wi be the transform for the
range region pi, acting on the domain region that it best matches. The resulting PIFS then
consists of the collection {w1,w2, . . .wn}, and the original image is then represented by the
fixed point of the transformation

w = w1 ∪w2 ∪ . . .∪wn.

The encoding (and thus the compressed form) of the image consists of the details of the
chosen transforms of the PIFS, including their domains and ranges. The search for the best
matching transforms is the most time-consuming stage in the fractal image compression
process, and the time taken is strongly dependent on how many domain regions there are to
compare against range regions. However, for compression techniques in general, spending
some time achieving an accurate highly compressed image is a reasonable trade-off for
many purposes. For example, the speed of viewing images on a web page depends on the
size of the image file and the speed of the image decoding process, but not on the time that
the website author spent encoding the image file in the first place.

It takes a relatively short time to decode the compressed image, and this process is
illustrated in Figure 5, using an encoding of the image from Figure 3, with range and
domain regions as illustrated in Figure 4. Starting with an arbitrary image of the same size
as the original, the decoding process repeatedly applies the transform w, until the sequence
converges. The resulting image approximates the original, but note that for this example,
the quality of the fractal image compression is poor because the original image is only
96×96 pixels, and for small images there are fewer domain regions to choose from, leading
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to poorer picture quality. For larger images the quality of the compression is much better,
particularly when more sophisticated variants of the fractal image compression technique
are used, rather than the basic scheme outlined in this paper.

2.4 Region comparison

This section gives details of how to compare range and domain regions in order to find
the best match, by using a “distance” metric to measure how closely two image regions
match. There are many different metrics available for comparing images (Fisher, 1995),
and we used a standard method, the root mean square (rms) metric: If [r1,r2, . . .rn] and
[s1,s2, . . .sn] are the numerical greyscale values corresponding to the pixels of two image
regions, then the rms distance between them is

√
∑n

i=1(si − ri)2/n.
When this metric is used to compare a range region with a domain region, contrast

and brightness adjustments for the domain region pixels need to be considered, along
with possible transforms to map the domain region onto the smaller range region. For
example, if the regions are square blocks, then there are eight different rotation/reflection
combinations that can be used to transform each domain region (illustrated in Figure 8,
Section 3.3).

All the different possible transforms are considered during the encoding process, and
the best are chosen. Each transform is applied to the domain region under consideration to
yield pixels [d1,d2, . . .dn] corresponding to the pixels [r1,r2, . . .rn] of the range region. Ap-
plying a contrast c and brightness b adjustment to each pixel di then results in a transformed
pixel cdi +b. The rms calculation above now gives us a distance of

√
∑n

i=1(cdi +b− ri)2/n
between the range region and the transformed domain region. The values of c and b that
minimise this value will provide the best match. This minimum occurs when the partial
derivatives with respect to c and b are zero, which is when

c =
n∑diri −∑di ∑ri

n∑d2
i − (∑di)2

b =
1
n
(∑ri − c∑di)

unless the denominator of c is zero, in which case c = 0 too.
An example of a range block and its best matching domain block are shown in Figure 6,

which uses an image with greyscale values from 0 (black) to 255 (white). The range block
is 8×8 pixels in size, and the possible domain blocks were 16×16 pixels, spaced 4 pixels
apart across the image. The winning domain block has the best match with this range
block by a reflection about its diagonal axis, along with a contrast scaling of −0.89 and a
brightness offset of 204.4.

2.5 Contractive transforms

Although we do not discuss the following issue with the students, the alert reader may well
be wondering whether the fixpoint of the transformation function for the encoded image is
unique or not. After all, if the fixpoint is not unique, then a student decoding an encoded
image might end up with an image that looks nothing like the original, which would not
contribute to the credibility of the assignment!
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Fig. 6. A range block (lower centre) and its best matching domain block (lower right).

The following discussion summarises the results from Fisher (1995) that provide reas-
surance; these are based on a standard theorem from topology, namely the Contractive
Mapping Fixed-Point Theorem. This states that a mapping in a metric space has a unique
fixpoint, provided that it is contractive with respect to that metric.

Black and white images, such as the Sierpinski triangle, may be represented as a non-
empty set of points in a bounded area of the real plane (analogous to the toner dots pro-
duced by a photocopying machine on a piece of paper), with distance between sets/images
being measured by the well-known Hausdorff metric. This image model can be used to
show the uniqueness of IFS fixpoint images: If the transformations comprising an IFS
are all based on mappings of image points that are contractive with respect to Euclidean
distance, then the Collage Theorem ensures that the union of those transformations is
contractive with respect to the Hausdorff metric, and therefore the Contractive Mapping
Fixed-Point Theorem applies. Thus, the Sierpinski triangle has a unique fixpoint in this
space of images, as its transform t comprises three individual transforms, all of which use
mappings that halve the distance between image points.

Greyscale images need a more versatile representation, and a common model for pixel-
lated images of width l and height h is an l ×h matrix containing pixel values drawn from
the interval [0,1], representing a scale of greys from black to white. The choice of metric,
however, is not without problems. It is simpler in the theory to guarantee contractivity for a
PIFS transform w with respect to the supremum metric, which defines the distance between
two images as the largest difference between the greyscale values of corresponding pixels.
A well-formed PIFS transform w is contractive with respect to this metric if each of the
individual transforms {w1,w2, . . .wn} comprising w have their contrast scaling factors ci
all satisfy ci < 1. Note that contractivity with respect to Euclidean distance in the (x,y)
direction of the image, achievable by having range regions smaller than domain regions, is
not required to ensure a unique fixpoint image, but such contractivity is still desirable as
this is how detail is created during the decoding process.

