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Nilpotent subspaces of maximal dimension in

semi-simple Lie algebras

Jan Draisma, Hanspeter Kraft and Jochen Kuttler

Abstract

We show that a linear subspace of a reductive Lie algebra g that consists of nilpotent
elements has dimension at most 1

2(dim g−rk g), and that any nilpotent subspace attaining
this upper bound is equal to the nilradical of a Borel subalgebra of g. This generalizes a
classical theorem of Gerstenhaber, which states this fact for the algebra of (n×n)-matrices.

1. Results and method

A classical theorem of Gerstenhaber [Ger58] states that any vector space consisting of nilpotent
(n × n)-matrices has dimension at most

(n
2

)
, and that any such space attaining this maximal

possible dimension is conjugate to the space of upper triangular matrices. We will prove the following
generalization of this result.

Main Theorem. Let V be a linear subspace of a complex semi-simple Lie algebra g consisting of
ad-nilpotent elements. Then dim V � 1

2(dim g− rk g) and, if equality holds, then V is the nilradical
of a Borel subalgebra of g.

The first claim of the Main Theorem is known [MR98]. We have the following easy argument.
The subspaces of g of a fixed dimension m consisting of ad-nilpotent elements form a closed subset
Zm of the Grassmannian Grm(g), and Zm is stable under the adjoint group G of g. If the projective
variety Zm is not empty and if B is a Borel subgroup of G, then B stabilizes a V ∈ Zm by Borel’s
fixed point theorem. It is then easy to see that V is contained in the Lie algebra of the unipotent
radical of B (see Lemma 1).

The difficult part of the theorem is the statement that the subspaces consisting of ad-nilpotent
elements of maximal dimension d := 1

2(dim g − rk g) are nilpotent subalgebras and are therefore
all conjugate. The maximality assumption is essential here: there exist subspaces consisting of
ad-nilpotent elements that are not contained in nilpotent subalgebras (see Examples 1–A.2 below).
The classification of these ‘nilpotent subspaces’ is widely open, even in the case of (n×n)-matrices.
For some partial results see [Ger59a, Ger59b, Ger62, Fas97, CRT98, MOR91].

Gerstenhaber proves his theorem under the mild assumption that the ground field K has at least
n elements. We will prove a version of the Main Theorem which holds in arbitrary characteristic
(see Theorem 1), but still assumes that K is algebraically closed. To formulate this more technical
result, let G be a connected reductive algebraic group over K and denote its Lie algebra by g. Fix
a Borel subgroup B of G and a maximal torus T of G contained in B, and denote by X(T ) the
character group of T . Let W := NG(T )/T be the Weyl group of (G,T ). Denote by Φ ⊂ X(T )
the root system of (G,T ), by ∆ = {α1, α2, . . . , αr} ⊂ Φ the simple roots relative to B, and by Φ±
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Maximal nilpotent subspaces

the positive and negative roots, respectively. Then we have the usual decompositions

g = n− ⊕ h ⊕ n = n− ⊕ b, n :=
⊕

α∈Φ+

gα, and n− :=
⊕

α∈Φ+

g−α,

where gα is the root space of weight α, h is the Lie algebra of T , n is the Lie algebra of the unipotent
radical U of B, b = h⊕ n is the Lie algebra of B, and n− is the Lie algebra of the unipotent radical
of the opposite Borel subgroup B−. As a general reference for algebraic group theory we use Borel’s
book [Bor91].

We will replace the term ‘ad-nilpotent’ in the Main Theorem by ‘nilpotent’, as in Gerstenhaber’s
statement. Recall that an element x of g is said to be nilpotent if it acts locally nilpotently on the
coordinate ring K[G] of G. As every finite-dimensional rational representation of G is a submodule
of a direct sum of copies of K[G], this is equivalent to the condition that x acts nilpotently on all
finite-dimensional rational G-modules. Moreover, since homomorphisms of algebraic groups preserve
the Jordan decomposition, this is equivalent to the condition that x acts nilpotently on some finite-
dimensional rational G-module that is faithful for g. In particular, if the center of g is trivial, then
x is nilpotent if and only if it is ad-nilpotent. This holds, for example, if G is semi-simple and
char K = 0.

In what follows, a subspace of g consisting of nilpotent elements will be called a nilpotent
subspace. Moreover, we reserve the term nilpotent subalgebra for a subalgebra of g that is G-conjugate
to a subalgebra of n, even though there are other subalgebras which are nilpotent as abstract Lie
algebras. A maximal nilpotent subalgebra is then a conjugate of n. Similarly, by a Borel subalgebra
we mean the Lie algebra of a Borel subgroup.

