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1. Introduction 

A way to follow in order to reduce the weight of the primary mirror is to accept 

an higher ratio diameter-thickness and to find a remedy to the consequent greater 

deformability of the mirror by an active control system of it. A technique using 

closed loop active optics control has been proposed in references |l, 2|. 

In these papers, a coherent scheme of active optics control for the ESO New 

Technology Telescope (NTT) was presented, based on analysis of the image errors 

in terms of an appropriate polynomial (the ESO off-line telescope test polynomial) 

and the production of equivalent correction terms by force modulation of the 

primary axial support. 

The "calibrations" of the force changes required to generate these terms were 

performed using analytical theory by Schwesinger |1|. 

It is well known that the mirror behaves as a high-sensitivity structure: minor 

variations of the forces applied by the actuators may lead to major consequences 

in terms of deformability. 

It is thus necessary to perform a quite accurate static analysis in order to solve 

the following problems: 

a - Designing the support system and thus choosing the actuator position and the 

values of their effects in order to keep the mirror, loaded by its own weight 

as near as possible to the wished position. 

b - Controlling the mirror and thus choosing the values of the variations of 

actuators effects that must be given in order to compensate possible 

distorsions of the mirror surface and to return it as near as possible to the 

original configuration. 

Both the above problems may be reduced to the optimization of quadratic functions 

[3|_ Nevertheless some difficulties may arise in working out the solution, mainly 

due to the following reasons: 

(i) The mirror has an axisymmetric geometric shape but the actuators are not 

axisymmetrically placed. Even if their distance is small, it is not possible 
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to regard their effects as continous but it is necessary to consider the 

applied forces as concentrated, 

(ii) The mirror has a curvature. Even if the meniscus is small, the mirror behaves 

more as a shell than a plane plate. 

As a conseguence of the above statements one must consider that the analytical 

approach based on the mathematical theory of plates and shells |4| may be not 

sufficient to solve all the problems with the wished precision. 

Aim of this paper is to examine a well defined problem with finite elements 

technique in order to point out the advantages of its application to the design 

of the support system together with the difficulties that may arise by examining 

high sensitivity structures with numerical methods. 

The mirror of fig. 1 will be considered. It is a mirror of 1.05 m in diameter with 

a curvature radius of 6.5 m. It is provided by 75 actuators able to vary the 

applied forces and it is supposed to work with a fixed vertical axis. 

This mirror is a model test bench for the NTT active optics system and has been 

scaled to have the same gravity flexure as the NTT 3,5 m primary |5, 6|. 

2. The Theoretical Approach 

The approach is based on the mathematical considerations made in |3| that are 

briefly summed up in the following. 

The design problem may be formulated as: 

n o m 2 
min i . y. (-w. + E j F . a..) (1) 

ji i 1 l 3 XJ 

where: 

n, m are the number of control points and of actuators respectively 

w. (x.,y.) is the displacement component at the point P.(i=l,2...n) in the 

direction corresponding to the control signal, due to the weight of 

the mirror 

F. is the modulus of the force exerted by the actuator applied at point 

Qj(j=l,2...m) 

a.. is the influence coefficient, that is the analogous displacement 

components due to the unit effect of the actuator applied at point 

y . is the weight of point P., that is the influence of the portion of 

surface sorrounding the point P. on the total surface distortion 

The unknowns of the problem are the forces F. and the position of actuators Q. 
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They may be worked out by an iterative procedure that implies at each step the 
o 

knowledge of the influence coefficients a,. and of displacement components w.. 

For this reason the design problem can be solved by using an efficient numerical 

procedure as the mathematical theory of plane plates. 

Once the positions of actuators has been decided, the values of forces F. can be 

determined by solving the problem (1). This can be effectively carried out by 

calculating the influence coefficients a.. and the displacement components w. 

through the finite element method. 

The control problem may be formulated as two different optimization problems or 

it can be solved by means of a direct combination formula. In a general way one 

can: 

(i) find the values AF. of the forces that must be provided by the actuators in 

order to return the mirror as near as possible to the design position; 

(ii) find the values AF. of the forces that must be provided by the actuators in 

order to minimize the energy supplied by the actuators and to limit the 

maximum gap between the distorted and the design configuration. 

Both statements (i) and (ii) lead to quadratic programming problems subjected to 

linear constraints. 

