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On a class of Differential Equations whose solutions
satisfy Integral Equations.

By Professor E. T. WHITTAKEK.

(Read 11th December 1914- Received 2Srd December 1914)

§ 1. Introduction.

The science of the solution of Differential Equations has been
in great measure systematized by the aid of ideas borrowed from
the Theory of Functions, the equations being classified according
to the singularities possessed by their solutions. In the case of
linear Differential Equations of the second order

the solutions can have no singularities except at the singularities of
the functions ^(a;) and r(x) (and possibly also at x = oo ) : these
equations may therefore be classified simply according to the
number and nature of these singularities. The singularities of
such a differential equation are of two kinds, regular and irregular :
if x = c is a regular singularity, the two independent solutions
yi(x) and yj,x) in the neighbourhood of the point can be expressed
in the form

V\{x) = (x-c)~r x a series of ascending integral powers of (x - c)
y^x) = (x-c)y x a series of ascending integral powers of (a; - c),

the constants y and y' being called the exponents at this singu-
larity. If, on the other hand, two expansions of this kind do not
exist, the singularity is said to be irregular. But an irregular
singularity can in most cases be regarded as formed by the
coalescence or confluence of two or more regular singularities: and
the problem therefore resolves itself primarily into the investigation
of equations whose singularities are all regular.
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We can now classify these equations according to the number
of their singularities. This number must be at least two: and the
equations with only two singularities form a small and easily
soluble class of no particular interest. But the equations with
three regular singularities form an extensive class to which belong
many equations of great importance; in particular, the differential
equations satisfied by Legendre functions, by Bessel functions (a
"confluent" limiting case), by the hypergeometric series, by the
Hermite or parabolic-cylinder functions, by the functions W^se),
by Sonine's function 7 ,̂(x), by Abel's function <f>m(x), and many
others. The theory of all these functions is essentially the same,
and can be derived from the fundamental general theorem that the
differential equation whose singularities are at a (exponents a., a.'),
b (exponents ft, /?'), and c (exponents y, y) is satisfied by a family
of integrals of the type

y{x) = (x- a)a(x - bf(x - c)^(s - af + ? + a> ~ \8 - &)?+°+? ~1

(s-c)a+P + t'-\x-s)-a-ti-yds (1)

We must now consider equations with four regular singularities.
Unfortunately no theorem corresponding to (1) has been discovered
for these equations: and consequently very little is known about
them. I have, however, for some time past realized that in the
theory of equations with four singularities, the theorem corre-
sponding to (1) must be a. homogeneous integral equation: that is, an
equation of the form

y(x) A k(x,s)y(s)ds ; (2)

and I have published ,the integral-equation of this kind correspond-
ing to two differential equations of this class, namely, Mathieu's
equation* and Lame's equation, f In the present paper I propose
to consider a wider group of equations belonging to the class, and
to obtain the integral-equation which is satisfied by their solutions.

* Of. Proceedings of the International Congress of Mathematicians,
Cambridge, 1912.

t Proceedings of the Royal Society of Edinburgh, 1914.
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§ 2. Derivation of the integral-equations corresponding to differ-
ential equations of this group.

The differential equation corresponding to this schematic repre-
sentation is

+ {- hnQtn + 1 - ?)* + co}y = 0 (4)

If in this we change the independent variable by writing
z = c sin2a;, it becomes

dry dy
(b - csin-x)—^ -2(1 -q)csinx cosa;-^

dx- dx

2/ = 0 (5)

which we shall take as the standard form of equation.

Let us see if a solution of this equation can exist of the form
fV

y(x)= I sin"(x+ t)v(t)dt (6)
J o

where v(t) is a periodic function of t, of period 2ir.

The condition to be satisfied is

- csin2a;) {n(n - 1 )sin"-2(< + x)cos2(t + x)- nsm"(t + x)} ~i v(t)dt = 0.p(6 - csin2a;) {n(n - 1 )sin"-2(« + x)cos\t + x)- wsin"(< + x)} - |
I - 2(1 -<?)ncsina;cosa;sinn~1(< + a:)cos(< + a:) I

Jo |_ + { _ n ( n + 2-29)csin2a: + 4co}sinn(< + x) J

Replacing x by (t + x) -1, this may be written

•n(n - 1 )sin—°(t + x)(b- csinH) -i v(t)dt = 0.