However, it is much more convenient to use the rms metric to find the PIFS transforms
for an image: not only is it straightforward to find the contrast and brightness adjustments
that produce the closest match (see Section 2.4), but an rms comparison corresponds
reasonably well with human visual perception of the similarity between two images. Once
a PIFS has been found with contrast scaling factors all satisfying ci < 1, the existence of
a unique fixpoint image is guaranteed by its contractivity with respect to the supremum
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metric. Furthermore, empirical observation shows that values ci < 1.2 are usually safe and
can provide slightly better image quality.

An aside: The Sierpinski triangle transformation t does not have a unique fixpoint in the
space of greyscale images, as a blank white image is also a fixpoint: imagine the results
of feeding a blank piece of paper into the photocopier. As the machine preserves the full
range of contrast between black and white, some of its contrast scaling factors do not
satisfy ci < 1, thereby illustrating the potential dangers of a non-contractive transform.

3 Implementation

The assignment consists of a series of tasks culminating in students’ implementation of
a basic fractal image compression scheme for greyscale images. Students supply defi-
nitions for all the functions described in this section, except those where we explicitly
state otherwise. A sample completion of the fractal image compression code in Haskell,
including the code supplied to students, can be found as supplementary material online at
http://dx.doi.org/10.1017/S095679681300021X.

The assignment is split into two parts, to allow students to get feedback and sample
answers on the initial tasks, before attempting the more difficult ones. The first part covers
simple image manipulations, extraction of blocks from images and transformations on
images and blocks (see Sections 3.1 to 3.3); the second part covers the encoding (com-
pression) and decoding of images (see Sections 3.4 to 3.7).

3.1 Images

The assignment starts with some simple functions to create and manipulate images, and
to access pixel data. Some simple types are provided for students to use, including one
to represent greyscale images as arrays associating points – x,y coordinates – with pixel
values:

type Image = Array Point Pixel
type Point = (Int, Int)
type Pixel = Int

Here, pixels are denoted by greyscale values within the range 0 (black) to 255 (white). The
following function creates an image of given dimensions that is a uniform shade of grey:

type Dims = (Int, Int)
blankImage :: Dims → Int → Image
blankImage (w, h) g

= array ((0,0), (w−1,h−1)) [((x, y), g)|x ← [0..w−1], y ← [0..h−1]]

This function can be used later on to produce an arbitrary starting image for the decoding
process (see Section 3.7).

Images can be saved using the Portable GreyMap (PGM) image format, which stores an
image in plain ASCII text, making it easy for students to inspect the pixel data. An example
PGM image is shown in Figure 7, where the P2 on the first line of the file indicates that
this is a greyscale image in the PGM format, the # indicates a comment line, the following
line gives the size of the image, the line with 255 indicates that the pixels are in the range 0
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P2

# arrow picture

5 5

255

255 255 0 255 255

195 255 0 255 195

0 195 0 195 0

255 0 0 0 255

255 255 0 255 255

Fig. 7. An example PGM image file (left), together with the image it represents.

(black) to 255 (white), and the following numbers are the pixel data from left-to-right and
top-to-bottom.

Students are provided with input/output wrapper functions for reading and writing im-
ages to and from PGM files during the assignment along with some sample images. They
can also convert files from more common formats like JPEG and PNG to PGM using free
tools such as Gimp (GIMP, 2012) and IrfanView (Skiljan, 2012) as well as the Linux util-
ities jpegtopnm and convert, the latter being a part of the cross-platform ImageMagick
suite (Still, 2005).

3.2 Extracting blocks

For simplicity, this fractal image compression scheme uses square blocks for the domain
and range regions. A block is represented by the position of its top left-hand corner together
with a listing of its pixels,

type Pixels = [Pixel]
type Block = (Point, Pixels)

and the following function

getBlock :: Image → Dims → Point → Block

extracts a block of a given size and position from an image. The pixel values in a block
are listed from left-to-right and top-to-bottom to match the way that they are listed in the
PGM image format. The rationale for this choice of block representation is discussed in
Section 6.

The range blocks are specified to be 8×8-pixel squares, partitioning the input image in
a grid fashion, as illustrated in Figure 4. The domain blocks are also square, twice as wide
as the range blocks, but spaced half as far apart.

rangeBlockSize = 8
domainScalingFactor = 2
domainBlockSpacing = rangeBlockSize ‘div′ 2

These block sizes achieve a reasonable compromise between speed and compression qual-
ity: the smaller the range blocks and more numerous the domain blocks, the more faithful
the encoded image, but encoding takes longer. Students are directed to use input images
with dimensions that are multiples of the range block width, cropping where necessary, to
avoid having to cope with awkward image sizes.
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id cw90

rot180 acw90

f lipV f lipU

f lipH f lipD

Fig. 8. The eight possible rotation/reflection combinations for square blocks.

The following function uses the above getBlock function to extract all blocks of a given
size from an image at the given regular spacing:

getBlocks :: Image → Dims → Dims → [Block]

Then it is easy to extract all the range blocks from a given image:

rangeBlocks :: Image → [Block]
rangeBlocks im = getBlocks im (r, r) (r, r)

where r = rangeBlockSize

However, it is inefficient to extract domain blocks from an image in the same way as range
blocks, as discussed in the following section.