More simply, one may choose to correct the distorsions of the surface by moving 

the points at which the actuators are placed of the quantity Aw, , in order to 

return them only in their original design position. Of course,this procedure may 

be not optimal but it achieve the goal of the greatest simplicity. 

Therefore, one has to: 

- work out the influence matrix |c | calculating the displacement components of 

the points at which the actuators are applied; 

- determine the inverse matrix e, , = c, , and then; 
1 kh' ' hk' 

- compute the correcting forces AF, , as 

m 
A F k = S

l h
 ekhA"h (2) 

The main difficulty is to compute the influence matrix |Cj^ |. The entry Cj^ 

represents the displacement component at the point P , where the h-th actuator is 

placed due to a unit-force brought by the k-th actuator. For this purpose a 

Finite Element analysis can be carried out considering as many load conditions as 

the number of actuators is. 
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R. = 
i 

R = 
e 
t = 

6 = 

E = 

V = 

G = 

r = 

100 mm 

525 mm 

18 mm 

0.0252 kg/cm 

90252 N/mm 

0.245 

371.33 N 

6500 mm 

3. The Design of the Support System 

The mirror shown in Fig. 1 has the following characteristics 

internal radius 

external radius 

thickness 

specific mass 

elasticity modulus 

Poisson coefficient v 

total weight 

radius of curvature 

Pour sets of 8, 16., 24 and 30 points corresponding to 75 actuators and 3 fixed 

points are placed along four concentrical circumferences. The 3 fixed points are 

included in the third ring. This support geometry is a scaled-down version of the 

NTT primary support system |2|. 

The radii of the 4 actuator rings were already established by ESO, according to 

the Schwesinger calculations |l|, at the following position: 

R = 143.1 mm; R_ = 253.9 mm; R3 = 367.1 mm; R = 481.6 mm 

If the coefficients a.. and w. are determined by using the mathematical theory of 

thin circular plates loaded by ring-distributed loads (thus disregarding the 

concentration effects of the loads but spreading out the actuator forces along 

circumferences) the problem (1) with y.=l give the following values: 

F = 38.075 N; F = 81.307 N; F = 118.042 N; F = 133.905 N; 

The quality of the solution was checked analysing the mirror with the Finite 

Element technique. The mesh of Fig. 2 was choosen and the mirror was studied for 

the loading condition given by the mirror selfweight and the previously calculated 

actuator forces, assumed to be concentrated in their actual position. SAP V 

computer program was used considering 1536 thin plate finite elements. This leads 

to 4896 linear equations if in-plane displacement components are disregarded, to 

9792 equations if they are taken into account. 

Two computational models were appointed: 

(i) the curvature of the mirror was disregarded in order to have a comparison 

between the analytical solution obtained with the theory of axisymmetric thin 

circular plate and the Finite Element solution, taking into account the load 

concentration. The results obtained are presented in Fig. 3; 

(ii) the curved mirror was examined taking into account also the in-plane 

displacements. This is the most realistic even if more onerous model. The 

results are given in Fig. 4 
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The displacement cicumferential patterns are plotted in Fig. 5 and 6 for plane 

and curved mirror respectively. The differencies of the periodicity of the ripples 

may be attributed to the evaluation of the nodal loads in the irregular elements 

sorrounding the outer actuators. From radial patterns it may be noted that the 

curvature may have some influence in the evaluation of optimal values of forces. 

4. The Control of the Mirror 

The control of the mirror was achieved by the procedure expressed by formula (2). 

The matrix Ic, , I is a 75x75 matrix. The entries of the k-th column have to be 
1 hk' 

evaluated by applying a unit force where the k-th actuator is located, (Fig. 7), 

and then computing the displacements at the point at which the 75 actuators are 

placed. 

The polynomial chosen for the wave front analysis had the following terms. 

k rigid translations 

k„ r cos (9+$) wave front tilt 
2 

k r longitudinal defocusing 
4 

k. r 3rd order spherical aberration 

k r 5th 
2 

k r cos 29 3rd " astigmatism 

k_ r cos 39 triangular astigmatism 
4 

k r cos 49 quadratic astigmatism 
8 5 

k. r cos 9 higher order coma 

with: 

r, 9 polar coordinates 

k ...k coefficients 

$ shift of angular origin 

At the three fixed points, the surface displacement must be zero. 

