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On the amplitude and the flow force constant of
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We prove a new explicit inequality for the non-dimensional flow force constant,
significantly improving the Benjamin and Lighthill conjecture about irrotational steady
water waves. As a corollary, we prove a bound for the wave amplitude in terms of the
Bernoulli constant. We show that the amplitude decays as r—2 when r — 400, where r
is the non-dimensional Bernoulli constant. We explain that the latter limit corresponds to
deep water waves and the bound for the amplitude is sharp. In terms of physical parameters
the result states that the amplitude a of an arbitrary Stokes wave is bounded by Cm?g/Q?,
where m is the relative mass flux, g is the gravitational constant, Q is the total head and C
is an absolute constant given explicitly. In particular, this implies that a < Cc>g™!, where
c is the wave speed. The latter inequality is valid for all Stokes waves, irrespective of
wavelength or amplitude, including extreme waves.

Key words: surface gravity waves

1. Introduction

We consider the classical problem for irrotational steady waves on the surface of an ideal
fluid of finite depth. The fluid occupies an infinite region with a rigid flat bottom and is
separated from the air by an unknown free surface. For plane steady waves there are three
important physical quantities: Q, m and S. Here Q is the total head, m is the mass flux and S
is the flow force constant. The importance of these parameters was justified by Benjamin &
Lighthill (1954) in their study of long waves. It was shown that a combination of Q, m and
S determines the cnoidal wave-train uniquely. Furthermore, non-dimensional quantities
Q/Q. and S/S. of an arbitrary cnoidal wave realise points in a two-dimensional cuspidal
region as in figure 1 whose boundary corresponds to laminar flows. Thus, Benjamin and
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Figure 1. Parameter region for steady water waves.

Lighthill conjectured the latter property to hold among all exact gravity waves, irrespective
of amplitude or wavelength.

In order to reformulate this conjecture in a mathematically convenient way we introduce
non-dimensional variables proposed by Keady & Norbury (1978), where the mass flux
and the gravitational constant are scaled to unity. In new variables, constants Q and S are
scaled r and S respectively. According to conjecture, every steady flow, irrespective of
amplitude or wavelength, will realise a point within a certain region in the (r, S)-plane.
The latter planar region is determined by all points (r, S) for which

S-(r) =8 =84(n), (1.1)

where S4(r) and S_(r) are the flow force constants corresponding to the subcritical and
supercritical laminar flows respectively. The boundary of this region is a cusped curve
representing all uniform streams (see figure 1). Thus, the conjecture can be stated as
follows.

Benjamin and Lighthill Conjecture. For any two-dimensional steady wave the
corresponding constants » and S are subject to the inequalities (1.1).

We emphasise that the conjecture concerns all steady waves, not necessarily periodic
or solitary waves. For instance, sub-harmonic bifurcations were found numerically by
Vanden-Broeck (1983). Such waves can have several crests in every minimal period.

The conjecture restricted to Stokes waves (periodic waves with exactly one crest and
one trough in every minimal period) was verified by Benjamin (1995), although the
left inequality in (1.1) was obtained earlier by Keady & Norbury (1975). Later, Kozlov
& Kuznetsov (2009, 2011) proved (1.1) for arbitrary solutions under weak regularity
assumptions, provided the Bernoulli constant r is close to its critical value r. = 3/2. It
was extended to the rotational setting in Kozlov, Kuznetsov & Lokharu (2017), again for
r & r., which guarantees that solutions are of small amplitude. The left inequality in (1.1)
for periodic waves with a favourable vorticity was obtained by Keady & Norbury (1978).
Finally, a complete answer was given in Lokharu (2020), where the conjecture was proved
in its general form for rotational waves with an arbitrary vorticity distribution.

Another important question about the conjecture is whether all points of the region
between curves S_ and Sy in figure 1 correspond to some steady motion. It was already
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noted by Benjamin & Lighthill (1954) that the answer is negative and that the diagram
should be complemented by the third barrier corresponding to waves of extreme form.
This was partly approved by Cokelet (1977) who numerically found the barrier, which,
however, consists of waves that are only close to stagnation but not extreme.