3.3 Image and block transformations

Since the algorithm must shrink the domain blocks down to the size of range blocks (as
well as possibly rotating or reflecting them) before making any comparisons, it is more
efficient to scale the input image first before extracting the domain blocks. The following
function shrinks an image by a given scaling factor by averaging the pixel values:

shrink :: Int → Image → Image

The domainBlocks function for extracting all the shrunken domain blocks of an image uses
both shrink and the getBlocks function:

domainBlocks :: Image → [Block]
domainBlocks im = map (scalePos d) (getBlocks (shrink d im) (r, r) (s, s))

where r = rangeBlockSize
d = domainScalingFactor
s = domainBlockSpacing ‘div‘ d

where scalePos :: Int → Block → Block relabels an individual block so that its position
refers to the original image, not the shrunken one. Note that this efficiency improvement
relies on the spacing of the domain blocks being a multiple of the scaling factor.

Besides scaling, the other transformations required are all the possible rotations and
reflections on square blocks, as illustrated in Figure 8. The transformation rot180 is simply
the reverse function, but the other rotations and reflections provide an opportunity to use
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common higher order list operators, for example:

f lipD :: Pixels → Pixels
f lipD = concat · transpose · toRows

toRows :: [a] → [[a]]
toRows [] = []
toRows xs = take r xs : toRows (drop r xs)

where r = rangeBlockSize

transpose = f oldr (zipWith (:)) (repeat[ ])

For the encoding part of the assignment, students are supplied with the following list of
the above eight transforms:

transforms :: [Pixels → Pixels]
transforms = [id, cw90, rot180, acw90, f lipV, f lipU, f lipH, f lipD]

This is because the indices of the transforms in the above list are used later to record
which transforms produce the best block matches, and having all students using the same
standardised list helps to avoid problems.

3.4 Block comparisons

The rms metric described in Section 2.4 is used to compare how close the matches are
between the range blocks and the transformed domain blocks. For efficiency, the sums of
the pixel values and their squares are obtained in advance for all the domain and range
blocks extracted from the image, since they appear multiple times in the expression to be
calculated. Students are given the following datatype for this purpose,

type BlockSums = (Block, Int, Int)

The following function sums the pixel values and their squares for a block:

sumBlock :: Block → BlockSums
sumBlock (d, p) = ((d, p), sum p, sum (map (ˆ2) p))

Recall from Section 2.4 that the rms calculation comparing the pixels [d1,d2, . . .dn] of the
transformed domain block with the range block pixels [r1,r2, . . .rn] results in three values,
specifically:

• the rms distance
√

∑n
i=1(cdi +b− ri)2/n,

• the corresponding brightness adjustment b for the domain block, and
• the corresponding contrast adjustment c.

However, it is not necessary to calculate square roots: the value ∑n
i=1(cdi +b−ri)

2 suffices
to compare blocks, as the

√
function is monotonic, and so too is division by n, as the

range block sizes are all the same. Thus, the following function produces only the value
(∑n

i=1(cdi +b− ri)
2,b,c) for the rms calculation :

match :: BlockSums → BlockSums → (Float, Float, Float)
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Here the calculation of the brightness and contrast values is a direct implementation of the
formulae given in Section 2.4, and the value of the rms distance comes from a straight-
forward rearrangement of the expression ∑n

i=1(cdi +b− ri)
2 to make use of the previously

calculated sums of pixel values and their squares. We supply the definition of the match
function to students to save the time involved with its tedious conversion of integral pixel
values to floating point numbers; however, this can be easily set as an exercise for students
with more time available.

3.5 Representing transforms

At this point, almost all of the ingredients required to implement the encoding are in place,
but it remains to supply a means of representing the transforms recording the relationships
between the range blocks and the matching domain blocks. The following type is used to
hold this information:

type Trans = (Point, Point, Int, Float, Float, Float)

Here the tuple values are the position of a range block, the position of the matching domain
block, the index of the transform used, the brightness and contrast adjustments, and the
rms value from the calculation above, respectively. For example, Figure 6 illustrates a
range block at position (48,80) along with a matched domain block at (64,60), using the
reflection f lipD, and the tuple ((48,80),(64,60),7,204.4,−0.89,10240) of type Trans
corresponds to this transform.

The function storePifs takes a list of transforms and produces a string suitable for saving
in a file:

storePifs :: [Trans] → String

This definition is supplied to students so that the results of the compression algorithm can
be saved easily in a standardised format. The output of the compression algorithm is a
list of transforms corresponding to the best matches between range and domain blocks,
comprising the PIFS that collectively represents the original image. An example string
produced by storePifs is illustrated in Figure 9.

Although the general aim of fractal image compression is to store images using as few
bytes as possible, we use a somewhat wasteful plain text format for the saved compressed
image, including a header string to provide a reminder about which number is in each
column. This is because the assignment is designed for education rather than code per-
formance, and the readable format for the compressed image helps with debugging (see
Section 4) and understanding how the algorithm works.

Indeed, if maximum compression is the goal, then there is no need to save the rms
distance information, as this is only used for comparing blocks, and not for decoding.
Also, with a fixed-grid partitioning scheme for range regions, there is no need to store the
range block positions, as they can be inferred from the dimensions of the image and the
position of the transform details in the saved file. Further suggestions for efficient storage
are given in Fisher (1995); for example, just three bits can be used to store the index of the
transform.
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3.6 Encoding

Students are supplied with a summarized description of the compression algorithm to
illustrate how the various pieces of code fit together: .6

1) Generate all of the domain blocks in the shrunken image.

2) For each domain block:

Generate all eight of its transformations (i.e. rotations/

reflections).

3) Generate all of the range blocks in the image.

4) For each range block:

Calculate the rms distance to each transformed domain block,

using optimal contrast and brightness.

