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We study the statistics of passive scalars (either temperature or concentration of a diffusing
substance) at friction Reynolds number Reτ = 1140, for turbulent flow within a smooth
straight pipe of circular cross-section, in the range of Prandtl numbers from Pr = 0.00625,
to Pr = 16, using direct numerical simulations (DNS) of the Navier–Stokes equations.
Whereas the organization of passive scalars is similar to the axial velocity field at Pr =
O(1), similarity is impaired at low Prandtl number, at which the buffer-layer dynamics is
filtered out, and at high Prandtl number, at which the passive scalar fluctuations become
confined to the near-wall layer. The mean scalar profiles at Pr � 0.0125 are found to
exhibit logarithmic overlap layers, and universal parabolic distributions in the core part of
the flow. Near-universality of the eddy diffusivity is exploited to derive accurate predictive
formulas for the mean scalar profiles, and for the corresponding logarithmic offset
function. Asymptotic scaling formulas are derived for the thickness of the conductive
(diffusive) layer, for the peak scalar variance, and its production rate. The DNS data
are leveraged to synthesize a modified form of the classical predictive formula of Kader
& Yaglom (Intl J. Heat Mass Transfer, vol. 15, 1972, pp. 2329–2351), which is capable
of accounting accurately for the dependence on both Reynolds and Prandtl numbers, for
Pr � 0.25.

Key words: pipe flow boundary layer, turbulence simulation

1. Introduction

The study of passive scalars evolving within wall-bounded turbulent flows has great
practical importance, being relevant for the behaviour of diluted contaminants, and/or as
a model for the temperature field under the assumption of low Mach number and small
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temperature differences (Monin & Yaglom 1971; Cebeci & Bradshaw 1984). It is well
known that measurements of concentration of passive tracers and of small temperature
differences are quite difficult, and in fact available information about even basic passive
scalar statistics is rather limited (Gowen & Smith 1967; Kader 1981; Subramanian &
Antonia 1981; Nagano & Tagawa 1988), mostly including basic mean properties and
overall mass or heat transfer coefficients. The physical understanding of passive scalars
in turbulent flow pertains mainly to the case Pr ≈ 1 (where the molecular Prandtl number
is defined here as the ratio of the kinematic viscosity to the thermal diffusivity, Pr = ν/α),
for which strong analogies exist between passive scalars and the longitudinal velocity
component, as verified in a number of studies (Kim, Moin & Moser 1987; Abe & Antonia
2009; Antonia, Abe & Kawamura 2009). However, many fluids, including water, engine
oils, glycerol and polymer melts, have values of Pr that can be significantly higher than
unity, whereas in liquid metals and molten salts, the Prandtl number can be much less
than unity. In the case of diffusions of contaminants, the Prandtl number is replaced
by the Schmidt number (namely, the ratio of kinematic viscosity to mass diffusivity),
whose typical values in applications are always much higher than unity (Levich 1962).
Under such circumstances, similarity between velocity and passive scalar fluctuations is
substantially impaired, which makes predictions of even the basic flow statistics quite
difficult. In fact, the most complete predictive theory for the behaviour of passive scalars
at non-unit Prandtl number relies heavily on classical studies (Levich 1962; Gowen &
Smith 1967; Kader & Yaglom 1972), and most predictive formulas for the heat transfer
coefficients are based on semi-empirical power-law correlations (Dittus & Boelter 1933;
Kays, Crawford & Weigand 1980). Although existing correlations may have sufficient
accuracy for engineering design, their theoretical foundations are not firmly established.
Furthermore, assumptions typically made in turbulence models, such as constant turbulent
Prandtl number, are known to be crude approximations in the absence of reliable reference
data.

Given this scenario, direct numerical simulations (DNS) are the natural candidates to
establish a credible database for the physical analysis of passive scalars in wall turbulence,
and for the development and validation of phenomenological prediction formulas and
turbulence models. Most DNS studies of passive scalars in wall turbulence so far have
been carried out for the prototype case of planar channel flow, starting with the work of
Kim & Moin (1989), at Reτ = 180 (here Reτ = uτ h/ν is the friction Reynolds number,
with uτ = (τw/ρ)1/2 the friction velocity, h the channel half-height, ν the fluid kinematic
viscosity, ρ the fluid density, and τw the wall shear stress), in which the forcing of the
scalar field was achieved using a spatially and temporally uniform source term. Additional
DNS at increasingly high Reynolds number were carried out by Kawamura, Abe & Matsuo
(1999) and Abe, Kawamura & Matsuo (2004), based on enforcement of strictly constant
heat flux in time (this approach is hereafter referred to as CHF), which first allowed
us to appreciate scale separation effects, and to educe a reasonable value of the scalar
von Kármán constant kθ ≈ 0.43, as well as effects of Prandtl number variation. Those
studies showed close similarity between the streamwise velocity and passive scalar field
in the near-wall region, as after the classical Reynolds analogy. Specifically, the scalar
field was found to be organized into streaks whose size scales in wall units, with a
correlation coefficient between streamwise velocity fluctuations and scalar fluctuations
close to unity. Computationally high Reynolds numbers (Reτ ≈ 4000, with Pr ≤ 1) were
reached in the study of Pirozzoli, Bernardini & Orlandi (2016), using spatially uniform
forcing in such a way as to maintain the bulk temperature constant in time (this approach is
hereafter referred to as CMT). Recent large-scale channel flow DNS with passive scalars
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using the CHF forcing at Pr = 0.71 (as representative of air) have been carried out by
Alcántara-Ávila, Hoyas & Pérez-Quiles (2021). Prandtl number effects in plane channel
flow were further addressed by Schwertfirm & Manhart (2007), Alcántara-Ávila, Hoyas
& Pérez-Quiles (2018), Abe & Antonia (2019), and Alcántara-Ávila & Hoyas (2021), to
which we will refer for comparison.