In the present paper we prove a new and surprisingly simple inequality S > r?/2 that
is valid for all steady waves, irrespective of geometry and amplitude. The new inequality
corresponds to a barrier defined by the curve S = %rz that intersects the lower boundary
at a point with F = 2 (recovering the well-known bound for the Froude number) and is
asymptotically close to the upper boundary S = S, (r). This shows that all steady waves,
including waves of greatest height, correspond to a significantly smaller part (grey region
in figure 1) of the region determined by the inequalities (1.1).

In addition to the significant improvement in the Benjamin and Lighthill conjecture, the
new result can be used to study solutions of the problem for large . More precisely, we
prove that all steady waves with large Bernoulli constants are necessarily small in their
amplitude, which is of order O(rfz). Thus, every extreme wave with the mass flux m = 1
in water of depth d has the amplitude of order 1/d°. In the physical variables the result
states that the amplitude a of an arbitrary Stokes wave is bounded by Cm?g/Q?, where m
is the relative mass flux, g is the gravitational constant, Q is the total head and C is an
explicit absolute constant.

2. Statement of the problem

We consider the classical model for two-dimensional steady waves on water of finite depth.
We neglect the effects of surface tension and consider an ideal fluid of constant (unit)
density. In the corresponding moving reference frame stationary Euler equations are given
by

(u — ¢)ux + vuy = —Pyx, 2.1a)
(u —c)vxy + vvy = —Py — g, (2.1b)
uyx +vy =0, (2.1¢)
uy — vy =0, (2.1d)
which holds true in a two-dimensional fluid domain D,», defined by the inequality
0<Y <n*X). (2.1e)

Here (u, v) are components of the velocity field, ¥ = n*(X) is the surface profile, c¢ is
the wave speed, P is the pressure and g is the gravitational constant. The corresponding
boundary conditions are

v=0onY =0, (2.11)
v=(u—cmyonY =n", (2.19)
P=Py,onY =n" (2.1h)

We reformulate these equations in terms of a stream function *, defined implicitly by
the relations

I/f; =c—u, Yr=nv. (2.2a,b)

This determines 1* up to an additive constant, while relations (2.1 f),(2.1 f) require ¥* to
be constant along the boundaries. Thus, by subtracting a suitable constant we assume that

Y*=m*, Y=n* ¢¥*=0, Y=0. (2.3a,b)
921 A2-3
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Here m* is the mass flux, defined by

m* = /'7 (c —u)dY. (2.4)
0

The corresponding problem for the stream function is

AY* =0in Dy, (2.5q)
NVy*P+gr=0"onY =", (2.5b)
Y *=m"onY = n*, (2.5¢)
Yy*=0onY =0. (2.5d)

In the following we will use the non-dimensional variables proposed by Keady & Norbury
(1978), where the gravitational constant and the relative flux are scaled to unity. More
precisely, we put
x=AX, y=a¥, =A%, Yy =m)YrXY),
r=Q/(m*1)?, (2.6a—¢)

where

1= (i)m . 2.7)

m2

The corresponding non-dimensional problem is

Ay =0inDy, = {(x,y): 0 <y < n}, (2.8a)
VY P +y=rony=n, (2.8b)

Y =1lony=n, (2.8¢)

Y =0o0ny=0. (2.8d)

Here r is referred to as the Bernoulli constant. The above problem admits another spatial
constant of motion (see Benjamin (1984) for more details), the flow force, defined as

/1
S= /0 (waf—x/ff)—yw) dy. 2.9)

After taking the x-derivative in (2.9) and using (2.8a) together with the boundary relation
(2.8b), one verifies that S is independent of x. Our main result can now be stated as follows.