Select the best matching domain block and store the resulting

transform.

Here is the encode function itself:

encode :: Image → [Trans]
encode im = map (bestMatch tdoms) rans

where doms = map sumBlock (domainBlocks im)
tdoms = concatMap applyTransforms doms

rans = map sumBlock (rangeBlocks im)

The definition of encode can be supplied to students to help them keep to an efficient
algorithmic structure as well as applying the (map sumBlock) function to the range blocks
and shrunk domain blocks, the domain blocks need to have each of their eight rotation/
reflection transforms pre-applied, to prevent their application being repeated unnecessarily
during the encoding. The function applyTransforms produces these transformed domain
blocks, labelling them with the index number of the rotation/reflection used from the
transforms list.

applyTransforms :: BlockSums → [(BlockSums, Int)]

The bestMatch function, given a list of transformed domain blocks, finds the best match
for a given range block. This can be implemented with a simple map/fold combination, for
example:

bestMatch :: [(BlockSums, Int)] → BlockSums → Trans
bestMatch ts r = f oldr1 goCompare (map (getTrans r) ts)

where getTrans returns the transformation corresponding to a given range and domain
block, using the function match from Section 3.4, and goCompare compares two trans-
forms and returns the better match

getTrans :: BlockSums → (BlockSums, Int) → Trans
goCompare :: Trans → Trans → Trans

The method used by goCompare to decide the better match of two transforms is not entirely
trivial. Choosing the transform with a smaller rms distance results in better quality of the
compressed image, but for greater safety in ensuring that the resulting PIFS has a unique

https://doi.org/10.1017/S095679681300021X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681300021X


Educational pearl 643

# Fractal Image Compression: encoded file

# (rx,ry) (dx,dy) rotation/reflection b c dist

(0,0) (8,44) 7 219.9214 -0.824604 79766.63

(8,0) (20,40) 7 196.3339 0.05106767 945.0

(16,0) (76,52) 0 26.58998 0.7820941 111708.1

(24,0) (64,60) 6 257.8436 -0.8981662 45239.63

(32,0) (76,64) 0 60.32285 0.7230868 166260.5

...

Fig. 9. An example 96×96-pixel image, together with the first few lines of the encoded file
produced.

fixpoint (see the discussion in Section 2.5), transforms with contrast multipliers less than
a suitable contrastBound can be preferred, but otherwise the choice is based on the rms
distance.

contrastBound :: Float
contrastBound = 1.2

This completes the code for the encoding; we also provide students with an I/O wrapper
for the encode function to assist them with loading images from PGM files and saving the
results of the compression. Figure 9 illustrates an example result of an image encoding.

The performance of the encoding algorithm is discussed in Section 3.8. In practice, if
students are being slowed down by waiting for results, there are several possible ways to
speed up the computation. One way is to use smaller images: even 96× 96-pixel images
can give a reasonable image quality.

Another alternative is to use an error tolerance: instead of searching through all of the
domain blocks to find the best match, the bestMatch function can be replaced with an
alternative function that stops when it finds an acceptable match (with suitably low contrast
and rms distance), and if none is found, then the best match available is selected, as before.

3.7 Decoding

The decoding process takes as input an arbitrary starting image, along with the list of
transforms (PIFS) produced by the encode function, and then repeatedly carries out the
whole-image transformation that the individual transforms collectively represent, as illus-
trated in Figure 5. The decode function, supplied to students, is structured to take a fixed
quantity of steps, rather than iterating the image transformation until a fixpoint image is
reached, with the resulting burden of detecting termination:

decode :: Int → Image → [Trans] → Image
decode i im ts = (iterate (decodeStep ts) im) !! i

Note that this definition provides an opportunity to illustrate to students the effects of
Haskell’s lazy evaluation: the first few reduction steps of (iterate (decodeStep ts) im) !! n
lead to a simple repeated application of decodeStep, which is more memory-efficient than
the use of the !! indexing operation might suggest.

While in theory, the decoding can be carried out at whatever level of magnification is
desired, it is simpler to use a starting image of the same dimensions as the original for this
programming assignment. Then the domain and range blocks are of the same size as in the

https://doi.org/10.1017/S095679681300021X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681300021X


644 C. E. Martin and S. A. Curtis

Fig. 10. The effects of the transform ((56,48),(16,72),4,356.0677,−0.8026732, ): the shrunk
domain block with original position (16,72), on the left, is reflected about the | axis (the transform
with index 4), and then a contrast scaling factor of −0.8026732 is applied to the pixel values,
followed by a brightness adjustment of 356 to produce the range block at position (56,48). Note
the − sign on the contrast multipler, which inverts the pixel shades.

encoding, and the output of the decoding can be easily compared with the original image
to examine the quality of the compression. For a starting image, students can either use the
image produced by the blankImage function in Section 3.1, or a suitably sized image from
a file, such as the “smiley faces” image used as a starting point in Figure 5. For ease of
input, there is an I/O wrapper for the decode function that also reads the encoded file and
the starting image.

A single step of the decoding can be implemented as follows:

decodeStep :: [Trans] → Image → Image
decodeStep ts im = glue im (map (makeRangeBlock im′) ts)

where im′ = shrink domainScalingFactor im

Here the function decodeStep applies one PIFS transformation, preshrinking the input
image by the domain/range block scaling factor for efficiency purposes.