Flow in a circular pipe is clearly more practically relevant than plane channel flow
in view of applications as heat exchangers, and it has been the subject of a number of
experimental studies, aimed mainly at predicting the heat transfer coefficient as a function
of the bulk flow Reynolds number (Kays et al. 1980). High-fidelity numerical simulations
including passive scalars in pipe flow so far have been quite scarce, and limited mainly
to Reτ ≤ 1000 (Piller 2005; Redjem-Saad, Ould-Rouiss & Lauriat 2007; Saha et al. 2011;
Antoranz et al. 2015; Straub et al. 2019). Higher Reynolds numbers (up to Reτ = 6000)
have been considered by Pirozzoli et al. (2022), but at unit Prandtl numbers. Those DNS
confirmed a general similarity between the axial velocity field and the passive scalar field;
however, the latter was found to have additional energy at small wavenumbers, resulting in
higher mixedness. Logarithmic growth of the inner-scaled bulk and mean centreline scalar
values with the friction Reynolds number was found, implying an estimated scalar von
Kármán constant kθ ≈ 0.459, similar to what was found in plane channel flow (Pirozzoli
et al. 2016; Alcántara-Ávila et al. 2021). The DNS data were also used to synthesize a
modified form of the classical predictive formula of Kader & Yaglom (1972). It appears
that DNS data of pipe flow at both high and low Prandtl number have not been explored
intensely, despite their importance.

In this paper, we thus present novel DNS data of turbulent flow in a smooth circular pipe
at moderate Reynolds number Reτ = 1140, which is, however, high enough that a state
of fully developed turbulence is established, with a near-logarithmic region of the mean
velocity profile. A wide range of Prandtl numbers is considered, from Pr = 0.00625 to
Pr = 16, such that some asymptotic properties for vanishing and very high Prandtl number
can be inferred. This study complements our previous study about Reynolds number
effects (up to Reτ ≈ 6000) for passive scalars at Pr = 1 (Pirozzoli et al. 2022), allowing
predictive extrapolations to the full range of Reynolds and Prandtl numbers. Although, as
pointed out previously, the study of passive scalars is relevant in several contexts, one of
the primary fields of application is heat transfer, therefore from now on, we will refer to
the passive scalar field as the temperature field (denoted as T), and scalar fluxes will be
interpreted as heat fluxes.

2. The numerical dataset

Numerical simulations of fully developed turbulent flow in a circular pipe are carried
out assuming periodic boundary conditions in the axial (z) and azimuthal (φ) directions,
as shown in figure 1. The velocity field is controlled by two parameters, namely the
bulk Reynolds number Reb = 2Rub/ν (with ub the bulk velocity, i.e. averaged over
the cross-section), and the relative pipe length Lz/R. The incompressible Navier–Stokes
equations are supplemented with the transport equation for a passive scalar field (hence
buoyancy effects are disregarded), with different values of the thermal diffusivity (hence
various Pr), and with isothermal boundary conditions at the pipe wall (r = R). The
passive scalar equation is forced through a time-varying, spatially uniform source term
(CMT approach), in the interests of achieving complete similarity with the streamwise
momentum equation, with obvious exclusion of pressure. Although the total heat flux
resulting from the CMT approach is not strictly constant in time, it oscillates around
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Lz

φ

ub

R

z

r

Figure 1. Definition of coordinate system for DNS of pipe flow, where z, r, φ are the axial, radial and
azimuthal directions, respectively, R is the pipe radius, Lz is the pipe length, and ub is the bulk velocity.

its mean value under statistically steady conditions. Differences of the results obtained
with the CMT and CHF approaches have been pinpointed by Abe & Antonia (2017) and
Alcántara-Ávila et al. (2021), which, although generally small, deserve some attention.

The computer code used for the DNS is the evolution of the solver developed originally
by Verzicco & Orlandi (1996), and used for DNS of pipe flow by Orlandi & Fatica (1997).
The solver relies on second-order finite-difference discretization of the incompressible
Navier–Stokes equations in cylindrical coordinates based on the classical marker-and-cell
method (Harlow & Welch 1965), whereby pressure and passive scalars are located at the
cell centres, whereas the velocity components are located at the cell faces, thus removing
odd–even decoupling phenomena, and guaranteeing discrete conservation of the total
kinetic energy and passive scalar variance in the inviscid limit. The Poisson equation
resulting from enforcement of the divergence-free condition is solved efficiently by double
trigonometric expansion in the periodic axial and azimuthal directions, and inversion of
tridiagonal matrices in the radial direction (Kim & Moin 1985). A crucial computational
issue is the proper treatment of the polar singularity at the pipe axis, which we handle
as suggested by Verzicco & Orlandi (1996), by replacing the radial velocity ur in the
governing equations with qr = rur (where r is the radial space coordinate), which by
construction vanishes at the axis. The governing equations are advanced in time by means
of a hybrid third-order low-storage Runge–Kutta algorithm, whereby the diffusive terms
are handled implicitly, and convective terms in the axial and radial direction explicitly.
An important issue in this respect is the convective time step limitation in the azimuthal
direction, due to intrinsic shrinking of the cell size towards the pipe axis. To alleviate this
limitation, we use implicit treatment of the convective terms in the azimuthal direction
(Akselvoll & Moin 1996; Wu & Moin 2008), which enables marching in time with a
time step similar to that in planar domain flow in practical computations. In order to
minimize numerical errors associated with implicit time stepping, explicit and implicit
discretizations of the azimuthal convective terms are blended linearly with the radial
coordinate, in such a way that near the pipe wall, the treatment is fully explicit, and
near the pipe axis, it is fully implicit. The code was adapted to run on clusters of graphic
accelerators (GPUs), using a combination of CUDA Fortran and OpenACC directives, and

965 A7-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.387


Prandtl number effects in thermal pipe flow

Prandtl number Mesh (Nz × Nr × Nφ) Peτ Nu ETT Line style

0.00625 1792 × 164 × 1793 7.11 8.02 21.3
0.0125 1792 × 164 × 1793 14.2 9.41 23.1
0.025 1792 × 164 × 1793 28.5 12.6 36.0
0.0625 1792 × 164 × 1793 71.1 21.5 23.1
0.125 1792 × 164 × 1793 142.2 34.2 12.9
0.25 1792 × 164 × 1793 284.4 53.8 47.7
0.5 1792 × 164 × 1793 568.8 81.7 20.6
1 1792 × 164 × 1793 1137.6 119.9 38.1
2 3584 × 269 × 3584 2275.2 168.0 14.2
4 3584 × 269 × 3584 4550.4 233.3 10.6
16 7168 × 441 × 7168 18201.6 421.2 9.51

Table 1. Flow parameters for DNS of pipe flow at various Prandtl numbers. Here, Nz, Nr, Nφ denote the
numbers of grid points in the axial, radial and azimuthal directions, respectively, Peτ = Pr Reτ is the friction
Péclet number, Nu is the Nusselt number (as defined in (3.25)), and ETT is the time interval considered to
collect the flow statistics, in units of the eddy-turnover time, namely R/uτ . For all simulations, Lz = 15R,
Reb = 44 000 and Reτ = 1137.6.

relying on the CUFFT libraries for efficient execution of fast Fourier transforms (Ruetsch
& Fatica 2014).