THEOREM 2.1. Let (Y, n) € CZ’V(D_n) x C27(R) for some y € (0, 1) be a solution to
(2.8) with supn < r, other than a laminar flow. Then S > %rz, where r and S are the
Bernoulli and the flow force constants respectively, defined by (2.8b) and (2.9).
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By laminar flows we mean a solution independent of the x-variable. Let us compare the
quantity Sy (r) and the bound %rz from the theorem. Note that

1 1
Se) =5~ A3 () + rd (7). (2.10)

where d; () > 1 (the depth of the subcritical laminar flow) is the unique root of %d‘z +
d = r. Thus, for large r, we find d (r) ~ r and more precisely,

1
di(r)=r— 52t O(r ) as r - +oo. (2.11)
s

Therefore, we obtain

Si(r) = % (1+007) - % (ﬂ = % + O(r_2)> +r <r - # + O(r_3)>

P2

1
=S+t o). (2.12)

We see that the curve S = %rz is below the upper boundary S = S4(r) (see figure 1)
for large r and is asymptotically accurate. On the other hand, curves S = S_(r) and S =

%rz have one point of intersection, for which the Froude number F := d—3/? = 2. Indeed,
because
1
2d_(r)

1
S_(r)= — Ed%(r) +rd_(r), (2.13)
the equality S_(r) = %rz is equivalent to (r — d_)? = d:l, which in view of r = 1d=% +
d_, leads to d—3/? = 2. This recovers the well known bound F < 2 for the Froude number

of solitary waves; see Starr (1947), Amick & Toland (1981), McLeod (1984).
Using the result of Theorem 2.1 we can prove the following statement.

THEOREM 2.2. There exists a constant C > 0 such that the inequalities
maxn — minn < Cr? and 0< Yy < cr! (2.14a,b)

hold true for any Stokes wave solution in D,. The constant C is independent of r.

Let us discuss the result, which might look surprising. First, we consider a sufficiently
deep water wave n* with c?/(gd), being small, where d is the average water depth, being
large. Then m* ~ cd and Q* ~ gd, so that r ~ (c2/(gd))~'/3 is large. If a* is the amplitude
of n*, then the corresponding amplitude of 7 is

a=a,00?), (2.15)

which has the same order as the bound in Theorem 2.1. Thus, deep water waves correspond
to (¥, n) with large r, while the opposite is also true in view of (2.14a,b). Therefore, our
result is sharp for deep water waves.
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Comparing variables, we find the corresponding inequality for the amplitude a in the
original physical variables:

1 ng
C— =C—. 2.16
a < 2 Q2 ( )
On the other hand, we have m < c¢d and Q > gd, so that
a< Clg™h. (2.17)

This inequality is valid for all Stokes waves, irrespective of wavelength or amplitude,
including extreme waves. This is confirmed numerically in several studies, such as Cokelet
(1977) and Thomas (1975).

The result of Theorem 2.2 has another important meaning. We can imagine two extreme
Stokes waves with m = 1 and corresponding mean depths d; = 10 and d» = 1000. The
first wave has an amplitude of order 1072, while for the second it is of order 107°. Now
we can consider two Stokes waves with the same depths and the same amplitude, of order
1072, Then the underlying flows of such waves must be very different and the mass flux
of the second wave corresponding to the depth d; must be significantly greater. In other
words, the wave with depth d> must be travelling much faster. Of course, this observation is
also true for usual Stokes waves without stagnation points. This resembles the well known
property of surface waves.

3. Proof of Theorem 2.1
3.1. Flow force function formulation

Based on the definition for the flow force constant (2.9), we introduce the corresponding
flow force function

v /1
F(x.y) = /O (5(w§<x, V) = 2@ y) —y’+r) dy’. (3.1)

Just as in Basu (2020) we can reformulate the water-wave problem in terms of the function
F. It is straightforward to obtain

FXZWwa: Fy=%(1ﬂy2,—w,g)—y+r. (32a,b)

Thus, we arrive at an equivalent formulation given by

AF+1=0 forO<y<n, (3.3a)
%(—n/Fx—i—Fy)—{—y:rony:n, (3.3b)
F=Sony=n, (3.30)
F=0ony=0. (3.3d)

A reformulation as given above was already covered in Constantin & Strauss (2011) with
an arbitrary vorticity. This reformulation is useful for an analysis of solutions with weak
regularity.
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First, we show that F > 0 for y > 0. In fact, one can verify that

Fyzwy2>0 forO <y<n. 3.4)

It is enough to apply the maximum principle to the subharmonic function @ = %(Wf +
lﬁy2) + y. A direct calculation gives

A® = yi + 202 + ¥y, > 0, (3.5)

while @, = 1 on y = 0. Thus, by the maximum principle, the maximum of @ is attained
at the surface, where @ = r is constant. This shows that 0 < @ < r in D,,. Using this in
(3.2a,b) we obtain (3.4).