The function makeRangeBlock returns a range block produced by the effect of a single
domain block transform, and a function glue assembles all the resulting range blocks
together into an array of coordinate/pixel associations to form an image of the same size as
before. Assistance is given to students when defining glue by providing a suggested type
of a subsidiary function that they could use

makeRangeBlock :: Image → Trans → Block
glue :: Image → [Block] → Image

Figure 10 illustrates the effect of the makeRangeBlock function. In its implementation, care
needs to be taken to ensure that the domain block positions refer to the correct place in the
preshrunken image. Also, when applying the contrast and brightness transformation to the
rotated/reflected pixels of the domain block,

adjustCB :: Float → Float → Pixel → Pixel
adjustCB c b p = greyscale (c ∗ fromIntegral p + b)
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(i) →

(ii)
→

(iii) →

Fig. 11. Sample results of image compression. (i) A 144×144-pixel photograph of a table tennis net.
(ii) A 232× 96-pixel photograph of some houses. (iii) An xkcd cartoon (Munroe, 2006) at 104×
128-pixel size.

the pixel values are kept within the 0–255 range by using the following function:

greyscale :: Float → Pixel
greyscale p

| p < 0 = 0
| p > 255 = 255
| otherwise = truncate p

After completing the code for the decoding, students can then explore the results. It
is interesting and instructive to look individually at the first few decoding steps using
decode 1, decode 2, etc., and also decoding several times using different starting images,
as it illustrates how the iteration converges on the same fixpoint image.

Figure 11 illustrates some sample results of decoding some small images encoded with
fractal image compression.

3.8 Performance

This section analyses the performance of the encoding and decoding functions in three
ways: image quality, running time, and compression ratio.
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Image # of pixels t

1,024 0.04
4,096 0.58

Fig. 9 9,216 2.1
Fig. 11(iii) 13,312 4.6

16,384 7.1
Fig. 11(i) 20,736 11.5
Fig. 11(ii) 22,272 13.1

29,440 23.8
65,536 125.6
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Fig. 12. Left: Encoding times for 10 images of varied sizes, where t is the time taken in seconds.
Right: A plot of

√
t, compared with image sizes (all but the largest image shown).

Image quality
From empirical observation, we find that photographs tend to result in decoded images
that are suitably faithful to the originals even if they do not possess obvious self-similarity
at different scales, for example, image (i) from Figure 11. However, fine detail in images
does not encode well in this basic compression scheme, especially for small images with
their smaller selection of domain blocks to choose from. This is illustrated in the poor
reproduction of the house windows in Figure 11(ii), and the blurring of the line drawing
in Figure 11(iii). Nevertheless, the quality of the decompressed images was still enough to
impress students.

Running time analysis
If we consider the block sizes, spacing and domain block scaling factors as constants, then
the encoding algorithm takes time quadratic in the size of the image (denoted by n, the
number of pixels, in the explanation that follows.)

Retrieving the input image from a file takes linear time since array construction in
Haskell is linear. Then building the lists of domain and range blocks and annotating with
sums and sums of squares of pixel values also take linear time, since there are O(n) blocks,
and each block is retrieved using constant time array access. Similarly, applying the affine
transforms to the domain blocks takes O(n). It is the matching of each of the n/64 range
blocks to a best-suited domain block that takes the time, and as the number of domain
blocks is linear in the size of the image, overall the matching takes O(n2) time,

encode im = map (bestMatch tdoms) rans O(n2)
where doms = map sumBlock (domainBlocks im) O(n)

tdoms = concatMap applyTransforms doms O(n)
rans = map sumBlock (rangeBlocks im) O(n)

Empirically, we tested the performance by running the encoding on assorted images (in-
cluding those shown in this paper, and in its supplementary materials) varying in size from
32×32 to 512×512 pixels, the results of which are shown in Figure 12. All test runs were
executed on a machine running Windows XP Professional version 2002 with Service Pack
3 on an Intel Core 2 Duo 2.40 Ghz with 2-GB RAM. The programs were compiled with
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the Glasgow Haskell Compiler (GHC), version 6.10.1, and execution times (in seconds)
were read from the profiling information generated using the −pro f compiler flag.

In contrast, the decoding is much quicker, with each step of the decode taking O(n). This
is because the shrinking of the input image is linear in the image size, the construction of
the new range blocks is linear because array accesses take constant time, and constructing
the new image is also linear. The number of decoding steps can vary from one image to the
next, depending on how fast the shrunken domain blocks can transfer detail to individual
pixels, but the vast majority of images we tried reached a stable state after just seven
iterations. For i decoding steps, the time taken is O(ni), and in practice, the decoding takes
a very short time, with even the 512×512-pixel image taking only 3.7 seconds to decode
over 10 iterations.

One possible exercise is to set students the task of doing some timing experiments to see
if their implementations are also quadratic in the size of the images.

Compression ratio
Students may like to consider the compression rate achieved with their encodings. This is
not directly obvious from a simple comparison of file sizes, as the encodings are human-
readable and stored in plain text files, not optimized for efficient storage.

However, it makes a good exercise to calculate the compression ratio, making reasonable
assumptions on the number of bytes used for storage. For example, the image in Figure 9
takes approximately 9.2 Kb to store uncompressed, as can be seen directly if the PGM
image is stored in “raw” format rather than ASCII. For this image, if the encoded range
block transformations were stored using raw bytes without extraneous information, then
the encoded file would occupy just over 1.4 Kb, giving a compression ratio of approx-
imately 6:1. Alternatively, students can zip their .fic files to get a sense of how much
compression their encodings achieve.

In general, compression ratios produced by this basic fractal image compression scheme
are no better than those achieved for the JPEG compression standard for similar image
quality. However, more sophisticated versions of the technique (e.g. see Section 5.3) can
outperform JPEG, and produce results of comparable quality to widely used wavelet-based
compression schemes (Fisher, 1995).