The natural generalization of the Main Theorem in this context would be the following.

Desired Generalization. Any subspace V of g consisting of nilpotent elements has dimension
at most dimn and if equality holds, then V is a maximal nilpotent subalgebra of G.

However, the statement is false in this generality. A first class of counter-examples stems from
the following subtlety. Suppose that G′ is another connected, reductive algebraic group and that
ϕ : G′ → G is an isogeny, i.e. a surjective homomorphism with finite kernel. If deϕ : g′ ∼−→ g is an
isomorphism, then the generalization above holds for G if and only if it holds for G′. In characteristic
zero this is always the case, but in positive characteristic ker deϕ may be non-trivial, and the
following example shows that this leads to interesting counter-examples.

Example 1. Suppose that char K = p and consider G = PSLp and G′ = SLp with ϕ : G′ → G
corresponding to the adjoint representation. Let x be a matrix in g′ of the form

x =




a1

a2

. . .
ap−1

ap




where a1, . . . , ap ∈ K.

Then the characteristic polynomial of x is tp−a, where a := a1a2 · · · ap. Hence, the Jordan decompo-
sition of x is x = bI+(x−bI) where b denotes the unique pth root of a in K. As the semi-simple part
bI is in the kernel of the adjoint representation, deϕ(x) is nilpotent. We conclude that the space V
consisting of all x as above is a p-dimensional nilpotent subspace of g. Moreover, one readily checks
that V generates a subalgebra of g strictly containing n and therefore V is certainly not conjugate
to a subspace of n; alternatively, this follows from Lemma A.4 in Appendix A, §A.3. For p > 3 we
have dim V = p < dim n, so that V does not satisfy the maximality assumption; but for p = 2 and
3 we do obtain counter-examples to the desired generalization.
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Another exception to the generalization above is the following.

Example 2. Suppose that G is of type G2 and that char K = 2. Then it is known that the zero weight
space M0 in the seven-dimensional Weyl module M of highest weight ω1 is a trivial G-submodule
and that g acts faithfully on the quotient M/M0. (See, for example, [Kal73, p. 91, Table 3], where the
0 in the second row means that zero is not a weight in the irreducible module of highest weight ω1.
For more about G2 and about representation theory of reductive groups in positive characteristic
we refer to [SV00] and [Jan03].) It is now readily verified in the weight system of M/M0 that the
subspace

V := g−2α1−α2
⊕

⊕
α∈Φ+\{2α1+α2}

gα

acts nilpotently on M/M0. Thus, V is a six-dimensional T -stable nilpotent subspace of g. Although
V is a subalgebra (in fact, it is the intersection of g with the unipotent radical of a Borel subgroup
of SL(M/M0)) it is not conjugate to n, as one can see using Lemma A.4 in Appendix A, §A.3.

Surprisingly, the desired generalization of the Main Theorem becomes true if we avoid PSL2

and G2 in characteristic two, and PSL3 in characteristic three. More precisely, we have to prevent
their occurrence as subgroups of G in the following way. For a subsystem Ψ of Φ, by which we mean
the intersection of Φ with a subspace of X(T )R := X(T ) ⊗Z R, we write GΨ for the centralizer of
(
⋂

α∈Ψ ker α)0. The latter group is a subtorus of T whose codimension is the rank of Ψ. The Levi
subgroup GΨ is a connected reductive algebraic group with root system Ψ, so its derived subgroup
(GΨ, GΨ) is semi-simple. For Ψ = {−α,α} we write Gα for GΨ.

In the rest of this paper we will repeatedly refer to the following conditions.

Condition 1. If char K = 2, then (Gα, Gα) ∼= SL2 for all α ∈ Φ.

Condition 2. If char K = 3, then (GΨ, GΨ) ∼= SL3 for all Ψ ⊆ Φ of type A2.

Condition 3. If char K = 2, then Φ has no simple component of type G2.

In Appendix A, §A.2 we show that Conditions 1 and 2 are fulfilled if G is almost simply connected,
that is, if every simple component of (G,G) is simply connected (see Lemma A.3). We also show that
Condition 1 implies [gα, g−α] �= 0 for all roots α (see Lemma A.2). This is the property that we will
need most frequently.

Theorem 1. Suppose that the connected reductive algebraic K-group G satisfies Conditions 1–3.
Let V be a nilpotent subspace of its Lie algebra g and denote by n the Lie algebra of a maximal
unipotent subgroup of G. Then dimV � dimn and if equality holds, then V is conjugate to n.