From now on, inner normalization of the flow properties will be denoted with the ‘+’
superscript, whereby velocities are scaled by uτ , wall distances ( y = R − r) by ν/uτ , and
temperatures with respect to the friction temperature,

Tτ = α

uτ

〈
dT
dy

〉
w

. (2.1)

In particular, the inner-scaled temperature is defined as θ+ = (T − Tw)/Tτ , where T is the
local temperature, and Tw is the wall temperature. Capital letters will be used to denote
flow properties averaged in the homogeneous spatial directions and in time, brackets to
denote the averaging operator, and lower-case letters to denote fluctuations from the mean.
Instantaneous values will be denoted with a tilde, e.g. θ̃ = Θ + θ . The bulk values of axial
velocity and temperature are defined as

ub = 2
∫ R

0
r 〈uz〉 dr

/
R2, Tb = 2

∫ R

0
r 〈T〉 dr

/
R2. (2.2a,b)

A list of the main simulations that we have carried out is given in table 1. Eleven values
of the Prandtl number are considered, from Pr = 0.00625 to 16. The pipe length was set to
Lz = 15R for all the flow cases, based on a box sensitivity study (Pirozzoli et al. 2022). The
mesh resolution is designed based on the criteria discussed by Pirozzoli & Orlandi (2021).
In particular, the collocation points are distributed in the wall-normal direction so that
approximately 30 points are placed within y+ ≤ 40, with the first grid point at y+ < 0.1,
and the mesh is stretched progressively in the outer wall layer in such a way that the mesh
spacing is proportional to the local Kolmogorov length scale, which there varies as η+ ≈
0.8 y+1/4 (Jiménez 2018). Regarding the axial and azimuthal directions, finite-difference
simulations of wall-bounded flows yield grid-independent results as long as 
z+ ≈ 10,
R+ 
φ ≈ 4.5 (Pirozzoli et al. 2016), hence we have selected the number of grid points
along the homogeneous flow directions as Nz = Lz/R × Reτ /9.8, Nφ ∼ 2π × Reτ /4.1.
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A finer mesh is used for flow cases with Pr > 1, so as to satisfy restrictions on the
Batchelor scalar dissipative scale, whose ratio to the Kolmogorov scale is approximately
Pr−1/2 (Batchelor 1959; Tennekes & Lumley 1972).

According to established practice (Hoyas & Jiménez 2006; Ahn et al. 2015; Lee &
Moser 2015), the time intervals used to collect the flow statistics are reported as a fraction
of the eddy-turnover time (R/uτ ). The sampling errors for some key properties discussed
in this paper have been estimated using the method of Russo & Luchini (2017), based on
extension of the classical batch means approach. We have found that the sampling error
is generally quite limited, being larger in the largest DNS, which are, however, carried
out over a shorter time interval. In particular, in the Pr = 16 flow case, the expected
sampling error in Nusselt number, centreline temperature and peak temperature variance
is approximately 0.5 %. In order to quantify uncertainties associated with numerical
discretization, additional simulations have been carried out by doubling the numbers
of grid points in the azimuthal, radial and axial directions. The results show that the
uncertainty due to numerical discretization and limited pipe length is approximately 0.2 %
for the Nusselt number, 0.4 % for the pipe centreline temperature, and 0.7 % for the peak
temperature variance.

3. Results

3.1. General organization of the temperature field
Qualitative information about the organization of the flow field is provided by
instantaneous perspective views of the axial velocity and temperature fields, which we
show in figures 2–4. As is well known, the flow near the pipe wall is dominated by
streaks of alternating high- and low-speed fluid, which are the hallmark of wall-bounded
turbulence (figures 2a, 3a, 4a); see Kline et al. (1967). The temperature field at unit
Prandtl number (figures 2d, 3d, 4d) exhibits a similar organization, which is not surprising
on account of close formal similarity of passive scalar and axial momentum equations
at Pr = 1, and close association of the two quantities was indeed pointed out in many
previous studies (e.g. Abe & Antonia 2009; Pirozzoli et al. 2016; Alcántara-Ávila et al.
2018). Zooming closer (see figure 4), one will nevertheless detect differences between the
two fields, in that temperature tends to form sharper fronts, whereas the axial velocity
field tends to be more blurred. As noted by Pirozzoli et al. (2016), this is due to the
fact that the axial velocity is not simply advected passively, but rather it can react to
the formation of fronts through feedback pressure. This reflects into shallower spectral
ranges than Kolmogorov’s k−5/3 (Pirozzoli et al. 2022). Thermal streaks persist at Pr > 1
(figures 2e, f , 3e, f, 4e, f ), and seem to retain a similar organization as in the case of
unit Prandtl number. However, they tend to vanish at low Prandtl number (figures 2b,c,
3b,c, 4b,c), and are totally suppressed at Pr = 0.00625, as a result of scalar diffusivity
overwhelming turbulent agitation. The flow in the cross-stream planes (figures 3 and
4) is characterized by sweeps of high-speed fluid from the pipe core and ejections of
low-speed fluid from the wall. Ejections and sweep have a clearly multi-scale nature, as
some of them are confined to the buffer layer, whereas others manage to protrude up to
the pipe centreline. At very low Prandtl number (figures 2b, 3b, 4b), turbulence is barely
capable of perturbing the otherwise purely diffusive behaviour of the temperature field.
The presence of details on a finer and finer scale is evident at increasing Pr, on account of
the previously noted reduction of the Batchelor scale. Increase of the Prandtl number also
yields progressive equalization of the temperature field over the cross-section. As a result,
the large-scale eddies become weaker, and thermal agitation becomes confined mainly to
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1.000.900.850.80

ũz/UCL, θ̃/ΘCL

0.700.600.500.400.300.200.150.100

(e)

(b)(a)

(c) (d )

( f )

Figure 2. (a) Instantaneous axial velocity contours, and temperature contours for (b) Pr = 0.00625,
(c) Pr = 0.25, (d) Pr = 1, (e) Pr = 4, and ( f ) Pr = 16, each normalized by the mean value at the pipe axis.
The near-wall contours are taken at distance y+ = 15.

the wall vicinity, within a layer whose thickness is proportional to the conductive sublayer
thickness, which will be discussed extensively later.

