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Abstract

In this paper, four new discreteness criteria for isometric groups on complex hyperbolic spaces are proved,
one of which shows that the Condition C hypothesis in Cao [‘Discrete and dense subgroups acting on
complex hyperbolic space’, Bull. Aust. Math. Soc. 78 (2008), 211–224, Theorem 1.4] is removable;
another shows that the parabolic condition hypothesis in Li and Wang [‘Discreteness criteria for Möbius
groups acting on Rn

II’, Bull. Aust. Math. Soc. 80 (2009), 275–290, Theorem 3.1] is not necessary.
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1. Introduction

The discreteness criterion is a very interesting problem in the theory of Möbius groups.
This problem has been discussed by many authors and many results can be found in the
literature. For instance, in [7], Jørgensen obtained a very useful necessary condition
for two-generator Kleinian subgroups of PSL(2, C), which is known as Jørgensen’s
inequality. As an application, he obtained the following.

THEOREM A. A nonelementary subgroup G of M(R2
) is discrete if and only if each

two-generator subgroup of G is discrete.

In [12] Tukia and Wang extended this result as follows.

THEOREM B. Let G ⊂ PSL(2, C) be nonelementary. If G contains an elliptic element
of order at least 3, then G is discrete if and only if each nonelementary subgroup
generated by two elliptic elements of G is discrete.

They also left an open problem: suppose that G ⊂ PSL(2, C) is nonelementary and
contains parabolic elements and elliptic elements. Then G is discrete if and only if
every subgroup generated by a parabolic and an elliptic element is discrete.
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In [15] Yang gave this problem a positive answer. He proved that the following
theorem.

THEOREM C. Let G ⊂ PSL(2, C) be nonelementary. If G contains elliptic elements
and parabolic elements, then G is discrete if and only if every subgroup generated by
a parabolic and an elliptic element is discrete.

In [16] Yang found analogues of Theorems B and C in M(Rn
). His results are as

follows.

THEOREM D. Let G be an n-dimensional subgroup of M(Rn
) containing parabolic

and elliptic elements. Then G is discrete if and only if for each parabolic f and
elliptic g in G, the subgroup 〈 f, g〉 is discrete.

THEOREM E. Let G be an n-dimensional subgroup of M(Rn
) containing an elliptic

element of order at least 3. Then G is discrete if and only if for each pair of elliptic
elements f and g in G the nonelementary subgroup 〈 f, g〉 is discrete.

Here ‘G is n-dimensional’ means that G is nonelementary and does not have a G-
invariant proper hyperbolic subspace. See [10, 14] for further generalizations of
Theorem A in M(Rn

).
For a subgroup G ⊂ PU(1, n), let

E(G) = { f ∈ G | f is elliptic},

H(G) = { f ∈ G | f is loxodromic},

P(G) = { f ∈ G | f is parabolic}

and
G f = {g ∈ G | g is conjugate to f and 〈 f, g〉 is nonelementary}.

Because of the close connection between real and complex hyperbolic spaces it is
worthwhile to investigate results analogous to Theorems A–E in the setting of complex
hyperbolic space. There is some research in this direction: see [3, 5, 8, 9].

A subgroup G of PU(1, n) is said to satisfy Condition C if G contains no sequence
{ fi } such that each fi is parabolic and fi → I as i→∞. Here G ⊂ PU(1, n) is
nonelementary if G contains two nonelliptic elements with distinct fixed points. See
Section 2 for the definition of φ(G).

Recently, in [2], Cao proved the following theorems.

THEOREM F. Let G ⊂ PU(1, n) be nonelementary. Then G is discrete if and only
if ker(φ) is discrete and each nonelementary subgroup generated by two elements
of φ(G) f is discrete, where f ∈H(φ(G)). If P(φ(G)) 6= ∅, then G is discrete if and
only if ker(φ) is discrete and each nonelementary subgroup generated by two elements
of φ(G) f is discrete, where f ∈ P(φ(G)).

THEOREM G. Let G ⊂ PU(1, n) be nonelementary and satisfy Condition C. If
E(G) 6= ∅ and it contains an element of order at least 3, then G is discrete if and only
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if ker(φ) is discrete and each nonelementary subgroup generated by two elements
in E(G) is discrete.

The main results of this paper are as follows.

THEOREM 1.1. Let G ⊂ PU(1, n) be nonelementary. If E(G) contains an element
of order at least 3, then G is discrete if and only if ker(φ) is discrete and every
nonelementary subgroup generated by two elements in E(G) is discrete.

THEOREM 1.2. Let G ⊂ PU(1, n) be nonelementary. If E(G) 6= ∅ and P(G) 6= ∅
then G is discrete if and only if ker(φ) is discrete and every subgroup 〈 f, g〉 is discrete,
where f ∈ P(G) and g ∈ E(G).