By our remarks on nilpotency above, the Main Theorem is an immediate consequence of
Theorem 1.

Remark. Let G be an arbitrary connected algebraic group. If Ru(G) is its unipotent radical, then
any maximal-dimensional nilpotent subspace V of Lie(G) contains u := LieRu(G). Indeed, x ∈ V
implies that x is contained in the Lie algebra of a maximal unipotent subgroup of G, whose Lie
algebra clearly contains u. Hence x + u is nilpotent. It immediately follows that V/u is maximal
in g/u, and thus V is a maximal nilpotent subalgebra, assuming that char K �= 2, 3 or G/Ru(G)
satisfies our additional Conditions 1–3.

We conclude this section by giving a short outline of our proof of Theorem 1. The argument given
above for complex semi-simple Lie algebras still serves to show that dimV � dimn =: d. Concerning
the second part, we first prove it for T -stable nilpotent subspaces of dimension d (Proposition 1).
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Then we show that a nilpotent subspace V of dimension d contains a semi-regular nilpotent element x
of g, i.e. an element x that lies in a unique Borel subalgebra (see Appendix A, §A.1 for details on
semi-regularity). By the conjugacy of Borel subgroups we may assume that x lies in n, so that, if V
is to be conjugate to n, semi-regularity of x forces V to be equal to n.

Now we use a one-parameter subgroup µ : K∗ → T having
⊕

i gαi
as a weight space with positive

weight n0, so that µ has positive weights n0, 2n0, . . . on n, negative weights −n0,−2n0, . . . on n−

and weight 0 on h. If the limit in Grd(g) of µ(t) · V for t → 0 is equal to n, then it is easy to see
that no element of V has a non-zero component in n− ⊕ h, so that V is equal to n, too. Therefore,
it suffices to prove V = n under the additional assumption that V is equal to this limit, i.e. that V
is µ-stable.

This implies that the component x0 of x of weight n0 lies in V , and it follows that this component
x0 is a sum of simple root vectors which, by semi-regularity, is supported in all simple roots.
Now comes the core of our proof, where we show, by induction on the semi-simple rank of G, that
V contains, along with x, all simple root spaces gαi

.
Finally, we choose a regular one-parameter subgroup λ : K∗ → T , i.e. one whose weight spaces

in g are precisely the root spaces. Then V0 := limt→0 λ(t) · V and V∞ := limt→∞ λ(t) · V are both
T -stable d-dimensional nilpotent subspaces of g containing all simple root spaces. Since we already
know the theorem for T -stable nilpotent subspaces, it follows that V0 = n = V∞. This implies that
λ stabilizes V , because an orbit of K∗ on Grd(g) has two distinct ‘end points’ unless it is a point.
Hence, V is T -stable, and therefore V = n.

The rest of this paper is organized as follows. In § 2 we prove the dimension bound for nilpotent
subspaces and we deal with T -stable nilpotent subspaces attaining this bound. Section 3 fills in all
details in the proof above, and in Appendix A we collect some technical lemmas ensuring that our
method works under Conditions 1–3 on G above.

2. Dimension bound and T -stable nilpotent subspaces

Retaining the notation of § 1, we first prove the dimension bound in Theorem 1. Let Ng be the
nilpotent cone in g,

Ng := Gn = {gx | g ∈ G,x ∈ n}
where we write gx (rather than gxg−1) for the adjoint action of g on x. For any natural number m,
define

Zm := {V ∈ Grm(g) | V ⊆ Ng}.
Clearly, Zm is a closed G-stable subset of the Grassmannian Grm(g).

Lemma 1. Under Condition 1 the closed G-orbits in Zm consist of nilpotent subalgebras.
In particular, if Zm is non-empty then m � dim n, and if equality holds then Zm contains a unique
closed orbit, namely the orbit of n.

Proof. By Borel’s fixed point theorem [Bor91, III.10.4] any closed G-orbit in Zm contains a point
V fixed by B. In particular V is T -stable, and as V cannot intersect h, it is a sum of root spaces.
By Condition 1 and Lemma A.2 we have [gα, g−α] �= 0 for all α ∈ Φ+, so that the B-module
generated by a negative root space g−α contains non-zero elements of h. Hence V is contained in n.
However, then it is a b-ideal in n, and hence a nilpotent subalgebra of g. The last two statements
of the lemma are now immediate.

From now on, we will be interested only in nilpotent subspaces of the maximal possible dimension
d := dimn = 1

2 (dim G−rkG) = |Φ+|. By slight abuse of language, we will call these, and only these,
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Figure 1. Supports of cyclic elements in A2, C2, and G2.

the maximal nilpotent subspaces, although they are by no means the only nilpotent subspaces that
are maximal with respect to inclusion (see Examples A.1 and A.2 in Appendix A.3).

