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Abstract. In this paper, relative pictures are used to analyze a certain family of
exponent-sum two equations over groups.
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1. Introduction. If G is a group, then an equation over G is an element,
� ¼ c1t

s1c2t
s2 . . . ckt

sk , of the free product G � hti in which the variable t generates an
infinite cyclic subgroup. The exponent sum of � is �ð�Þ ¼ s1 þ s2 þ . . . sk; the length
of � is j�j ¼ js1j þ js2j þ . . .þ jskj. We say � is solvable over G if the inclusion
induced homomorphism G ! hG; tj�i is injective. There are two main conjectures
dealing with equations over groups. The Kervaire-Howie conjecture predicts that if
�ð�Þ 6¼ 0 then � is solvable over any group. In [10], Levin conjectured that any
equation is solvable over a torsion free group. Interested readers are referred to [6],
[7] and [8].

We will be interested in equations �k defined by

�k ¼ a1t
�1a2ta3t

�1a4t . . . ak�1t
�1aktxtb1t

�1b2t . . . bk�1t
�1bktyt

for the even integer k. Clearly, j�kj ¼ 2kþ 2 and �ð�kÞ ¼ 2. In this paper, we prove
two theorems.

Theorem 1. Assume that the equation �k is not solvable over the group G. Then
there is at most one j such that aj 6¼ bj.

Theorem 2. Let G be a torsion-free group, and assume that �k is not solvable over
G. Then:

(1) there is exactly one j such that aj 6¼ bj;
(2) there is some positive integer p and an isomorphism from the subgroup of G

generated by aj and bj onto the group of integers taking aj to p and bj to pþ 1;
(3) x 6¼ y.

As mentioned above, both the Kervaire-Howie Conjecture and the Levin Con-
jecture predict that �k is solvable over every group. Theorems 1 and 2 prove that in
many situations it is. The outstanding cases described by these two theorems do not
seem to be accessible by the methods used in this paper. The author would like to
take this opportunity to express his gratitude to the referee for several useful sug-
gestions on improving this paper, in particular, for a direct proof of Lemma 2.
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In [10], Levin proved that the equation �0 ¼ xtyt is solvable over any group G.
So we will assume that k is positive.

It is a consequence of work done in [4], that if �k is not solvable over the torsion
free group G, then there is some positive word in either fa1; b

�1
1 g or fak; b

�1
k g that

represents the identity in G. We see that Theorem 2 implies that for each i, there is a
positive word in fai; b

�1
i g that represents the identity in G. Therefore, Theorem 2 is a

stronger result for �k than that given in [4].
In [8], Howie used relative diagrams to investigate equations over groups. Work

following this scheme can be found in [5], [7], and [9]. In this note, we make use of
the dual notion of relative diagrams, relative pictures. We give a brief description of
this technique below. Readers interested in a more thorough treatment are referred
to [2] and [3].

Given an equation � ¼ c1t
s1c2t

s2 . . . ckt
sk , the pattern, P�, is a directed star graph

embedded in S2 whose center is the vertex � and whose corners are labelled by the
coefficients c1; . . . ck of �. P� has an edge directed away from � for each occurrence of
t in � and an edge directed toward � for each occurrence of t�1 in � so that if one
circles � counter-clockwise reading t for each edge leaving �, t�1 for each edge
entering �, and the corresponding coefficient for each corner label, one will read the
equation � up to cyclic conjugacy. The inverse pattern �PP� is obtained by reflecting P�

in the sphere; changing the orientation on each edge and inverting the corner labels.
We see that up to cyclic conjugation, �PP� ¼ P��1 . As an example, Figure A shows the
pattern P�4 .

Figure A
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Given the equation �, a P�-graph is a connected, directed graph embedded in S2

whose corners are labelled so that each vertex v looks either like P� (in which case v
is a positive vertex) or �PP� (whence v is negative). Figure B shows a P�k -graph with
one positive vertex and one negative vertex.

Let � be an equation and let � be a P�-graph. For each region � of � , define !�

as the word obtained by reading counter-clockwise around the corners of �. Let !�
�

be the word obtained by reading clockwise around �. These are well-defined up to
cyclic conjugation. For example, if � is the P�k-graph shown in Figure B, and � is a
region of �, then !� ¼ ðaib

�1
i Þ

�1 or ðxy�1Þ�1 for some i. Clearly, if � is an equation
over the group G, then each !� represents an element of G. We say that � is redu-
cible (in the sense of Sieradski [12]) if there is some region of � whose corresponding
word contains a cancelling pair, say cici

�1. If � is not reducible, then it is reduced.
The crux of our method is dual to that used by Howie in [8]. If we translate the

work done by Howie into the dual, we get the following.