The above scenario is substantiated by the spectral maps of uz and θ , which are depicted
in figure 5. The axial velocity spectra (figure 5a) clearly bring out a two-scale organization,
with a near-wall peak associated with the wall regeneration cycle (Jiménez & Pinelli 1999),
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1.000.900.850.80

ũz/UCL, θ̃/ΘCL

0.700.600.500.400.300.200.150.100

(e)

(b)(a)

(c) (d )

( f )

Figure 3. (a) Instantaneous axial velocity contours, and temperature contours for (b) Pr = 0.00625,
(c) Pr = 0.25, (d) Pr = 1, (e) Pr = 4, and ( f ) Pr = 16, in a cross-sectional plane, each normalized by the
mean value at the pipe axis.

and an outer peak associated with outer-layer large-scale motions (Hutchins & Marusic
2007). The latter peak is found to be centred around y/R ≈ 0.22, and to correspond to
eddies with typical wavelength λφ ≈ 1.25R. Notably, very similar organization is found
in the temperature field at unit Prandtl number (figure 5d), the main difference being a
less distinct energy peak at large wavelengths. Both the axial velocity and the temperature
field exhibit a prominent spectral ridge corresponding to modes with typical azimuthal
length scale λφ ∼ y, extending over more than one decade, which can be interpreted
as the footprint of a hierarchy of wall-attached eddies after Townsend’s hypothesis
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1.000.900.850.80

ũz/UCL, θ̃/ΘCL

0.700.600.500.400.300.200.150.100

(e)

(b)(a)

(c) (d )

( f )

100+ 100+

100+ 100+

100+ 100+

Figure 4. (a) Instantaneous axial velocity contours, and temperature contours for (b) Pr = 0.00625,
(c) Pr = 0.25, (d) Pr = 1, (e) Pr = 4, and ( f ) Pr = 16, in a subregion of the pipe cross-section, each
normalized by the mean value at the pipe axis. A segment with length of 100 wall units is reported for reference.

(Townsend 1976). The spectral maps are, however, quite different at non-unit Prandtl
number. At very low Prandtl number (figure 5b), all the small scales of thermal motion
are filtered out by the large thermal diffusivity, and hints of organization are found only
at the largest scales. The typical azimuthal length scale of these eddies appears to be
λφ = πR, hence only two pairs of eddies are found on average. At Pr = 0.25 (figure 5c), a
clear wall-attached spectral ridge is observed, meaning that the temperature field becomes
in tune with the wall-attached eddies of Townsend’s hierarchy. However, no buffer-layer
peak is observed.
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Figure 5. Variation of pre-multiplied spanwise spectral densities with wall distance for (a) the axial velocity
field, and for the temperature fields corresponding to (b) Pr = 0.00625, (c) Pr = 0.25, (d) Pr = 1, (e) Pr = 4,
and ( f ) Pr = 16. For the sake of comparison, each field is normalized by its maximum value, and ten contours
are shown. Wall distances (y) and azimuthal wavelengths (λφ) are reported both in inner units (bottom and
left-hand axes) and in outer units (top and right-hand axes). The crosses denote the locations of the inner and
outer energy sites in the axial velocity spectral maps.

At Prandtl number higher than unity (figures 5e, f ), temperature fluctuations instead
become much more energetic within the buffer layer. Specifically, the inner-layer peak
moves closer to the wall, and the streak spacing is reduced as compared to the Pr = 1 case.
Although large-scale outer motions seem to be absent in the selected representation (each
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spectrum is normalized by the corresponding peak value), reporting the same maps in the
same range of values would show that the spectral footprint in the outer region is similar
at all Prandtl numbers, with the exception of the lowest values. This is also portrayed well
in the distributions of the integrated energy (see figure 12).

It is interesting that the spectral densities along the axial direction, shown in figure 6,
still show a shift of the main energetic site along the vertical direction with the
Prandtl number; however, the typical axial length scale is weakly affected. This relative
insensitivity is also clear from looking at the streaks meandering in figure 2. The
different behaviours of the azimuthal and axial spectra can be explained by interpreting
the temperature field as resulting from the application of a filter to the velocity field.
Variation of the Prandtl number then has the effect of changing the filter cutoff. Since
the azimuthal scale of the streaks is comparatively smaller, the effect of filtering is
more evident, whereas the longitudinal scale associated with streaks meandering is much
larger, hence the effect of filtering is less visible, unless very low Prandtl numbers are
considered.

3.2. Temperature statistics
The mean temperature profiles in turbulent pipes have received extensive attention from
theoretical and experimental studies, and the general consensus (Kader 1981) is that a
logarithmic law is a good approximation in the overlap layer, for most practical purposes.
The recent study of Pirozzoli et al. (2021) has shown that at unit Prandtl number, the
logarithmic law fits well with the mean temperature profile in the overlap layer, with
Kármán constant kθ = 0.459, which is distinctly larger than for the axial velocity field,
namely k = 0.387. Figure 7(a) confirms, as is well known, that universality with respect
to Pr variations is not achieved in inner scaling, since the asymptotic behaviour in the
conductive sublayer is Θ+ ≈ Pr y+ (see e.g. Kawamura et al. 1998). The figure also shows
that visually logarithmic distributions are obtained in a wide range of Prandtl numbers,
namely

Θ+ = 1
kθ

log y+ + β(Pr), (3.1)

with clear change of the additive constant β, as pointed out by Kader & Yaglom (1972).
The effect of Prandtl number variation on the outer layer is analysed in figure 7(b), where
we show the mean temperature profiles in defect form, namely in terms of difference
from the centreline value. Assuming y+ = 100 to be the root of the logarithmic layer for
the mean velocity profile (Pirozzoli et al. 2021), this amounts for the flow cases herein
considered to y/R ≈ 0.11. The figure shows that scatter across the defect temperature
profiles at various Pr is quite small farther from the wall, which suggests that outer-layer
similarity applies with good precision in general. Departures from outer-layer universality
are observed starting at Pr � 0.025, below which the similarity region becomes narrower
and progressively confined to the region around the pipe axis. As suggested by Pirozzoli
(2014) and Orlandi, Bernardini & Pirozzoli (2015), the core velocity and temperature
profiles can be approximated closely with simple universal quadratic distributions, which
one can derive under the assumption of constant eddy diffusivity of momentum and
temperature. In particular, we find that the expression