We now proceed to prove Theorem 1 for T -stable nilpotent subspaces. For G = SLn it is easy
to see that any T -stable nilpotent subspace V is conjugate to a subspace of n [FP96]. Even in
characteristic zero, this statement is not true for general G (see Example A.1 in Appendix A.3),
but it holds for nilpotent subspaces of maximal dimension.

Proposition 1. Let Ψ be a subset of Φ of size d = |Φ+|, and suppose that VΨ :=
⊕

γ∈Ψ gγ is a
nilpotent subspace.

(i) If Condition 1 holds, then

|Ψ ∩ {α,−α}| = 1 for all α ∈ Φ. (∗)
(ii) Suppose that Conditions 1–3 are fulfilled. Then Ψ is W -conjugate to Φ+.

Proof. (i) For all α ∈ Φ, the subspace VΨ ∩ (gα ⊕ g−α) of Lie(Gα) is T -stable and nilpotent.
By Lemma 1, it is at most one-dimensional. Hence Ψ cannot contain both a root and its negative.
Together with |Ψ| = |Φ+| this implies the claim.

(ii) It suffices now to prove that Ψ is a closed subset of Φ, i.e. that α, β ∈ Ψ and α + β ∈ Φ
together imply α + β ∈ Ψ. Indeed, in that case Ψ is the set of positive roots relative to some choice
of simple roots [Bou68, ch. VI, No. 1.7], hence W -conjugate to Φ+.

To show that Ψ is indeed closed, let α, β ∈ Ψ be such that α + β is a root. Then α, β lie in a
simple subsystem Σ of Φ of rank 2, and

VΨ ∩ Lie((GΣ, GΣ)) = VΨ∩Σ

is a T -stable nilpotent subspace. It is maximal, because Ψ ∩ Σ satisfies the condition (i) with Φ
replaced by Σ. Hence, to prove that Ψ is closed we may as well assume that G = (GΣ, GΣ), and is
simple of rank 2.

For each of the possible Cartan types A2, C2, and G2 of Φ it is easily verified that if Ψ satisfies
(i) and is not conjugate to Φ+, then Ψ contains a subset conjugate to ∆ ∪ {−αmax}, where αmax

denotes the highest root (see Figure 1). Hence we may assume that ∆ ∪ {−αmax} ⊂ Ψ. However,
the following lemma asserts that this is impossible.

Lemma 2. Suppose that G is simple of rank 2 and that Conditions 1–3 hold. For each γ ∈ Ψ :=
∆ ∪ {−αmax} let xγ be a non-zero element of gγ . Then

∑
γ∈Ψ xγ is not nilpotent.
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We give a case-by-case proof of this lemma in Appendix A, §A.4. It is here that G2 has to be
excluded in characteristic two (Condition 3), and that PSL3 has to be excluded in characteristic three
(Condition 2). In fact, PSp4 in characteristic two must also be excluded, but Condition 1 already
does so.

We point out here that in characteristic zero, the following stronger statement due to Kostant
is true.

Lemma 3 [Kos59, Lemma 6.3 and Corollary 6.4]. Suppose that char K = 0 and g is simple. For each
γ ∈ Ψ := ∆ ∪ {−αmax} let xγ be a non-zero element of gγ . Then

∑
γ∈Ψ xγ is regular semi-simple.

Kostant calls such elements cyclic (cf. Example 1). In fact, he shows that they form one projective
orbit under T , and then that one particular cyclic element is regular semi-simple.

3. Proof of Theorem 1

To fill in the details of the proof outlined in § 1, we assume the notation introduced there, as well
as the additional notation of § 2.

3.1 Maximal nilpotent subspaces contain semi-regular elements

We call a nilpotent element x ∈ g semi-regular if it is contained in the Lie algebra of a unique Borel
subgroup of G. We prove in Appendix A (Lemma A.1) that the semi-regular nilpotent elements
form an open dense subset of the nilpotent cone Ng and that an element x =

∑
α∈Φ+ xα of n with

xα ∈ gα is semi-regular if and only if xαi is non-zero for all simple roots αi.

Proposition 2. Assume Condition 1 and let V be any nilpotent subspace of g.

(i) If V is maximal, then it contains a semi-regular nilpotent element.

If char K = 0, then we have in addition:

(ii) V is isotropic with respect to the Killing form κ, i.e. V ⊥ ⊃ V ;

(iii) if V is maximal, then V ⊥ ∩ n = V ∩ n.