Theorem 3 (Howie). The equation � is not solvable over the group G if and only if
there is a reduced P�-graph with a specified region �0 such that:

(1) for each region � 6¼ �0, the word !� represents the identity of G;
(2) the word !�

�0
does not represent the identity of G.

In this paper, we will assume that the equation �k is not solvable over some
group G. Then we will see what types of regions must occur on reduced P�k -graphs.
This will tell us what relations must hold in the group G.

Figure B
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Let � be an equation and let � be a P�-graph. We say a region of � is consistent
if its boundary is consistently directed and each corner is labelled with the same
coefficient up to exponent. In [3], the equation � was defined to be Type K if each
P�-graph has at least two consistent regions. It follows from Howie’s theorem that
every Type K equation satisfies Levin’s conjecture. In [9] and [3] it was shown that
every exponent sum one equation is Type K. Figure B shows that, for any even k,
the equation �k is not Type K. In fact, these are the only exponent sum two equa-
tions that are known not to be type K.

2. Proof of Theorem 1. For the remainder of this note, we will assume that the
equation �k is not solvable over the group G and that � is a reduced P�k-graph
whose existence is asserted by Howie’s Theorem. We will let �0 be the specified
region of � so that if � 6¼ �0, then !� represents the identity of G. We also assume
that, for all i, neither ai nor bi represent the identity in G. It follows that the only
region which might be degree one is �0.

If � is a corner of some region of � which is labelled with either x or y, then � is
a source corner; if � is labelled with either x�1 or y�1, then � is a sink corner. Fol-
lowing [3] and [4], we will add a family of dotted edges to �. Let � be any region of
� whose boundary is not consistently directed. We pair each source corner of � to a
sink corner of �. For each such pairing, we add a directed dotted edge from the
source corner to the sink corner. We do this in such a way so that the added edges
do not intersect. We call the resulting graph �̂�. We may now ignore the labels x, y,
x�1 and y�1.

Let �̂�k be the string obtained from � by replacing each of x and y with s. So,
�̂�k ¼ a1t

�1a2t . . . aktstb1t
�1b2t . . . bktst. If we let dotted edges correspond to occur-

rences of s in the same manner that solid edges correspond to occurrences of t, we
see that �̂� is a P�̂�k-graph where P�̂�k is pictured in Figure C.

Now, the dotted edges of �̂� make up a set of disjoint simple closed curves. These
curves divide the ambient sphere into subsets which we call meta-regions. So, a meta-
region is a surface embedded on the sphere whose boundary is a non-empty set of
dotted curves and whose interior does not contain any dotted edges. There must be
at least two meta-regions which are homeomorphic to disks. At least one of these
does not properly contain the specified region �0. We call this meta-region D and we
call the dotted curve which is its boundary C.

We note that there are no vertices interior to D. Also, there are an even number
of vertices on C. In fact, as one goes around C, one alternately reaches positive and
negative vertices. We will restrict our attention to the circle graph � ¼ D \ �̂� . Any
region of � which is bounded by edges of � reads a relation in G. Such a region will
be called an interior region. No interior region has degree one, so � has no loops.

A germ of an edge is a preferred small subinterval adjacent to one endpoint of
that edge. So each edge has exactly two germs. Each vertex v of � is adjacent to
kþ 1 solid germs and 2 dotted germs. If v is a positive vertex, then v either corre-
sponds to the subword �a ¼ sta1t

�1 . . . akts of �̂� or the subword �b ¼ stb1t
�1 . . . bkts.

We say that v is a positive A-vertex in the former case and a positive B-vertex in the
latter. We weight the solid germs of v with the set of integers f0; 1; . . . ; kg so that the
germ counterclockwise (respectively, clockwise) of the corner labelled ai or bi is
assigned the number i� 1 (resp., i). We define negative A-vertices and negative
B-vertices in the obvious way. We weight the germs at each negative vertex similarly
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using the set of non-positive integers f�k;�ðk� 1Þ; . . . ; 0g. Let e be an edge of � .
The total weight, �ðeÞ, of e is the sum of the weights on its germs.

We measure the distance between two vertices of � as the distance along C
when C is given the graph metric. We define the spread of v to be the maximum
distance from v to all vertices of � to which v is adjacent. It is not hard to see that
there must be a vertex whose spread is 1. Call this vertex w. Since � has no loops,
every edge adjacent to w has weight 0. Without loss of generality, we will assume
that w is a positive A-vertex.