+ 2n(n - q)c cost sint cos(a; + ^sin""^* + x) J

Now if h(t) and g(t) denote any functions of t which are
periodic, of period 2TT, we have on integration by parts

f 2r(n - l)sin"-%t + x)h{t)dt
Jo

r2

Jo
{«sinn(« + x)h(t) - sin"-1^ + x)cos(< + a;) h'(t)}dt

jo

and

- f i7rsin«(t)g'(t)dt.
Jo
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Making use of these two formulae in order to raise the index of
sin(t + x) to n in every term of the preceding integrand, we obtain

) — - 2(n + 2 - q)cainlcoat^ ~1 sin"(a: + t)td = 0.

The expression (6) will therefore be a solution of the equation
(5), provided v(t) is a periodic solution of the differential equation

(6 - csin2*)-^— 2(n + 2 - o)csin<cos<-1-di at

}v = O. ...(7)

This is not the same differential equation as (5), but if we bring it
to algebraic form by writing csin2< = f, we readily find that it
corresponds to the schematic representation

0 6 c oo
0 -n-l+q 0 %n+l-q
J 0 \

so if we write

the differential equation for w will correspond to the schematic
representation

0 b c ao |
0 - £ n 0 0 f f •

j
But this is the same as the original schematic representation

(3), except that the exponents at the singularities b and oo have
been interchanged. We can therefore reduce this to (3) by per-
forming the homographic transformation which interchanges
6 with oo , and interchanges 0 and c. This transformation is

and it rj be defined by this equation we have therefore

( 0 6 c
0 0 0
i 1 h

( oo

0 0 0 -in rj
in-q+l
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which is the same as (3). We may therefore (writing ?/ = csin-s)
expect that the transformation

Vicoss
sin<

-Jb - c sinas

Jb-csins [• (8 )
cos«= -j===-

Vo - csin 8

v = (6 - csin2<)"1"+*"1«'

will reduce the equation (7) to the form

(6-csinss)—^--2(l~?)csin8COS«-^' + j - «(n + 2 - 2g)csin2s + 4C0JM> = 0 (9)

which is the same equation as (5): and by actually performing the
transformation we find that it is so, the value of the constant c0

being the same in both cases.
Now v(t) was a periodic solution of (7): so w(s) must be a

periodic solution of (9): and thus from (6) and (8) we have the
result that the differential equation (5) is satisfied by the integral

Ib- csinxsins + \/6cosa:coss)"(6 - csin2s)~iw(s)ds

where w(s) denotes a periodic solution of the differential equa-
tion (9).

Now this integral is evidently a periodic function of x, of
period 2ir. But since the equation (5) cannot have more than one
independent periodic solution corresponding to the same value of c0,
we see that the solution represented by this integral must be (save
for a constant factor) the same function of x as w(s) is of s. That
is to say, the periodic solutions of the differential equation (5) are
the solutions of the homogenous integral-equation

( Jb-csinxsms+ *Jbcosxco&sy(b - csin2«)~»y(sWs....(10)

It will be seen that the constant c0 of the differential equation
does not occur in the integral-equation, while the constant A of the
integral-equation does not occur in the differential equation. The
integral-equation has a solution only when A. has one of a certain
number of values which may be denoted by A,, Â , A3, ... : and
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corresponding to these values of A there exist solutions of the
integral-equation, which we may denote by y^x), j/2(x), ya(x)
The differential equation possesses a periodic solution only when c0

has one of a certain number of values c0', c0", c0'", ... : and the
above theorem asserts that the solutions of the differential equation
corresponding to these values of c0 are precisely the functions
2/i(z), y^x), y3(x), ...

§ 3. Orthogonal property of the solutions.

The fact that the periodic solutions of (5) are the solutions of
the integral-equation (10) can be applied in order to deduce pro-
perties of these solutions from the known general properties of
integral-equations. For instance, we have immediately the theorem
that if yk(x), yr(x) are any two periodic solutions of (5), corre-
sponding to the same values of n and q but different values of
c0) then

f iryk(x)yr(x)(b-csitfx)-*dx = O (11)
Jo

This relation enables us to determine the coefficients when an
arbitrary function of x is expanded as a series of the functions
2/i(3). ys(x), y-i(x), ...