Part of this proposition is also proved in [MR98]. The last two statements can be used to give
a slightly shorter proof of our results in characteristic zero. They will not be used in what follows.

Proof. (i) That V ∈ Zd does not contain a semi-regular nilpotent element is equivalent to the
condition that V ⊂ C for the closed G-stable cone C ⊂ Ng consisting of non-semi-regular elements.
It follows that this is a closed and G-invariant condition on Zd. So if any V ∈ Zd satisfies this
condition, then so does a closed G-orbit in Zd. However, by Lemma 1, this would imply that n does
not contain a semi-regular element, a contradiction.

(ii) Any nilpotent element of g is isotropic. Hence, for A,B ∈ V we have 0 = κ(A+B,A+B) =
κ(A,A) + 2κ(A,B) + κ(B,B) = 2κ(A,B).

(iii) If K has characteristic zero, then κ is non-degenerate. By (ii) we get V ⊥ ∩ n ⊃ V ∩ n.
On the other hand, we have b⊥ = n, so that V ⊥∩n = (V +b)⊥. Now dim(V +b) = dim V +dim b−
dim(V ∩b) = dim g−dim(V ∩n), where we have used V ∩b = V ∩n. Thus dim(V ⊥∩n) = dim(V ∩n)
as required.
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3.2 Actions of one-parameter subgroups
We collect some well-known facts about one-parameter subgroups of G and their actions on sub-
spaces of g. Let λ : K∗ → G be a one-parameter subgroup of G (1-PSG). If V is a maximal nilpotent
subspace of g then so is λ(t) · V := {λ(t)v | v ∈ V } for all t ∈ K∗. Viewing λ(t) · V as an element of
Grd(g), the two limits

V0 := lim
t→0

λ(t) · V and V∞ := lim
t→∞λ(t) · V

exist, and both are λ-stable maximal nilpotent subspaces. Moreover, V0 �= V∞ unless V is already
λ-stable, because a one-dimensional K∗-orbit in a normal projective variety has two distinct ‘end
points’. This is clear for (linear) actions on projective spaces, the only case we will need here, and
holds for projective normal varieties since those admit an equivariant embedding into a projective
space by a famous theorem of Sumihiro [Sum74, Sum75], cf. [KKL89].

If G is semi-simple of adjoint type, then the simple roots form a basis of X(T ). Therefore, there
exist 1-PSGs λ1, . . . , λr : K∗ → T such that 〈αj , λk〉 = δjk, where 〈 , 〉 denotes the usual pairing
between X(T ) and the group Y (T ) := Hom(K∗, T ) of 1-PSGs of T . For general semi-simple G, the
simple roots span a sublattice of finite index in X(T ), so that we can still find a positive integer
n0 and 1-PSGs λ1, . . . , λr such that 〈αj , λk〉 = n0δjk. Finally, if G is an arbitrary reductive group,
then the last remark applies to (G,G), and such λi exist in this case as well.

We call a 1-PSG λ : K∗ → T regular (with respect to g) if it has the same eigenspaces in g as T .
It is well known that regular 1-PSGs exist (see [Hum75]).

Lemma 4. Let µ : K∗ → T be a 1-PSG and let V be a µ-stable maximal nilpotent subspace of g.
Denote by V =

⊕
j V (j) the decomposition of V into µ-weight spaces.

(i) If µ is regular, then V is T -stable.

(ii) Assume Condition 1. Let Gµ denote the Levi subgroup of G fixed by µ and set gµ := Lie(Gµ).
Then V µ := V ∩ gµ is a maximal nilpotent subspace of gµ.

Let λ : K∗ → T be another 1-PSG and put V0 := limt→0 λ(t) · V and V∞ := limt→∞ λ(t) · V .

(iii) V0, V∞ are µ-stable maximal nilpotent subspaces. In the decomposition V0 =
⊕

j V0(j) into
µ-weight spaces we have V0(j) = limt→0 λ(t) · V (j), and similarly for V∞.

(iv) If x ∈ V is a λ-weight vector then x ∈ V0 and x ∈ V∞.

Proof. The proofs of statements (i), (ii), and (iii) are straightforward. As for (ii), we see that V µ is a
nilpotent subspace of gµ, so that it suffices to prove that V µ has the maximal dimension dimn∩ gµ.
To this end, let λ : K∗ → T be a regular 1-PSG, so that the limit V0 := limt→0 λ(t) ·V is a T -stable
maximal nilpotent subspace of g. By Proposition 1(i) we see that V0 contains either gα or g−α for
every root α. We conclude that V0 ∩ gµ is a maximal nilpotent subspace of gµ. However, by (iii)
dimV0 ∩ gµ = dim V ∩ gµ, and we are done.