Thus the following polynomial terms where assumed in order to simulate the 

displacements S of distorted surface. This is essentially the ESO telescope test 

polinomial, |7| modified and extended for the NTT: 

S = 0,5 X (p2 - k2) 
4 4 

S = 0,5 X (p - k p 

S = 0,5 X (p6 - k̂ >) 

S = 0,5 X (p cos 29 + k p sen9) 
- 3 z 

S = 0,5 X p cos 39 
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- 4 3 
S = 0,5 X (p cos 46 - k2 p sen9) 
- 5 4 
S = 0,5 X (p cos 6 - k p cos9) 2 

with: 

P = R/Re 

X = 0 . 5 5 0 p 

R = 525 mm; 
e 

R.= 
l 

100 mm; R 3 = = 367 .1 mm; k l = k 2 " = R 3 / R e 

Figg. 8 - 1 2 show the values of the forces (in N) that must be applied. Also in 

this case the two computations presented at point 3 were performed in order to 

underline the influence of the models. From the analysis of the results one may 

conclude that the effect of curvature has not a significant influence on the 

computation of correcting forces if the mirror is considered in horizontal 

position. 
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Fig . 1 

https://doi.org/10.1017/S0252921100108280 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100108280


82 G. Ballio, R. Contro, C. Poggi and O. Citterio 

1650 

Fig . 2 
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Fig . 3 
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T 5. 

T S. 
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Fig. 4 
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I * ) CIRCUMFERENCE WITH ACTUATORS 
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Fig . 7 
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S = 0,5 X [p2 - k̂ > 

0.163 
(0J127) 

Longitudinal defocuslng 

-0.188 
(-O.J184) 

-0.042 
(-0.I006) 

0.0383 

0.086 0.320 -0.707 
(6.126) (0.357) (-0.695) 

• - - c— 
3rd order spherical aberration 

0.371 
(0.332) 

0,5 X j.o kl> 

I -0.077 
(-0.048) 

0.710 
(0.746) 

-1.043 • 
(-1.020) 5th order spherical 

aberration tt 

0.475 \ 
(0.439) 

The values ( ) refer to plane mirror 

S = 0,5 X (p6 - k^) 
Fig. B 
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S = 0,5 X (p cos 28 + k̂  p senB) 

3rd order astigmatism 

The values ( ) refer to plane mirror 

Fig.9 
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S = 0,5 X pJ cos 36 

Triangular astigmatism 

The values ( ) refer to plane mirror 

-0.250 

Fig. 10 
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Fig. 11 
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Fig. 12 
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DISCUSSION 

J. Nelson: I enjoyed your analysis very much. The question of what perturbing 

forces should be applied through your actuators to remove an optical aberration 

is an interesting and subtle one. In the UCTMT project M. Budionsky has been 

exploring this, and he finds that one can often limit the maximum point load 

without appreciably altering the desired deformation. This can be critical, since 

otherwise one may need to apply enormous forces to remove an aberration. 

G. Ballio: The removal of an optical aberration may be formulated as two 

different optimum problems, both leading to quadratic programming problems with 

linear constraints. 

1st formulation. Find the values of the effects provided by the actuators able to 

return the mirror as near as possible to the design position. 

2nd formulation. Find the values of the effects provided by the actuators in 

order to minimize the energy supplied to the actuators and to limit the maximum 

gap between the distorted and the wished configuration under an assigned 

value e2 . When the difference between the distorted and the wished configuration 

are measured on the actuators points and e2=0 the two formulations lead to 

solving a linear system of equations but obviously you can find unrealistic 

values for forces to be applied. 

J. Nelson: (to G. Ballio concerning high forces resulting from calibration 

procedure.) 

R. Wilson: It should be mentioned that these "calibrations" by finite element 

calculations of the force changes needed to produce a 1X. coefficient of a given 

aberration are a follow-up of analytical calibrations done by Schwesinger for our 

ESO NTT primary mirror. 

Concerning the question of Jerry Nelson whether such finite element calibration 

might not lead to excessively high force changes, there is indeed a real danger 

of this happening. If the sampling of the desired function is such that a 

constraint is applied with regard to higher order flexure terms, then this 

confirmation may produce excessive force requirements. This is the equivalent of 

certain optical design optimisation algorithms operating with too many zero 

points in the function and constraining small higher order aberration residuals 

in an unnatural and unnecessary way, the result being excessive paths in 

parameter space associated with ill-conditioned matrices with very high 

eigenvalue ratios. 
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