§4. Verification for a particular solution.

It is of interest to verify the result (10) for the case of one of
the simplest solutions of the differential equation (5).

It is easily shown that in the case n = '2, q = \, a periodic
solution of (5) is

y(x) = csin2a; - bl

where I denotes either root of the quadratic

bl*-2bl + c = 0 (12)

In order to verify the theorem (10), we have therefore to show that

I2x _

( Jb -csinxsins+ Jbcosxcossf(b - csin2*)- S(esin2« - bl)d
0Now the integral on the right-hand side can be put in the form

f 2T r-( 1 - A2)(sin2a: - cos2a:)(l - l)N~i -1 da
+ {(1- Z)[cos2a; - (1 - A2)sin'a;] - (1 - /^(sin2* - cos^JiV"-*

0 L -{cos2o;-(l-A>in2a;}iV* J{cos2o;-(l-A>in2a;}iV*

where A2 denotes c/b, and iV denotes 1 - A2sins«.
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But it is known from the theory of elliptic integrals that

and therefore the integral can be expressed as the sum of two
quantities

and

[(2sin2x - 1) (1 - I) - 1 + (2 - A2)sin2x] f

J
f
Jo

[(1 - l){ 1 - (2 - As)sin2a;} - (1 - A»)(2sin*a: - 1)] f **N~hds.
Jo

By aid of the quadratic (12), we can show that the coefficient of
each of these integrals is a constant multiple of (csin'a; - bl), and
this establishes the required result.

I t will be observed that the verification, in this simple case, is
not so straightforward as might perhaps have been expected.

§ 5. A new class of functions, which in a limiting case become
Mathieu functions.

There is one limiting case of the result (10) which leads to a
new class of functions having somewhat remarkable properties.
To obtain them, suppose that the ratio of c to b becomes indefi-
nitely small and the constant q indefinitely large, in such a way
that the product qc retains a finite value, equal to I say.* Then
the result (10) can be stated thus:—

The periodic solutions of the differential equation

-4- + 2lsinx CO&E-Ĵ  + (2wJsin2a; + A)y = 0
dor ax

(where A denotes a constant) are the solutions of the homogeneous
integral-equation

y(x) — XI cos"(a5 - s)e y(s)ds.
Jo

* Two regular singularities now become confluent, and produce an
irregular singularity.
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If we remove the second term in the differential equation by
writing

it becomes (absorbing a constant into the A, and omitting the
subscript,)

cPv
^ - + {A-(n+\)lcos2x + ^l-cos4x}y = 0 (13)

and the periodic solutions oj this differential equation are the
solutions of the homogeneous integral-equation

y(x) = xfoo8"(* - s^^'+^y&ds (14)
Jo

The remarkable property of these solutions is that they bear the
same relation to the Mathieu functions cem(x) and se,n(x) that the
associated Legendre functions P%(x) bear to the Bessel function Jm(x).
This will appear from the following properties:—

(i) Any one of these functions is expressible in a finite form in
terms of elementary functions ; in fact, in the form

BM(cosx, sin*)

where Rn{cosx, sinx) denotes a homogeneous polynomial in cos*
and sinx of degree n. (The truth of this statement is readily seen
by inspection of the integral-equation).

(ii) These functions are orthogonal to each other, i.e. any pair of
them y,(x) and yk{x) satisfy the condition

Jo
yr{x)yk(x)dx = 0 (15)

(This follows from the fact that yr and yK are two distinct
solutions of a homogeneous integral-equation with a symmetrical
nucleus).

(iii) In the limit when n tends to infinity and I to zero in such a
way that nl remains finite, these functions become the Mathieu
Junctions. (This is evident from the differential equation (13),
which then becomes Mathieu's equation).
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The equation (13) is a case of G. W. Hill's equation in the
Lunar Theory.

We may note that by taking I to be zero in (13) and (14),
keeping n finite, we obtain the result that the solutions of the
homogeneous integral-equation

f2T

y(x) = A. I cos"(a: -s)y{s)ds
Jo

are cosnx, sinnx, cos(n - 2)x, sin(ra - 2)x, cos(n - i)x, sin(n - i)x, ...,
the set concluding with cosas, sinos if n is odd, and with a constant
if n is even.
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