4 Testing and debugging

This assignment can seem daunting to students, as there are many component functions
that are assembled into the substantial compression and decompression algorithms. It is
important to test all the functions carefully, step-by-step, before attempting the encoding
and decoding, so the instructions and code given to students come with plentiful support
for testing and debugging. Note that functions providing support for testing are included
with the supplementary code provided with this paper.

4.1 Component functions

The assignment instructions include sample test cases to help students validate all of the
component functions. Some of these tests use small hard-coded blocks or images and state
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explicitly what happens to the pixel values, and others display observable changes to larger
images. For example, we supply tiny images like the arrow picture in Figure 7, hard-coded
as a value of type Image, as well as similar examples of type Block. These allow pixel
values to be inspected in detail for a manageable size of input, when examining the output
of functions producing block positions, blocks, and blocks annotated with sums and sums
of squares of pixel values. The tests for the transform and block extraction functions are
more visual, and use supplied I/O wrapper functions that facilitate the use of PGM images
for testing so that both input and output can be viewed as an image.

4.2 Encoding & decoding

Clearly, the ultimate test is to see whether encoding an image and then decoding it returns
an approximation of the original, but such tests cannot be carried out until the code for
both encoding and decoding is complete. This is unsatisfactory for testing purposes, as if
such a test fails, it is not then clear whether the fault lies in the encoding, or decoding, or
both. Each part needs to be tested separately.

Encoding
One way to help students debug their encoding functions is to supply sample encodings of
given images so that they can compare their output numbers with encodings known to be
good. Note that students may not necessarily get exactly the same encoding as the supplied
example however, because they may have chosen a different way of breaking ties when
choosing a minimum transform using the goCompare function. However, almost all of the
numbers should be the same so that a student’s correct results should closely match the
sample encoding.

If a student’s compression of a sample image looks nothing like the known encoding,
then the text file containing the results needs to be examined in detail. We find that student
errors tend to be either in mislabelling, or in selecting the wrong transform, and here are
some pertinent questions to assist in debugging:

• Is there precisely one entry for every range block?
• Could the (x,y) coordinates of the domain or range blocks have been switched around

accidentally? For example, try using a short but wide image, like the 232×96-pixel
image of Figure 11(ii); domain blocks are expected in the encoding at positions like
(108,72), but not (72,108).

• Inspect the original image, and choose a specific range block that looks distinctive
visually (pixel coordinate information available in typical image editing software
should make it easier to identify individual blocks). Look at the encoding to see
which domain block has been selected as the closest match for that range block,
with what rotation/reflection, and what contrast and brightness values? Does that
seem to match visually in the image (remember that a negative contrast value will
invert the colours)? For example, see Figure 13, where the darker shape within the
matching domain block and a contrast multiplier of 0.317 corresponds to a fainter
similar shape in the range block.

It can also help to test the encode function using an alternative I/O wrapper that writes
results to the screen, instead of saving them in a file. Laziness will ensure that matches
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Fig. 13. On the left: The range block from the top left of the image in Figure 11(ii). Its closest match
is the domain block at position (132,28), with reflection 5 (flipU), and adjustments for brightness
98.5 and contrast 0.317. On the right: The domain block reflected for comparison without any
contrast/brightness adjustment.

for range blocks get displayed as the code finds them. This means that instead of having
to wait for an encoding to finish, students can start examining whether the results seem
reasonable as soon as the first range block has been produced. One way to exploit this is to
choose an image with a distinctive range block at the top-left, such as in Figure 13.

Decoding
There is a case for designing the assignment so that students implement the decoding before
the encoding: the decoding is more straightforward, and gives an understanding of what is
required for the encoding before it is attempted. In any case, students can test their decoding
independently of the encoding by using known encoded images supplied by the instructor.
The following suggestions may help to debug the decoding function if the results seem
visually strange:

• Try using a uniformly grey image as input, for just one iteration. The range blocks
should be clearly visible in the decoded image as a neat grid of squares in assorted
shades of grey: if not, either the glue function is not assembling the blocks correctly,
or the makeRangeBlock function is producing blocks with strange positions or sizes.
Also, each range block should be a uniform colour, with no surprising colours (e.g., a
dark block in an area where the original image is very light). Any surprising colours
suggest errors in the contrast/brightness calculation.

• Try using an input image made up of repeating distinctive range blocks with a black
and white asymmetrical pattern, such as the smiley faces image in Figure 5, and do
just one iteration. From a visual inspection, it should be possible to see whether the
domain blocks are being shrunk properly, whether they are being rotated/reflected
correctly, and whether the contrast and brightness adjustment seems to be consistent
with the values given in the encoding.

5 Further exercises

This section contains suggestions for further programming exercises based on fractal image
compression; they are not student-tested due to teaching time constraints. The tasks are
suitable for more advanced students with time available, and perhaps may suggest avenues
for student projects.

In addition, the techniques outlined in Section 5.3 provide the opportunity for students
to use different functional programming techniques: compared to the list comprehensions
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and map operators used in Section 3, the flexible partitioning schemes described below
make use of recursion and tree structures.

5.1 Colour images

Students can also use the above techniques to compress colour images. The method is sim-
ilar to that used for greyscale images: the pixel data is split into different colour channels,
and then each channel is encoded separately. However, the standard RGB colour model
does not give good results: as human perception is more sensitive to brightness than colour,
a model based on brightness (or luminance), hue, and saturation works better. Then the
channels encoding hue and saturation can be compressed more than the brightness channel,
typically at half-resolution. Results vary depending on which HSV model is used; chapter
2 of Fisher (1995) recommends the YIQ model, which is used in the NTSC television
broadcasting standard:

⎛
⎝

Y
I
Q

⎞
⎠ =

⎛
⎝

0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

⎞
⎠

⎛
⎝

R
G
B

⎞
⎠ .