3.3 Reduction to graded maximal nilpotent subspaces
In all that follows we assume Condition 1 without further mention. Let V be a maximal nilpotent
subspace of g. By Proposition 2, V contains a semi-regular element x, and by the conjugacy of Borel
subgroups we may assume that x lies in n. In this setting, we have to prove that V is equal to n.
Set µ := λ1 + λ2 + · · · + λr, where the λi are as above, i.e. 〈αj , λk〉 = n0δjk. Then µ has weight
n0 ht(α) on gα, where ht(α) denotes the height of the root α relative to the chosen set of simple
roots.

Lemma 5. If V0 := limt→0 µ(t) · V is equal to n, then so is V . In other words, n is a source of the
µ-action on Grd(g).
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Proof. Let v be a non-zero element of V and let vmin be the non-zero component of v of lowest
µ-weight. Then limt→0 µ(t) · Kv = Kvmin ⊂ V0. Hence, if V0 = n then vmin ∈ n for all non-zero
v ∈ V , and therefore V ⊂ n. Now the lemma follows by maximality of V .

We conclude that it suffices to prove V = n under the additional assumption that V = V0

is µ-stable. From now on we suppose that this is the case, and decompose V =
⊕

j V (j)
and g =

⊕
j g(j) into µ-weight spaces. Moreover, as the component of x in V (n0) is again semi-

regular, we may also assume that x =
∑r

i=1 xi where every xi ∈ gαi
is non-zero.

Lemma 6. For all j �= 0 we have dim V (j) + dim V (−j) = dim g(j).

Proof. Let λ : K∗ → T be a regular 1-PSG. By Lemma 4(i), V0 := limt→0 λ(t) · V is a T -stable
maximal nilpotent subspace of g. By Proposition 1(i), it satisfies dimV0(j)+dim V0(−j) = dim g(j)
for all j �= 0. The claim now follows from Lemma 4(iii).

3.4 Conclusion of the proof
Under these conditions on V and x we are ready for the main induction argument in our proof.
We now assume Conditions 2 and 3 in addition to Condition 1.

Lemma 7. Along with x, the µ-stable maximal nilpotent space V contains all simple root spaces gαi
.

Proof. We proceed by induction on the semi-simple rank r of G. For r = 1 the statement is trivial.
Assume, therefore, that r > 1 and that the lemma holds for all groups of rank r − 1 satisfying
Conditions 1–3. In particular, it then holds for rank r − 1 Levi subgroups of G.

Recall the 1-PSGs λ1, . . . , λr ‘dual’ to the simple roots, let Lk := Gλk be the corresponding
Levi subgroups of G, and write lk := Lie(Lk). Now fix a k ∈ {1, ..., r}. Clearly, x̄ :=

∑
i	=k xi =

limt→0 λk(t)x lies in V0 := limt→0 λk(t) · V . By construction, V0 is a λk-stable maximal nilpotent
subspace of g and consequently V λk

0 = V0 ∩ lk is a maximal nilpotent subspace of lk (Lemma 4(ii))
containing x̄. Moreover, V λk

0 is µ-stable (Lemma 4(iii)), and hence still graded by root height.
We may therefore apply the induction hypothesis and find that V λk

0 (n0) =
⊕

i	=k gαi
. In particular,

dim V (n0) � r − 1 and hence dimV (−n0) � 1 by Lemma 6.
Now if V (−n0) does not contain a semi-regular element, then we may choose the k above such

that V (−n0) is contained in
⊕

i	=k g−αi
, so that V (−n0) = V0(−n0) = V λk

0 (−n0) = 0, and we are
done, again by Lemma 6.

Suppose, therefore, that V (−n0) does contain a semi-regular element x′. Then the same argument
as above (with µ replaced by µ−1) shows that dim V (−n0) � r− 1. Together with dimV (−n0) � 1,
this implies dimV (−n0) = 1 and r = 2. If Φ is of type A1⊕A1, then the projection of Kx′⊕Kx onto
either of the two copies of A1 is two-dimensional and thus not nilpotent by Lemma 1. Therefore,
this cannot occur and we may assume that Φ is simple of rank 2. One readily verifies, then, that the
µ-weight spaces g(j) with j �= 0,±n0 are precisely the root spaces gα with α non-simple. Now by
Lemma 6, V contains one of the spaces Kx + g−αmax

or Kx′ + gαmax
, neither of which is nilpotent

by Lemma 2. So this cannot occur either and we are done.