Using equations for the flow force function F one can obtain an interesting formula for
the flow force constant S of a Stokes wave. For this purpose we apply Green’s first identity
to find

A n(x) A
/Afo {(AF -y + Fy}dxdy = /A n(0) (Fx(x, (X)), Fy(x, n(x))) - (=1’ (x), 1) dx.
3.6)

Here A is the half period, while n(x) is even with respect to x. Thus, using (3.2a,b) and
(3.3) we conclude

1 A A
28A — —/ n?dx = 2f n(r — n) dx. (3.7)
2) 4 —A

Therefore, we obtain

8—1/A2 22 ax (3.8)
=3 L m 277 . .

This equality is similar to Starr’s identity for the Froude number of a solitary wave; see
Starr (1947).

In what follows it is convenient to have the ‘mass flux” F = S scaled to 1. This suggests
new variables

X=8"% yv=8", X)=8"*x, FX,Y)=S8"'F(x,y). (3.9a-d)

The scaled problem is

AF+1=0for0 <Y <¢, (3.10a)
N—txFx +Fy)+Y=R:=rS§?onY =¢, (3.10b)
F=1lonY=¢, (3.10¢)

F=0onY =0. (3.10d)

Furthermore, in view of (3.4), we additionally have
inf Fy > 0. (3.10¢)

Note that vy is always separated from zero for any smooth steady wave as in Theorem 2.1.
We are going to prove certain bounds for the Bernoulli constant R in (3.105). Note that
the system (3.10) is very similar to the stream-function formulation of the water problem
with constant vorticity, for which the desired bounds were obtained in Kozlov, Kuznetsov
& Lokharu (2015). Thus, a similar argument can be applied here and we adapt it below.

921 A2-7


https://doi.org/10.1017/jfm.2021.471

https://doi.org/10.1017/jfm.2021.471 Published online by Cambridge University Press

E. Lokharu

3.2. Stream solutions

In order to obtain bounds for R we need to study stream solutions to (3.10). These are pairs
F=U(;d), {(X) = d, parametrised by the depth d > 0. Using this ansatz in (3.10), one
finds

UY;d)=—3Y2+ @'+ a)y. (3.11)
The corresponding Bernoulli constant is given by

1 3d
Rd) = — + —. 3.12
(d) R (3.12)

In view of (3.10¢) we are interested in unidirectional solutions only, for which Uy > 0 on
[0, d]. As a result we obtain a restriction on d such that

0<d<dy=+2, (3.13)

where the critical value dy is characterised by the relation Uy(dp; dp) = 0, while
Uy(Y; dp) > Ofor Y € [0, dp). Let us put

3 2
Ro=R(dy) =2 and R, = \/; d. = \/; (3.14a,b)

Note that R, = R(d,) is the global minimum of R(d). Thus, for any R € (R, Ry) there are
two solutions d = d_(R) and d = R4 (d) with d_(R) < d4+(R) to the equation

R =R(d). (3.15)

For R > Ry there is only one root d = d_(R). These depths are analogous to the subcritical
and supercritical depths of conjugate laminar flows of the original water-wave problem.

3.3. Bounds for the Bernoulli constant

Our aim is to prove the following theorem:

THEOREM 3.1. Let (F, C) be an arbitrary non-trivial (other than a stream) solution to
(3.10). Then the corresponding Bernoulli constant R is subject to the inequality R < Ry.

Note that the statement of Theorem 2.1 follows directly from the upper bound R < Ry.
Indeed, a non-trivial solution (i, n) of the original system (2.8) with the Bernoulli

—1
constant r generates a solution to (3.10) with R = rvS . Now, Theorem 3.1 gives
-1
WS < Ry = «/5, which is equivalent to S > %rz as stated in Theorem 2.1.