Θ+
CL − Θ+ = Cθ (1 − y/R)2 , (3.2)
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Figure 6. Variation of pre-multiplied axial spectral densities with wall distance for (a) the axial velocity field,
and for the temperature fields corresponding to (b) Pr = 0.00625, (c) Pr = 0.25, (d) Pr = 1, (e) Pr = 4, and
( f ) Pr = 16. For the sake of comparison, each field is normalized by its maximum value, and ten contours are
shown. Wall distances (y) and axial wavelengths (λz) are reported both in inner units (bottom and left-hand
axes) and in outer units (top and right-hand axes). The vertical dashed lines mark the peak wavelengths in the
spectra of the axial velocity (λ+z ≈ 820).

with Cθ = 6.62, fits the mean temperature distributions in the pipe core (y ≥ 0.2R) quite
well. Closer to the wall, the defect logarithmic wall law sets in at y/R � 0.2,

Θ+
CL − Θ+ = − 1

kθ

log( y/R) + Bθ , (3.3)
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Figure 7. (a) Inner-scaled mean temperature profiles, and (b) corresponding defect profiles. The dashed grey
line in (a) refers to the assumed logarithmic wall law for Pr = 1, namely Θ+ = log y+/0.459 + 6.14. In (b),
the dash-dotted grey line marks a parabolic fit of the DNS data, Θ+

CL − Θ+ = 6.62(1 − y/R)2, and the dashed
grey line marks the outer-layer logarithmic fit Θ+

CL − Θ+ = 0.732 − 1/0.459 log( y/R). See table 1 for colour
codes.

where data fitting in the range y+ ≥ 50, y/R ≤ 0.2, yields Bθ = 0.732.
Modelling the turbulent heat fluxes requires closures with respect to the mean

temperature gradient (see e.g. Cebeci & Bradshaw 1984), through the introduction of a
thermal eddy diffusivity, defined as

αt = 〈urθ〉
dΘ/dy

. (3.4)

Figure 8 shows that the inferred turbulent thermal diffusivities have a rather simple
distribution. Figure 8(a) shows near collapse of all cases to a common distribution,
noting that a log-log scale is used to better bring out the near-wall behaviour. Cases with
Pr � 0.125 fall outside the universal trend, as they show a similarly shaped distribution
of αt, but lower absolute values. In agreement with asymptotic arguments (Kader &
Yaglom 1972), the limiting near-wall behaviour is αt ∼ y3. Farther from the wall, there
is evidence for a narrow region with linear growth of αt, which is the hallmark of
logarithmic behaviour of the temperature profiles, and which is much clearer at Reτ =
6000; see the black dotted line in the figure. In most modelling approaches (Kays et al.
1980; Cebeci & Bradshaw 1984), the eddy diffusivity is expressed in terms of the eddy
viscosity (νt = 〈uruz〉/(dUz/dy)), by introducing the turbulent Prandtl number, defined
as Prt = νt/αt. Although this is generally assumed to be of the order of unity, a rather
complex behaviour is observed in practice, as the inset of figure 8(a) shows, and as noted
by previous authors (Alcántara-Ávila et al. 2018; Abe & Antonia 2019; Alcántara-Ávila &
Hoyas 2021).

The distributions of αt in the near-wall and logarithmic regions can be modelled using a
suitable functional expression, which we borrow from the Johnson–King turbulence model
(Johnson & King 1985), namely

α+
t = kθy+ D( y+), D( y+) = (

1 − e−y+/Aθ
)2

, (3.5a,b)

in which the damping function has the asymptotic behaviours

D( y+)
y+→0≈ y+2

/A2
θ , D( y+)

y+→∞≈ 1. (3.6a,b)
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Figure 8. Distributions of inferred eddy thermal diffusivity (αt) as a function of wall distance. In (a), the black
dotted line denotes αt for the case Reτ = 6000 at Pr = 1 (Pirozzoli et al. 2022), and the grey dashed lines
denote the asymptotic trends α+

t ∼ y3 towards the wall, and α+
t = kθ y+ in the log layer. The inset shows the

distribution of the turbulent Prandtl number, the dashed grey line denoting the expected value in the logarithmic
layer, namely Prt = k/kθ ≈ 0.84. In (b), the dash-dotted line denotes the fit given in (3.5a,b). Colour codes are
as in table 1.

Figure 8(b) shows that (3.5a,b) with Aθ = 19.2 yields a nearly perfect fit of the DNS data,
with slight deviations at y+ � 10, where in any case the eddy diffusivity is much less than
the molecular one.

Starting from the mean thermal balance equation,

1
Pr

dΘ+

dy+ + 〈urθ〉+ = 1 − y+/Reτ , (3.7)

and under the inner-layer assumption (y+/Reτ 
 1), one can then infer the distribution of
the mean temperature in the inner layer from knowledge of the eddy thermal diffusivity,
by integrating

dΘ+

dy+ = Pr
1 + kθ Pr y+ D( y+)

. (3.8)

As figure 9 shows clearly, the quality of the resulting reconstructed temperature profiles
is generally very good, with the obvious exception of the outermost region of the flow.
Deviations from the predicted trends are observed at the lowest Prandtl numbers (Pr �
0.125), which, as previously observed, escape from the universal trend of αt.