Proof of Theorem 1. We complete our proof that V = n as follows. We have seen above that we can
assume that V is µ-stable and it contains a semi-regular element of the form x =

∑r
i=1 xi where

every xi ∈ gαi
is non-zero. Therefore, by Lemma 7, V contains all simple root spaces gαi

.
Now let λ : K∗ → T be a regular 1-PSG, and put V0 := limt→0 λ(t)·V and V∞ := limt→∞ λ(t)·V .

The two limits V0 and V∞ are T -stable maximal nilpotent subspaces, and both contain all simple
root spaces by Lemma 4(iv). However, then V0 = n = V∞ by Proposition 1(ii). Hence, V is λ-stable
and thus equal to n.
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Appendix A. Proof of Theorem 1

The proof of Theorem 1 depends on three ingredients that we will explain in detail here: semi-regular
nilpotent elements, the fact that [gα, g−α] �= 0, and the validity of Lemma 2. We continue to use
the notation of the main text.

A.1 Semi-regular nilpotent elements
We call a nilpotent element x of g semi-regular if there is exactly one Borel subalgebra of g that
contains x. Regular nilpotent elements are semi-regular, and in sufficiently large characteristic, or
in characteristic zero, the converse is also true (cf. [Kos59, Theorem 5.3]).

Lemma A.1. Let x =
∑

α∈Φ+ xα with xα ∈ gα. Then the following statements are equivalent:

(i) only finitely many Borel subalgebras contain x;

(ii) xαi is non-zero for all simple roots α1, . . . , αr; and

(iii) x is semi-regular.

Moreover, the semi-regular nilpotent elements form an open dense set of the nilpotent cone Ng.

For lack of a suitable reference we include a proof of the lemma.

Proof. To prove that (i) implies (ii), suppose that x is not supported in α1, say. Let P be the
standard parabolic subgroup corresponding to α1 and let L be the Levi subgroup Gα1 of P , so that
L is of semi-simple rank 1. Now x lies in the Lie algebra of the unipotent radical UP of P , hence
if BL is any Borel subgroup of L, then Lie(BLUP ) is a Borel subalgebra of g containing x, and the
Borel subalgebras thus obtained are all distinct.

To see that (ii) implies (iii) suppose that x is supported in all simple root spaces, and that it
lies in Lie(B)∩Lie(B′), where B′ is a second Borel subgroup of G. Now B ∩B′ contains a maximal
torus T ′ of G, and it is easy to see that x is also supported in all simple T ′-root spaces. The Borel
subalgebras Lie(B) and Lie(B′) are both T ′-stable, and hence along with x contain all simple T ′-root
spaces. However, then they are equal.

To see that the semi-regular nilpotent elements form an open subset of Ng consider the Springer
resolution p : G×B n = (G×n)/B → Ng, sending the equivalence class of (g, x) to gxg−1. For every
x ∈ Ng the fibre p−1(x) is in bijection with the set of Borel subalgebras containing x, so x is semi-
regular if and only if p−1(x) consists of one point. By the above, this is the same as saying that the
fibre is finite. Since p is proper, this is an open (and homogeneous) condition on Ng.

A.2 Almost simple connectedness
In the proof of Theorem 1 we repeatedly used the fact that [gα, g−α] �= 0.

Lemma A.2. If G satisfies Condition 1 then [gα, g−α] �= 0 for all roots α of G.

Proof. By definition, LieGα = g−α ⊕ h⊕ gα and so the statement is clear if (Gα, Gα) � SL2. It also
holds if (Gα, Gα) � PSL2 and char K �= 2, because then the morphism SL2 → PSL2 is separable
and thus induces an isomorphism on the Lie algebras.

The following lemma exhibits a sufficient condition for Conditions 1 and 2 to hold. Recall that
G is said to be almost simply connected if all simple components of (G,G) are simply connected.
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Lemma A.3. Suppose that G is almost simply connected. Then the same is true for every Levi
subgroup GΨ ⊂ G, where Ψ is a subsystem of Φ. In particular, this implies Conditions 1 and 2.

Proof. Let Ψ be a subsystem of the root system Φ of (G,T ) and consider the corresponding Levi
subgroup L := GΨ. To show that every simple component of (L,L) is simply connected, we may
as well assume that Ψ itself is already simple. Replacing G by the simple component of (G,G)
whose root system contains Ψ, we may also assume that G is simple, and hence simply connected
by assumption.