Proof of Theorem 3.1. Our argument is based on a comparison of a given solution
(F,¢) to different stream solutions from §3.2. For this purpose we will apply the
partial hodograph transformation introduced in Dubreil-Jacotin (1934) but for the flow
force function formulation (3.10). This is possible because Fy > 0 everywhere by (3.4).
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Thus, we introduce new independent variables

g=X, p=FX,Y), (3.16a,b)
while the new unknown function 4(g, p) (height function) is defined from the identity
h(g,p) =Y. (3.17)
Note that / is related to the flow force function F through the formulas
F Mgy =] (3.18a,b)
X=—7 Yy =7, loa,
hp hp
where
ilgfhp >0 and suph, < +o0. (3.19a)
S
An equivalent problem for / is given by
1+ hy :
+p] —|—) =0inI" =R x (0, 1), (3.19h)
2h§ hy,
P q
b hf[ h=R 1 3.19
20 +h=Ronp=1, (3.19¢)
h=0onp=0. (3.19d)

The surface profile ¢ becomes the boundary value of 4 on p = 1 such that
hig,1) =¢(q), qe€R. (3.20)

For a detailed derivation of (3.19) we refer to Basu (2020). Applying a similar
transformation for the stream functions U(Y; d), we obtain the corresponding height
functions H( p; d), subject to

1 1
(2_H,%+p)p:0’ H©0) =0, H()=d, erd:R(d). (3.21a—d)

Because the domain for # and H is the same, we can compare these functions using the
maximum principle. More precisely, we put
wD =h—H(;d), (3.22)

and using the corresponding equations for 4 and H one finds that w? solves the
homogeneous elliptic equation

1+ hg h WD)l w (h, + H,)H
_4.,(d _~ 4, (d) @ _ @ q rp _ "p \'p p)pp
hlz, Wpp 2hpwqp +wyg —w, + h;% h% ;% =0. (3.23)

This equation can be obtained directly by substituting & = H + w@ into (3.19b) and then

using the corresponding equation for H. Thus, every w?@ is subject to the maximum
principle; see Vitolo (2007) for an elliptic maximum principle in unbounded domains.
The proof relies on two lemmas.
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LEMMA 3.2. There exists 0 < d < dy such that supp ¢ < d.

Proof. Note that when d — dy = V2 we have Hy(1; d) — +00. Thus, we can choose
d < +/2 for which w,(,d) < 0 everywhere on p = 1. Let us show that the supremum of
w = w@ in I" cannot be attained on p = 1. This claim is trivial when the supremum of
w is attained at some point. The remaining possibility is that there exists an unbounded
sequence {g;} for which sup, w = lim;_, y o w(gj, 1). Then we consider shifts w;(g, p) =
w(q — gj, p) and use a compactness argument as follows. The regularity assumption from
Theorem 2.1 and the relation (3.19a) guarantee that

||h||c2,y(ﬁ) < +00, (3.24)

and so the norms [[wjl| ~, v ([ are uniformly bounded. By the compactness argument there
exists a subsequence {g;, } and a function wo € C?(I") with the following property: for any
compact K C S, functions wj, converge to wy in C%(K). Thus, the limiting function wo
attains its global maximum at (0, 1), while (w)4(0, 1) < 0 because w, <O onp =1 by
the choice of d. But this contradicts the Hopf lemma and then we have shown that the
supremum of w can not be attained for p = 1. Now the maximum principle for w forces
w > 0in I" and then ¢ < d. This finishes the proof of the lemma. O

LEMMA 3.3. Forany q € R we have ¢(d) > d_(R).