Now, there are two cases: either there is a vertex v whose distance from w is 1 so
that every edge adjacent to w is also adjacent to v; or, there is some j so that the
edges whose germs at w are weighted f0; 1; . . . ; j� 1g are all adjacent to the vertex
immediately clockwise of w along C and the edges whose germs at w are weighted
f j; . . . ; kg, are adjacent to the vertex immediately counter-clockwise of w.

In the first case, w is adjacent to k interior regions of degree two. These yield the
relations aib

�1
i for all i. In the second case, we obtain the relations aib

�1
i for all i 6¼ j.

In either case, there is at most one j so that aj 6¼ bj. This ends the proof of Theorem 1.

3. Proof of Theorem 2.

Lemma 1. Let �k be an equation over the torsion free group G. If for all i, ai ¼ bi,
then �k is solvable over G.

Figure C
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Proof. We factor the inclusion induced map G ! hG; tj�ki as G ! hG; sjxsysi !
hG; s; tjxsys; a1t

�1a2t . . . akts
�1ti ¼ hG; tj�ki. That the first of these maps is injective is

due to Levin [10]; that the second is is due to [3] and that each ai has infinite order.

The preceding lemma completes the proof of part 1 of Theorem 2. Let us fix the
unique j so that aj 6¼ bj. To see that the subgroup of G generated by aj and bj is
cyclic, we need to return to the techniques used in the previous section. So, let D, C
and � be as above.

If every edge of � has weight 0, then for each i there is an interior region � so
that !� ¼ ðaib

�1
i Þ

p. (In fact, every interior region is of this form.) But, since these are
relations in the torsion free group G, we have ai ¼ bi for all i, whence �k is solvable
over G. So, there is at least one edge e0 with �ðe0Þ 6¼ 0. We may assume that e0
separates D into two sets, one of which, say D0, only contains edges which are weight
0. Let v and w be the vertices adjacent to e0.

We see that the sum of the weights of germs interior to D0 is equal to 0. It fol-
lows that v and w are either both positive or both negative. Furthermore, we see that
the weights on the two germs of e0 differ by 1. Without loss of generality, we will
assume that both v and w are positive and that v is type A. Let � be the region in D0

which has e0 as an edge. Then � is an interior region and every edge of � other than
e0 has weight 0. It follows that !� ¼ aiðaib

�1
i Þ

p for some i and p. Since this is a
relation of G we must have i ¼ j. Moreover, aj ¼ ðbja

�1
j Þ

p and bj ¼ ðbja
�1
j Þ

pþ1. In
particular, the subgroup of G generated by aj and bj is cyclic generated by bja

�1
j . Part

2 of Theorem 2 follows.

Our last task is to see that x 6¼ y. This follows from the following two lemmas.

Lemma 2. Let G be a torsion-free group with elements c and d, not both of which
are trivial. Let � ¼ csds. Then s has infinite order in the group H presented hG; sj�i.

Proof. Let u ¼ cs. If c ¼ d, H has a free product decomposition as H ¼ G � hui
where hui is cyclic of order 2. If c 6¼ d, then H has a decomposition as a free product
with amalgamation as H ¼ G � �hui where hui is infinite cyclic and � is the iso-
morphism taking the subgroup of G generated by c�1d onto the subgroup of hui
generated by u2. In either case, the element s ¼ c�1u is a cyclically reduced element
of length 2 in this decomposition. It follows that s has infinite order in H.

Lemma 3. Let �k be an equation over the torsion free group G. If x ¼ y, then �k is
solvable over G.

Proof. Assume that x ¼ y. We only need to consider the case in which there is
exactly one j so that aj 6¼ bj. Without loss of generality, we assume that j is even. Let
s ¼ tajþ1t

�1ajþ2t . . . aktxta1t
�1a2t . . . taj�1t

�1 and let

�0 ¼ a1t
�1a2t . . . taj�1t

�1s�1tajþ1t
�1ajþ2t . . . aktxt:

With these substitutions, hG; tj�ki ¼ hG; s; tjajsbjs; �
0i.

We factor the inclusion induced map G ! hG; tj�ki as G ! hG; sjajsbjsi !
hG; s; tjajsbjs; �

0i. Again, that the first map is injective is due to [10]; that the second
is, is due to [3] and the fact that s�1 has infinite order in hG; sjajsbjsi.

This ends the proof of Theorem 2.
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