THEOREM 1.3. Let G ⊂ PU(1, n) be nonelementary and E(G) 6= ∅. Then G is
discrete if and only if ker(φ) is discrete and for every subgroup 〈 f, g〉 is discrete,
where f ∈H(G) and g ∈ E(G).

THEOREM 1.4. G ⊂ PU(1, n) be nonelementary and P(G) 6= ∅. Then G is discrete
if and only if ker(φ) is discrete and for every subgroup 〈 f, g〉 is discrete, where
f ∈ P(G) and g ∈H(G).

REMARK 1.5. Theorem 1.1 shows that Condition C in [2, Theorem 1.4] is
removable. Theorem 1.3 shows that the Parabolic Condition assumption in [10,
Theorem 3.1] is not necessary in complex hyperbolic spaces. Theorems 1.2
and 1.4 are analogues of [10, Theorems 3.2 and 3.3] in the setting of PU(1, n).

REMARK 1.6. For a nonelementary subgroup G ⊂ M(Rn
), G is n-dimensional if

and only if ker(φ)= {I }. Hence in the setting of M(Rn
), Theorems 1.1 and 1.2

are generalizations of Theorems D and E. Also, Theorem 1.2 can be regarded as an
affirmative answer to Tukia and Wang’s open problem in the setting of PU(1, n).

Refer to [1–6, 8, 11] for more details on the properties of subgroups of PU(1, n).

2. Preliminaries

Throughout this paper, we adopt the definitions and notation of [2, 4], such as Hn
C,

PU(1, n), discrete group, limit set L(G), and so on. We denote by M(G) the smallest
invariant totally geodesic submanifold of G and φ(g) is the restriction of g to M(G)
for all g ∈ G; that is,

φ(g)= g|M(G), φ(G)= {g|M(G) | g ∈ G}. (2.1)

According to [4, 6], we know that, by conjugation,

M(G)=Hk
C or Hl

R,

where k and l are positive integers and k, l ≤ n. It is obvious that if G ⊂ PU(1, n) and
M(G)=Hk

C (respectively Hl
R), then for any g ∈ G, φ(g) is an element of PU(1, k)

(respectively PO(1, l)).
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In order to prove our main results, we need the following lemmas.

LEMMA 2.1 [2]. Let φ be as in (2.1). Then G is discrete if and only if ker(φ) is
discrete and φ(G) is discrete.

LEMMA 2.2 [4]. Let G ⊂ SU(1, m) be nonelementary. If G does not leave invariant
a proper totally geodesic submanifold of Hm

C , then G is either dense or discrete.
Moreover, if the identity is not an accumulation point of the elliptic elements in G,
then G is discrete.

LEMMA 2.3 [2, 5]. Suppose that two elements f and g in PU(1, n) generate a
discrete and nonelementary group.

(1) If f is parabolic or loxodromic, then

max{N ( f ), N ([ f, g])} ≥ 2−
√

3,

where [ f, g] = f g f −1g−1 is the commutator of f and g, N ( f )= ‖ f − I‖ and
‖ · ‖ means the Frobenius matrix norm such that ‖Q‖ = [tr(Q Q∗)]1/2 for any
matrix Q.

(2) If f is elliptic, then

max{N ( f ), N ([ f, gq
]) | q = 1, 2, 3, . . . , n + 1} ≥ 2−

√
3.

LEMMA 2.4. Let g be an element of G ⊂ PU(1, n) and M(G)=Hk
C (respectively

Hl
R). Then:

(1) g is loxodromic if and only if φ(g) is a loxodromic element in PU(1, k)
(respectively PO(1, l));

(2) g is parabolic if and only if φ(g) is a parabolic element in PU(1, k) (respectively
PO(1, l));

(3) g is elliptic if and only if φ(g) is an elliptic or identity element in PU(1, k)
(respectively PO(1, l)).

PROOF. This is obvious from [4, p. 77]. 2

LEMMA 2.5. Let G ⊂ SU(1, m) (respectively SO(1, m)) be nonelementary. If G is
not discrete and does not leave invariant a proper totally geodesic submanifold, then
there exists a sequence { fi } ⊂ G such that each fi is loxodromic and fi → I as
i→∞.

PROOF. By [4, Theorem 4.4.2 and Corollary 4.5.1], we know that G is dense in
SU(1, m) (respectively SO(1, m)), so the closure of G is G = SU(1, m) (respectively
SO(1, m)). This implies that there exists a sequence {gi } ⊂ G such that each gi is
loxodromic and gi → I as i→∞.

As the loxodromic elements of SU(1, m) (respectively SO(1, m)) form an open
set in the closure G of G, there must exist a sequence { fi } ⊂ G such that each fi is
loxodromic and fi → I as i→∞. 2
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LEMMA 2.6. Let G be an m-dimensional subgroup of SO(1, m) such that E(G) 6= ∅.
Then G is discrete if and only if each nonelementary subgroup 〈 f, g〉 is discrete, where
f ∈H(G) and g ∈ E(G).