Proof. By Lemma 3.2 we can find 0 < d; < dp such that infr ¢ = d+; note that infr ¢ >
0 as shown in Kozlov & Kuznetsov (2007) (Theorem 2.3). Thus, the function w := w'@) is
non-negative along the boundaries and so must be strictly positive in I” by the maximum
principle. The zero infimum of w is attained at the surface by the choice of d, so that there
exists a minimising sequence {g;} such that w(g;, 1) — 0 asj — +o00. Then we claim that
wg(gj, 1) — 0 as j — +00 and liminfw,(g;, 1) < 0. These statements are trivial if the
sequence {g;} is bounded. Otherwise we can use a similar compactness argument as in the
proof of Lemma 3.2. Thus, passing to the limit in (3.19¢) we obtain

1+ h2(g, 1) 1
R= lim h(g, 1)+ — 09 7~

im —2hg(q_,~,1) > +—2H2(1d) R(d+), (3.25)

which implies that £(g) > dy > d_(R) for all ¢ € R. The inequality here is strict until ¢ is
not a constant everywhere, which follows from the Hopf lemma. O

Now we can prove that R < Ry. Let us choose d, < dy such that supp ¢ = d,. Just as
before we can find a maximising sequence g;, possibly unbounded, such that

lim ¢(g) =dp, lim w% (g, 1)=0, lim w% (g, 1)>0.  (3.26a—c)
Jj— 400 jotoo 1 jodoo P

Thus, taking the corresponding limit in (3.19¢) and using relations (3.26a—c) we obtain
R < R(d,). Assuming R > Ry we would conclude that d, < d_(R), which contradicts the
statement of Lemma 3.3. Therefore, we have shown R < Ry. This finishes the proof of the
theorem. (]
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3.4. Proof of Theorem 2.2

First, we show that the corresponding inequality for vy is valid along the bottom. For this
purpose we consider the function

f=F-Sy. (3.27)

which equals zero on y = 1 and y = 0. From (3.3a) we find that Af = —1 in D), and so
fy > 0ony = 0 by the maximum principle. This gives

SUs+r—8yy>0ony=0. (3.28)

Now we note that because the function %wﬁ + %Ilfyz + y attains its maximum at the upper
boundary, we have %wyz < rin Dy,. Using this in (3.28), we obtain

Uy < 2§ < 47!, (3.29)

where the right inequality is valid because S > %rz by Theorem 2.1. The opposite
inequality v, > r~! for y = 0 follows from the maximum principle applied to the function
g = ¥ — r~ 'y, which attains its minimum on y = 0. Thus, we have shown that

< Yy < 47! ony=0. (3.30)

Now we are ready to prove the main claim. It is enough to show that r — 77 < Cr~2, where
1 = mingn. Let us consider the function

g0r.y) = —ky + 53U +¥7) +y. () €Dy, (3.31)
where k is to be determined later. A direct computation shows that
Ag >0, (3.32)

so that the maximum of g is attained at the boundary of D). At the bottom we have
gy =1—kyy >0, (3.33)

by (3.30), provided k = r/4. Therefore, the maximum of g is attained at the surface and
the Hopf lemma gives

Yy — k(7 + Dy + 1

, 0, = . 3.34
8y 211 > y =) (3.34)

This inequality is equivalent to
2=+ 0D = k20— M+ 0D +12 0. (3.35)

Let xo be such that n”(xg) = 0, then the latter inequality shows that
r—n(xo) < 8r 2. (3.36)

Without loss of generality we can assume that 7(0) = 7. If r — 7 > 1672, the proof is
complete. Otherwise, if 7 — 7 > 16r~2 we put 8 = r — 7 and note that

%8 <r—nkx) <4, (3.37)

for all x € [0, §/2]. Here we used the fact that |'| < 1 on R for any Stokes wave solution;
see Strauss & Wheeler (2016). Furthermore, n”(x) > 0 on [0, §] by (3.36). Now (3.35)

921 A2-11


https://doi.org/10.1017/jfm.2021.471

https://doi.org/10.1017/jfm.2021.471 Published online by Cambridge University Press

E. Lokharu

leads to
260" (x) = kv/5 — 1, x€10,8/2]. (3.38)
After integration over [0, §], we conclude that
kS —1<4n/(8/2) < 4. (3.39)

Hence, § < 16?72 by the choice of k, and we have proved that r — 1) < 16272, This
inequality implies that v, < Cr~! along the surface, so that the interior estimate for Yy
follows from the maximum principle. This finishes the proof of Theorem 2.2.
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