An important property to define the behaviour of passive scalars in wall-bounded flows
is the thickness of the conductive sublayer. The latter has been given several definitions
(see e.g. Levich 1962; Schwertfirm & Manhart 2007; Alcántara-Ávila & Hoyas 2021);
however, we believe that the most obvious is the wall distance at which the turbulent heat
flux equals the conductive one, which, based on (3.7), occurs when

α+
t (δ+

t ) = 1
Pr

. (3.9)

Assuming the validity of the closure (3.5a,b), for Pr 
 1 the latter condition yields

δ+
t ≈ 1

kθ Pr
, (3.10)
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Figure 9. Comparison of mean temperature profiles obtained from DNS (solid lines) and from (3.8), with the
eddy diffusivity model (3.5a,b) (dashed lines). Panel (b) shows a magnified view to emphasize the behaviour
of the low-Pr cases.
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Figure 10. Thickness of the conductive sublayer, estimated from equality of turbulent and conductive heat flux
(solid symbols), and position of temperature variance peak (open symbols), compared with predictions of the
eddy diffusivity model (3.9) (solid line), and with the low-Prandtl-number approximation (3.10) (dashed line)
and the high-Prandtl-number approximation (3.11) (dash-dotted line).

whereas for Pr � 1 one obtains

δ+
t ≈

(
A2

θ

kθ Pr

)1/3

. (3.11)

Figure 10 compares the above asymptotic estimates, as well as the estimate obtained
by solving (3.9) using the full approximation of the eddy diffusivity (3.5a,b), with the
actual DNS data. Again, very good agreement is recovered at Pr � 0.125, for which αt
is modelled accurately from (3.5a,b), whereas deviations appear at lower Re. Whereas
the high-Prandtl-number scaling δ+

t ∼ Pr−1/3 implied by (3.11) was questioned in several
previous studies (Na, Papavassiliou & Hanratty 1999; Schwertfirm & Manhart 2007), we
find that it applies to the DNS data quite well. Possible reasons may reside in the fact
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that previous studies were conducted at much lower Reynolds number, at which scale
separation between inner and outer layer was not substantial. Much less clear is the limit
of low Prandtl numbers, for which (3.10) yields a qualitatively correct increasing trend,
although with large quantitative deviations. With this caveat, the estimate (3.10) can also
be exploited to derive minimal conditions for the establishment of a logarithmic layer in
the mean temperature distribution. In fact, setting the edge of the log layer to y/R ≈ 0.2,
the conductive sublayer is contained in it only as long as 0.2kθ Pr Reτ ≥ 1, which implies
Peτ ≥ 10.9, where Peτ = Pr Reτ is the friction Péclet number. This condition is not
satisfied in the present dataset from the Pr = 0.00625 flow case, and it is barely satisfied
in the Pr = 0.0125 case (see table 1).

From (3.8), one can also infer approximate values for the log-law additive constant in
(3.1), defined as

β(Pr) = lim
y+→∞

(
Θ+( y+) − 1

kθ

log y+
)

, (3.12)

which are crucial in the estimation of the heat transfer coefficient (see below). Explicit
approximations for the log-law shift can be obtained in the limits of very low and very
high Prandtl numbers. For Pr 
 1, (3.8) readily yields

Θ+ ≈ 1
kθ

log(kθ Pr y+), (3.13)

which implies

β(Pr) = 1
kθ

log Pr + log kθ

kθ

. (3.14)

On the other hand, for Pr � 1, integrating (3.8) yields

Θ+ ≈
∫ y+

0

(
Pr

1 + kθ Pr η
+ Pr

1 + kθη3/Pr

)
dη

=
√

3
6

π

(
A2

θ Pr2

kθ

)1/3

− 1
kθ

log(Aθkθ Pr) + 1
kθ

log(kθ Pr y+), (3.15)

which implies

β(Pr) =
√

3 πA2/3
θ

6k1/3
θ

Pr2/3 + 1
kθ

log Pr − 1
kθ

log Aθ . (3.16)

We note that a similar functional approximation for β(Pr) was arrived at by Kader &
Yaglom (1972), although based partly on empiricism and data fitting.

Changes of the additive logarithmic constant with Pr are examined in figure 11. In
figure 11(a), we illustrate the procedure that we have followed in order to obtain estimates
of the β(Pr) function, based on fitting the mean temperature distributions with logarithmic
functions with prefactor kθ = 0.459. It is quite interesting that logarithmic distributions
are recovered for all cases, apart from the Pr = 0.00625 case, consistently with the
previously obtained lower bounds for the existence of a logarithmic layer of the mean
temperature. Figure 11(b) then compares the log-law offset constant thus inferred from
the DNS temperature profiles, with the estimate obtained from (3.12), and Θ resulting
from numerical integration of (3.8), as well as with the low- and high-Pr asymptotics.
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Figure 11. (a) Determination of the log-law offset function, and (b) its distribution as a function of Pr. In (a),
the dashed lines denote logarithmic best fits of the DNS data, of the form Θ+ = (1/kθ ) log y+ + β. In (b),
the solid line refers to the estimate obtained from (3.12), with Θ obtained from numerical integration of (3.8),
the dashed line refers to the low-Pr asymptote (3.14), and the dash-dotted line refers to the high-Pr asymptote
(3.16). The case Pr = 0.00625 is marked with an open symbol.
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Figure 12. Distributions of (a) temperature variances, and (b) corresponding peak value as a function of Pr. In
(b), the solid line denotes the predictions of (3.18), the dash-dotted line denotes the high-Pr asymptote (3.19),
and the dashed line denotes the low-Pr asymptote (3.20). Refer to table 1 for colour codes.

The prediction of β obtained from numerical quadrature in fact yields excellent prediction
of β(Pr) at Pr � 0.125, consistently with all approximations noted previously. The
high-Pr asymptote (dash-dotted line), yields an accurate prediction only at Pr � 10,
whereas the low-Pr asymptote tends to overpredict the magnitude of β (which is negative
for Pr < 0.5).

The distributions of the inner-scaled temperature variances are considered in
figure 12(a), showing substantial growth with the Prandtl number. Specifically, a
prominent peak is observed within the buffer layer at high Pr, which becomes weaker
and moves farther from the wall at lower Pr. This behaviour is obviously consistent with
the spectra shown in figure 5, as the variances are simply the integrals of the spectral maps
over all wavelengths. The change of the peak temperature variance can be estimated by
preliminarily noting that asymptotic consistency implies

〈θ2〉+ y+→0∼ (bθ Pr y+)2, (3.17)
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where bθ could in general depend on the Prandtl number (Kawamura et al. 1998), but
fitting the DNS data suggests bθ ≈ 0.245, regardless of Pr. Assuming that quadratic
growth of the variance continues up to the peak position, we can estimate that

〈θ2〉+PK ≈ (bθ Pr δ+
t )2, (3.18)

where δ+
t is defined in (3.9). Hence the high-Prandtl-number asymptotic behaviour follows

〈θ2〉+PK ≈ b2
θA4/3

θ

k2/3
θ

Pr4/3, (3.19)

whereas (3.10) would yield a constant asymptotic behaviour at low Pr, namely

〈θ2〉+PK ≈ b2
θ

k2
θ

. (3.20)

Equation (3.19) is in fact found to be quite successful in predicting the growth of the peak
variance, whereas large deviations from the predicted trends are observed at Pr � 1. This
is due partly to previously noted difficulties in predicting the behaviour of δt at low Pr,
but mainly to loss of validity of first-order Taylor series expansion as the peak position
moves farther from the wall, and in fact the peak occurs at y+ ≈ 400 at Pr = 0.00625
(see figure 10). Furthermore, the dominance of thermal conduction at Pr 
 1 implies that
thermal fluctuations become vanishingly small in the limit.