PROOF. The necessity is obvious. For the converse, we suppose, to the contrary, that G
is not discrete. By Lemma 2.5, we know that there exists a sequence { fi } ⊂ G such
that each fi is loxodromic and fi → I as i→∞.

Suppose that g is an elliptic element in G such that g2
6= I . If, for large enough i ,

the set
S = {fix( fi ), fix( fi+1), fix( fi+2), . . .}

can span the boundary of M(G), then Lemma 2.3 implies that the subgroups 〈g, fi 〉,
〈g, fi+1〉, 〈g, fi+2〉, . . . are all discrete and elementary. It is obvious that g = I . This
is a contradiction.

If, for large enough i , the set S = {fix( fi ), fix( fi+1), fix( fi+2), . . .} cannot span
the boundary of M(G), then we could choose a loxodromic element h such that
fix(h) ∩ S = ∅. Thus we could find an integer N such that fix(hN gh−N ) ∩ S = ∅.
For sufficiently large i ,

N ( fi )+ N ([hN gh−N , fi ]) < 2−
√

3.

By Lemma 2.3, we know that the subgroups 〈hN gh−N , fi 〉 are discrete and
elementary. As fix(hN gh−N ) ∩ S = ∅, we again reach a contradiction. 2

REMARK 2.7. Lemma 2.6 implies that the parabolic condition hypothesis in [10,
Theorem 3.1] is not necessary.

3. Proofs of the theorems

PROOF OF THEOREM 1.1. The necessity is obvious. For the converse, we suppose, to
the contrary, that G is not discrete. By Lemma 2.1, we know that φ(G) is not discrete.
As G is nonelementary, we may assume that the smallest totally geodesic submanifold
M(G) is either Hk

C or Hl
R. We divide the proof into two cases.

Case I. M(G)=Hm
C . By Lemma 2.2, we know that there exists a sequence

{gm+1,i } ⊂ φ(G) such that each gm+1, i is elliptic and gm+1,i → I as i→∞. It is
obvious from Lemma 2.4 and [4, p. 77] that there must exist a sequence {gi } ⊂ G such
that each gi is elliptic and gi → I as i→∞. This violates [2, Lemma 2.7].

Case II. M(G)=Hl
R. By Lemma 2.4, φ(G) is a subgroup of PO(1, l). As G is

nonelementary and M(G)= H l
R. Then [4, Corollary 4.5.1] yields that φ(G) is dense

in SO(1, l). So the set of all orientation-preserving elements in SO+(1, l) is dense
(see [13, Theorem 3.1]). Theorem E and Lemma 2.4 imply that this is a contradiction.

This completes the proof of Theorem 1.1. 2

PROOF OF THEOREM 1.2. The necessity is obvious. For the converse, we suppose,
to the contrary, that G is not discrete. As in the proof of Theorem 1.1 we divide the
proof into two cases.
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Case I. M(G)=Hm
C . According to Case I in the proof of Theorem 1.1, we

know that there exists a sequence { fi } ⊂ G such that each fi is elliptic and fi → I
as i→∞. As G is nonelementary and P(G) 6= ∅ there exist finite many parabolic
elements g1, . . . , gs in G such that fix(g1), . . . , fix(gs) span the boundary of M(G).
Then, for large enough i ,

N ( fi )+

n+1∑
q=1

N ([ fi , gq
j ]) < 2−

√
3,

where j = 1, 2, . . . , s. So for large enough i , the subgroup 〈 fi , gs〉 is elementary,
and hence fi |M(G) = I . From the definition of ker(φ), we know that fi ∈ ker(φ) for
sufficient large i . This is a contradiction, since ker(φ) is discrete.

Case II. M(G)=Hl
R. According to Lemma 2.4 and Theorem D, it is easy to see

that φ(G) is discrete. By Lemma 2.1, we know that G is discrete. This is also a
contradiction and completes the proof of Theorem 1.2. 2

PROOF OF THEOREM 1.3. The necessity is obvious. For the converse, we suppose,
to the contrary, that G is not discrete. By Lemma 2.6 and reasoning as in the proof of
Theorem 1.2, it is easy to get a contradiction. 2

PROOF OF THEOREM 1.4. The necessity is obvious. For the converse, we suppose
that G is not discrete. Then there exists a sequence { fi } ⊂ G such that fi → I as
i→∞. As ker φ(G) is discrete, there exists a parabolic element g of G such that
fix( fi ) ∩ fix(g)= ∅. Then gk fi is loxodromic when k is large enough. Lemma 2.3
implies that the subgroup 〈 fi , g〉 = 〈g, gk fi 〉 is discrete and elementary. This is the
desired contradiction. 2
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