Here Y is the luminance, I is the hue, and Q is the saturation. The reverse conversion is as
follows:

⎛
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⎞
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1.000 −0.273 −0.647
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Colour images can be stored in human-readable form using the Portable PixMap (PPM)
image format that is similar to the PGM format used for greyscale images. Tools for
converting images to and from Portable PixMap formats are listed at the end of Section 3.1.

5.2 Zoomable images

One of the advantages of the fractal image compression method is that the decoding is
resolution-independent: for example, the resulting image can be produced at half or twice
the resolution of the original. Note that this magnification does not mean that additional
detail can be seen: magnifying an image of a snowman will not show the individual
snowflakes. The additional detail is an artificial side effect of the chosen domain blocks.
However, images magnified in this way can appear more aesthetically pleasing than other
interpolations.

The implementation given in Section 3 does not feature resolution independence, but
the decoding can be altered to provide this facility. The user supplies the desired magni-
fication/reduction factor, either explicitly or through the input of a starting image of the
required size.

5.3 Adaptive partitioning

There has been much research over the years to improve the original fractal image com-
pression method invented by Barnsley (1988) and Jacquin (1989) by speeding up the
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Fig. 14. Original image (left), quadtree range block partitions (centre), and decoded image (right).

computation and improving the quality of the compressed image. The search for matching
domain blocks is the most time-consuming part of the compression algorithm as well as
block classification and indexing schemes (Jacquin, 1989). To reduce the size of domain
block searches, there exist sophisticated schemes to find matching image portions such as
nearest-neighbour searches (Saupe, 1994; Cardinal, 1999), which have similarities to the
techniques used in PatchMatch (Barnes et al., 2009).

A variety of adaptive partitioning schemes exist that address image quality by choosing
range and domain regions that vary in size and shape. Some partitioning schemes use
triangles and more general polygons (Davoine et al., 1997); here we take a brief look at
two methods that use rectangular blocks, and feature the opportunity to use more varied
functional programming techniques, including recursion and tree datatypes.

Quadtree partitioning
This method uses square range blocks that can vary in size, as illustrated in Figure 14. The
encoding starts using a grid of square range blocks, similar to before, but when a range
block does not have a suitably accurate match with any of the domain blocks with respect
to some error tolerance, it is divided into four quadrants and the process is repeated. This
recursion continues until a good enough match is found, or a specified minimum block
size is reached. Figure 14 illustrates how the range blocks are much smaller in the more
detailed areas of the image. Further details of the partitioning technique using quadtrees
can be found in chapter 3 of Fisher (1995), or chapter 3.3 of Welstead (1999).

HV partitioning
This method recursively divides range blocks until a good enough match is found in a sim-
ilar way to the quadtree partitioning scheme, but it is more flexible in how it carries out the
division, as illustrated in Figure 15. Here range blocks without a suitably accurate domain
block match are subdivided into two blocks, either horizontally or vertically (hence, “HV”
partitioning), and the tree so formed is thus a k-d tree of dimension 2 (Bentley, 1975). This
division is made in a smart way: the choice of where to divide a block is made according
to where the biggest differences in neighbouring row/column pixels can be found.

Similar to before, there is a minimum range block width and height, and varying sizes of
domain blocks can be used, although it is certainly convenient if the domain blocks under
consideration have widths and heights that are multiples of the particular range block being
considered. As before, the partitioning scheme ends up using smaller range blocks in the
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Fig. 15. Original image (left), HV range block partitions (centre), and decoded image (right).

more detailed areas of the image (see Figure 15), but HV partitioning is more flexible, and
thus usually results in better image quality. Further details of HV partitioning can be found
in chapter 6 of Fisher (1995).

Both quadtree and HV partitioning require adjustments to the basic compression code
discussed in Section 3 in order to keep it reasonably simple for students. As well as
restructuring the top-level part of the encoding process to use recursion, the other main
changes needed are as follows:

• The Block and Trans datatypes need to store width/height information for blocks,
and as a result several functions would need to be updated.

• The pre-shrinking of images for domain blocks would need to be reorganised, both
for encoding and decoding.

• The rms calculation can no longer take the shortcut of omitting the /n step because
distances need to be averaged per pixel in order to consistently evaluate blocks of
differing sizes against an error tolerance.

6 Discussion

Background and context
The inspiration for this functional implementation of fractal image compression originally
came from the treatment of images in the Haskell library Pan (Elliot, 2003). In Pan, images
are represented as polymorphic functions from infinite, continuous two-dimensional space
to some pixel type. This representation lends itself very well to manipulation by affine
transformations of the kind used for fractal image compression, as such conversions are
simply higher order functions which can be glued together in a variety of ways.

Initially, we set a simpler functional programming assignment focusing on manipu-
lations of colour images, including affine transformations and colour changes. In that
instance, the use of images gave valuable visual feedback to students, aiding their code
testing. The success of that assignment gave us the confidence to go on to a more challeng-
ing subject of fractal image compression.