The production term of temperature variance, defined as

P+
θ = 〈urθ〉+ dΘ+

dy+ , (3.21)

is shown in figure 13(a). Similar to the temperature variance, it exhibits a prominent peak
that decreases in magnitude and moves away from the wall as Pr decreases. It is noteworthy
that whereas its magnitude is a strongly increasing function of Pr near the wall, it tends
to become very much universal in the outer wall layer (say, y+ � 100), as highlighted in
figure 13(b). The peak production can be estimated on the grounds that the mean thermal
balance equation (3.7) implies that for Reτ → ∞, Pθ PK → 0.25 Pr. However, at any finite
Reynolds number, the multiplicative constant is a bit less, and in the present case (Reτ =
1140) we find

Pθ PK = 0.236 Pr. (3.22)

Figure 13(c) shows that this prediction is very well satisfied at Pr � 0.0625.

3.3. Heat transfer coefficients
The primary subject of engineering interest in the study of thermal flows is the heat transfer
coefficient at the wall, which can be expressed in terms of the Stanton number,

St =
α

〈
dT
dy

〉
w

ub (Tm − Tw)
= 1

u+
b θ+

m
, (3.23)

where Tm is the mixed mean temperature (Kays et al. 1980),

Tm = 2
∫ R

0
r 〈uz〉 〈T〉 dr

/(
ubR2

)
, (3.24)
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Figure 13. Production of (a) temperature variances, also (b) pre-multiplied, and (c) corresponding peak value
as a function of Pr. In (b), the dashed line denotes the high-Pr asymptote (3.22). Refer to table 1 for colour
codes.

and θ+
m = (Tm − Tw)/Tτ , or more frequently in terms of the Nusselt number,

Nu = Reb Pr St. (3.25)

A predictive formula for the heat transfer coefficient in wall-bounded turbulent flows
was derived by Kader & Yaglom (1972), based on assumed strictly logarithmic variation
of the mixed mean temperature with Reτ ,

1
St

= 2.12 log
(
Reb

√
λ/4

)+ 12.5 Pr2/3 + 2.12 log Pr − 10.1√
λ/8

, (3.26)

where the friction factor λ = 8/u+
b

2 is obtained from the Prandtl friction law,
and the log-law offset function was determined based on asymptotic consistency
considerations, and by fitting a large number of experimental data, to obtain
β(Pr) = 12.5 Pr2/3 + (1/kθ ) log Pr − 5.3, with 1/kθ = 2.12. The above formula was
reported to be accurate for Pr � 0.7.

A modification to Kader’s formula was proposed by Pirozzoli et al. (2022), to account
more realistically for the dependence of θ+

m on Reτ , resulting in

1
St

= k
kθ

8
λ

+
(

βCL − β2 − k
kθ

B
)√

8
λ

+ β3, (3.27)
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Figure 14. Variation of (a) inverse Stanton number and (b) Nusselt number, with Prandtl number. The solid
lines denote the prediction of (3.27) with β defined as in (3.12), whereas the dash-dotted and dashed lines refer
to the same equation with β obtained from the asymptotic high-Pr expression (3.16) and the asymptotic low-Pr
expression (3.14), respectively. The dotted line refers to Kader’s original formula (3.26). The inset in (a) shows
percent deviations from the DNS data. In (b), the red line denotes the correlation (3.28), and the blue line
denotes the correlation (3.30). The inset in (b) shows the distribution of the Nusselt number obtained from the
DNS in compensated form, namely Nu/Pr1/3.

where βCL(Pr) = β(Pr) + 3.504 − 1.5/kθ , β2 = 4.92, β3 = 39.6 and B = 1.23. Any one
of the relations (3.12), (3.14) and (3.16) can then be used to obtain predictions for the heat
transfer coefficient variation with the Prandtl number.

The above options are tested in figure 14, which shows the predicted inverse Stanton
number (figure 14a) and Nusselt number (figure 14b). With little surprise, we find that
(3.27) with ‘correct’ definition of β(Pr) as in (3.12), yields very good prediction of the
heat transfer coefficient, with relative error less than 1 %, for Pr � 0.5. Larger errors
are found at lower Pr, at which the assumption of logarithmic distribution of the mean
temperature becomes less and less accurate. Larger errors are also obtained with the
asymptotic formulations of β(Pr) for high and low Prandtl numbers, as well as with
Kader’s original formula. The figure also shows that the classical power-law correlation
(red line) of Kays et al. (1980), namely

Nu = 0.022 Re0.8
b Pr0.5, (3.28)

predicts reasonably the trend of the heat transfer coefficient in the range of Prandtl numbers
around unity, whereas it strongly deviates at lower Pr, and at higher Pr, where (3.27) with
(3.16) implies that the correct asymptotic trend is

Nu ∼ Pr1/3, (3.29)

hence shallower than the power-law formulas in common use. The tendency to this
asymptotic limit is found to be rather slow, as shown in the inset of figure 14(b), and
probably data at higher Prandtl numbers would be desirable to corroborate this prediction.
Semi-empirical correlations for the Nusselt number in the range Pr 
 1 are available
based on studies of heat transfer in liquid metals and molten salts (Lyon & Poppendiek
1954; Yu-ting et al. 2009; Pacio, Marocco & Wetzel 2015). One of the most frequently
used correlations is the one due to Sleicher & Rouse (1975), namely

Nu = 6.3 + 0.0167 Re0.85 Pr0.93, (3.30)
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which is shown as a blue line in figure 14(b). The agreement with the DNS data is not
entirely satisfactory, although it seems to improve as Pr decreases. Discrepancies are likely
due to the large uncertainty that is associated with experiments in liquid metals (Kader &
Yaglom 1972), and/or to potential differences between conditions of imposed heat flux and
imposed temperature difference. All in all, it seems that the range of low Prandtl numbers
in forced convection has been studied only cursorily in DNS, while certainly deserving
much more attention.

4. Concluding comments

We have analysed the behaviour of passive scalars in turbulent pipe flow in a wide range
of Prandtl numbers, so as to be representative of both the low- and high-Prandtl-number
asymptotic limits. Whereas studies at Pr = O(1) are relevant as being representative
of air and most gases, Prandtl numbers much lower than unity are frequent in nuclear
engineering, being relevant for liquid metals and molten salts used in the cooling systems
of nuclear reactors and in solar energy systems, and Prandtl numbers higher than unity
are representative of water, oils and diffusing substances in mass transfer processes.
At the same time, the friction Reynolds number considered here (Reτ ≈ 1140) is high
enough that a near-logarithmic layer is observed in the mean axial velocity, hence we
believe that the results are representative of realistic fully developed forced turbulence.
We are not aware of any previous DNS study of pipe flow in such wide range of Pr,
and/or (relatively) high Reynolds number. DNS at Pr � 1 here have been particularly
challenging from a computational standpoint, because of the presence of sub-Kolmogorov
scales, which should be accurately accounted for, by resolving the relevant Batchelor
scale.

Qualitative results regarding the organization of passive scalars at non-unit Prandtl
number generally confirm the findings of previous studies carried out in plane channels
(Alcántara-Ávila et al. 2018; Abe & Antonia 2019; Alcántara-Ávila & Hoyas 2021),
namely that structural similarity with the axial velocity field resulting from similarity
of the corresponding transport equations is severely impaired. In fact, strong diffusion
at low Pr has the effect of filtering out the small scales in the passive scalar field,
with special reference to the buffer layer. Hence the corresponding spectral maps (see
figure 5) fail entirely to show the near-wall energetic site, whereas the outer energetic
site survives even at very low Pr. This observation carries potential implications as the
temperature field of liquid metals could be used in experiments to track the dynamics of
the outer-layer structures, whose importance in the high-Re behaviour of boundary layers
has been the subject of intensive research (see e.g. Marusic et al. 2010). On the other hand,
passive scalars at high Pr exhibit strong small-scale activity confined to the buffer layer,
and near-wall organization into streaks, but with size slightly different than in the unit
Prandtl number case. Interestingly, no clear large-scale organization is found in that case,
suggesting that the high-Pr fluids can be used to study the near-wall layer in isolation from
the outer layer.

Regarding the one-point statistics, we find that the mean scalar profiles in the overlap
layer can be approximated conveniently with logarithmic distributions, with the exception
of cases with very low Prandtl number. Specifically, we provide a criterion for the presence
of a logarithmic layer to be Peτ = Pr Reτ � 11, which is supported from the DNS data. An
accurate model for predicting the mean scalar profiles at any given Pr is then formulated
by noting very near universality of the distribution of the eddy diffusivity across a
wide range of Prandtl numbers (Pr � 0.125), which can be modelled faithfully in terms
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of a simple functional relationship. This observation suggests that modelling turbulent
diffusion processes directly in terms of the eddy diffusivity can have significant advantage
over traditional approaches based on introduction of the turbulent Prandtl number, which
has a much more complex spatial distribution.

The model derived for αt bears the further advantage of yielding predictions for a
number of thermal boundary layer statistics. First, we manage to determine estimates for
the thickness of the conductive sublayer, which we find to scale as Pr−1/3 at high Pr, and
as Pr−1 at low Pr, in good agreement with the DNS data. Second, we obtain predictions
for the log-law additive constant, which we predict to scale as Pr2/3 in the high-Pr limit,
in agreement with Kader & Yaglom (1972), and as log Pr at moderately low Prandtl
number. These scalings are well verified in the DNS data. We also obtain predictions for
the peak temperature variance and its associated peak production, which we find to scale
as Pr4/3 and Pr1, respectively, in very good agreement with the DNS data. In general,
predictions for the high-Pr behaviour of the flow statistics are quite robust, whereas
lack of universality at low Pr makes modelling and theoretical prediction a much more
difficult task.

Finally, we have focused on heat transfer. Starting from a modified version of Kader’s
classical formula (Pirozzoli et al. 2022), we have incorporated Prandtl number effects
through the log-law offset function. The resulting predictions are in very good agreement
with the DNS data, with errors of less than 1 % at Pr � 0.5, and, consistent with
Kader’s inferences, we find convincing evidence that the Nusselt number should scale
as Nu ∼ Pr1/3 at high Pr, although the approach to the asymptotic trend is quite
slow. Predictions, however, become rapidly poorer at low Prandtl number. Conventional
power-law approximations (e.g. Kays et al. 1980) are in satisfactory agreement with the
DNS data at Prandtl number not too far from unity, but they tend to overestimate Nu
significantly at Pr � 10. Other empirical formulas, meant to fit experimental data for liquid
metals (e.g. Sleicher & Rouse 1975), provide reasonable approximation of the DNS data
only at extremely low Pr, whereas they fall short at moderately low Pr.

Overall, the present analysis supports and corroborates the theoretical framework set
by Kader & Yaglom (1972), at least for fluids with relatively high Prandtl number,
removing most doubts raised in previous DNS studies, which were carried out mainly
at limited Reynolds number. Furthermore, we are able to set precise operational ranges
for the validity of classical heat transfer correlations, which are rather narrow indeed.
Most difficulties and uncertainties are associated with the low Prandtl number regime,
which features substantial deviations from universality and/or from logarithmic behaviour,
thus making the analysis more difficult than for the high-Pr regime. Interesting hints for
possible treatment of this regime were given by Abe & Antonia (2019) for plane channel
flow, which we plan to expand in future publications. For that purpose, additional DNS at
low Pr and higher Reynolds number should be carried out, to verify quantitatively the
theoretical prediction that at low Pr the heat transfer coefficient should be a function
of solely Pe = Pr Reb, and derive suitable scaling laws for the eddy diffusivity. Equally
important would be extending the range of Prandtl numbers to higher values. Indeed, as
one can infer from figure 14, the tendency of the Nusselt number towards the expected
Pr1/3 asymptotic behaviour is quite slow. Given that Prandtl numbers in the order of
hundreds are important in applications, e.g. engine oils and contaminants, DNS in that
range would be highly desirable. Although this would imply prohibitive resolutions using
the same grid spacing for the momentum and scalar transport equations, the problem could
be circumvented by employing a dual mesh, as done by Ostilla-Mónico et al. (2015) for
natural convection.
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