Subsequently, we set two slightly different variations of this fractal image compres-
sion assignment for undergraduates, first in 2007 and then again in 2011. In 2007, the
students took functional programming as an optional module during the second or third
year of their degree after previously studying imperative programming and data structures.
By 2011, however, the curriculum had been restructured, and the students learnt to use
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Haskell as part of a more general declarative programming module, which also covered
logic programming. Consequently, this second group was less practised with functional
programming techniques, having only studied them for five weeks. The short syllabus for
this later run included basic concepts such as recursion, list comprehensions, currying,
higher order functions, abstract data types, type classes, lazy evaluation, and infinite lists,
but did not include monads. However, even this smaller range of topics was sufficient to
allow students to tackle this assignment.

Technological choices
GHC is the recommended choice in terms of speed, but since some of our students used the
Hugs interpreter (Hugs, 2006), we did check that our code was runnable in this environment
without problems. In either case, we would recommend increasing the size of the heap
(using the -H option in GHC or -h for Hugs.)

Concerning datatypes, although it is arguably simpler to use just one data type for data
storage, for pedagogical reasons we consciously chose to use both lists and arrays: lists of
pixels for image blocks, and arrays for entire images. Array processing is a useful concept
for functional programmers to learn, with its efficient O(1) access and O(n) construction
times; indeed without the use of arrays in our code, the block extraction and image recon-
struction would have been far less efficient and more complicated. List manipulation is also
a fundamental topic in most traditional introductory functional programming textbooks, for
example, Hutton (2007) & Thompson (2011), which tend to omit arrays. So lists of pixels
were chosen for the block representation even though they were not necessarily the most
efficient option. They have the advantage that they give students a chance to demonstrate
their ability to write list-processing functions and to use common higher order functions
to develop concise code, as required for the rotation and reflection transformations on
blocks, for example. The application of these skills was an essential learning outcome of
the assignment.

Support for students
Although the implementation of the fractal image compression algorithm does not rely on
any sophisticated functional programming techniques, it is still a challenging concept for
novices. As well as a verbal presentation of the fractal image compression concept with
plenty of visual examples, we took further measures to help support students.

We structured the assignment carefully: As the testing of later functions relied on the
correctness of earlier written functions, we split the assignment into two parts. The earlier
part involved basic functions and datatypes concerning images, blocks, and affine trans-
formations, and we provided sample answers for this part before students attempted the
latter part containing the encoding and decoding. Also, as there are many pieces to the
compression algorithm, we outlined the structure of the code for students, providing several
function types as a guide, to make the tasks straightforward for students to understand. In
addition, we supplied some difficult and/or tedious functions for students in order to match
the difficulty level of the exercises to the students’ abilities and the time available.

In addition to some sample images, full code for PGM image input and output was
supplied to students, as I/O was beyond the scope of the course. Also, we wanted students
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to concentrate on the functions directly concerned with the fractal image compression,
rather than parsing or writing PGM files.

Results
Overall, both groups of students enjoyed the assignment, with many of them completing
the algorithm and managing to compress their own images. However, there were some
issues that arose on the first run of the assignment, and were subsequently addressed.

The first time we set the assignment, during the full functional programming module,
90% submitted work for the first part of the assignment and received a passing grade for
it. However, even though the average mark for the second part was 80%, only 75% of the
students submitted work for the second part. Feedback from students indicated that some
of the more able students felt that the design of the assignment was too prescriptive, and
they thought they should have been given more scope to design the whole algorithm from
scratch. It was difficult to pinpoint accurately why so many students did not complete the
second part of the assignment, but our impression was that they lacked the confidence to
attempt the rest of the exercises, possibly due to lack of opportunities for testing of their
functions so that they could see the results visually.

We modified the assignment on the second run to take these issues into account, and also
to reflect the lesser exposure of this group of students to Haskell. We made the exercises
more visual, and included some extra test functions so that students could more easily
see the domain and range blocks that they had extracted, and the results of their image
transformations. We gave students some pseudocode to outline how the encoding and
decoding worked, and supplied Haskell code for the top-level encoding and decoding so
that the students could see where to fill in the gaps. Finally, we included some questions
with extra challenges, to offer a little more scope for creativity.

Participation was much better the second time round: all of the students submitted
answers to both parts, and they all passed, with an average mark of 81% overall. Students
generally enjoyed the assignment, and the feedback was positive, for example: “I liked
the way the coursework was set out, especially how the image compression algorithm was
mostly written for us and we just had to complete the undefined functions – since this way
we were able to concentrate on understanding how to program declaratively.”

Next time
We conclude that the changes made for the second run of the assignment were successful
in solving some of the problems, but there is still room for improvement. If we were to set
this assignment again with more time available, we would keep the step-by-step approach
for the basic algorithm, but would offer students greater scope for extra challenges in order
to achieve a broader spread of marks and to stretch the stronger students, for example,
using one of the variations described in Section 5, and calculating compression ratios for
their own images.

We would also include more introductory material on fractals as described in Section 2.1
(some of which was suggested by an anonymous referee) to help build students’ intuition.

Another change to help students would be to ask them to implement the decoding before
the encoding in the second part of the assignment, providing them with some compressed
images to decode. We estimate that this would be more straightforward for students, and it
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should help students see what they are aiming for when writing the functions to carry out
the encoding.

Reflections
Overall, we were very happy with using the topic of fractal image compression as an
assignment for students. Novice functional programmers were able to understand a so-
phisticated technique for image compression and implement it, and had the satisfaction of
decoding an encoded image to produce an approximate version of the original.

Also, the assignment had a good coverage of basic functional programming techniques,
including list comprehensions, several standard higher order functions, and even lazy eval-
uation and infinite lists, in the use of the iterate function to do the decoding. It also
illustrated the benefits of compositional program design. We felt that this assignment
offered students a good chance to see how this algorithm could be represented compactly
using a functional programming language.
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