Choose a system of simple roots α1, . . . , αr in Φ containing a system of simple roots of Ψ.
For every αi, let α̌i be the coroot of αi, i.e. the unique element of Y (T )R that satisfies

rαi(x) = x − 〈x, α̌i〉αi for all x ∈ X(T ),

where rαi is the reflection of X(T ) generating the Weyl group of (Gαi , T ) (see [Spr98, Lemma 7.1.8]).
Denote by Tαi the maximal torus of (Gαi , Gαi) contained in T ; then α̌i actually lies in Y (Tαi) ⊆ Y (T )
(see [Spr98, Lemma 7.3.5]), i.e. it is a 1-PSG into Tαi . The simple connectedness of G means by
definition that the lattice

P := {x ∈ X(T )R | 〈x, α̌i〉 ∈ Z for all i = 1, . . . , r},
which clearly contains X(T ), is actually equal to X(T ) (see [Spr98, 8.1.11]). This is equivalent to
the condition that the basis {ωi}i of X(T )R dual to {α̌i}i, consisting of the fundamental weights,
lies in the lattice X(T ).

Now let TL be the maximal torus of (L,L) contained in T . The coroots of those αi that lie in Ψ
are the same α̌i as before. To see that the lattice

PL := {x ∈ X(TL)R | 〈x, α̌i〉 ∈ Z for all αi ∈ Ψ}
equals X(TL), we need only observe that the restrictions to TL of the ωi ∈ X(T ) with αi ∈ Ψ are
the fundamental weights for (L,L). Hence (L,L) is simply connected.

A.3 Anomalies

We give some constructions of nilpotent subspaces that are not contained in a maximal nilpotent
subalgebra. Most of them are in fact T -stable, in which case the following lemma shows that they
are not conjugate to n.

Lemma A.4. Suppose that V is a T -stable nilpotent subspace of g that is G-conjugate to n.
Then V is in fact W -conjugate to n.

As the stabilizer of n in G is B, this lemma follows from the fact that the T -fixed points in G/B
form one W -orbit [Bor91, Proposition 11.19]. For the reader’s convenience we include a short direct
proof.

Proof. Suppose that g ∈ G conjugates n into V , i.e. that gn = V . By the Bruhat decomposition we
have g = b−1wb′, where b, b′ ∈ B and where w represents an element of W . As n is b′-stable, we find
wn = bV . We claim that bV = V . First, V is T -stable by assumption and bV is T -stable because
bV = wn. Now let xα ∈ V ∩ gα be a root vector. Then bxα is a non-zero multiple of xα plus root
vectors corresponding to roots higher than α, and by T -stability of bV the non-zero component of
bxα in gα lies in bV . Hence V ⊆ bV and therefore wn = bV = V .

Example A.1. Suppose that char K = 0 and that g is simple of rank 2 with simple roots α1, α2,
where α1 is short.
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(i) If g is of type C2, then the linear subspace V := gα1
⊕gα2

⊕g−α1−α2
of dimension three consists

of nilpotent elements. In fact, it corresponds to the matrices in sp4 of the form

x :=




0 r 0 0
0 0 s 0
t 0 0 −r
0 t 0 0


 (r, s, t ∈ K),

where we use the embedding Sp4 ⊂ GL4 defined by the ‘skew diagonal form’ (x, y) := x1y4 +
x2y3 − x3y2 − x4y1; and raising x to the fourth power yields zero. On the other hand, V is not
conjugate to a subspace of n by Lemma A.4.

(ii) Similarly, for g of type G2 any element of the five-dimensional subspace V := gα1
⊕ gα2

⊕
gα1+α2

⊕ g−2α1−α2
⊕ g−3α1−α2

has a matrix of the form



0 r t 0 0 0 0
0 0 −s −2t 0 0 0
0 0 0 2r 0 0 0
u 0 0 0 r −t 0
v −u 0 0 0 s t
0 0 u 0 0 0 r
0 0 v −2u 0 0 0




,

relative to a weight basis of the seven-dimensional g-module. A direct computation shows that
the seventh power of this matrix is zero. Hence V is nilpotent, but it is not conjugate to a
subspace of n by Lemma A.4.

(iii) In g of type A2 there are no T -stable nilpotent subspaces that are not conjugate to a subspace
of n. However, the subspace 





0 s 0
t 0 s
0 −t 0



∣∣∣∣∣∣
s, t ∈ K




is nilpotent, but generates g as a Lie algebra.

Next we recall the exceptions leading to our Conditions 1–3. In each case Lemma A.4 shows
that the constructed subspaces are not G-conjugate to n.

Example A.2.

(i) As explained in § 1, the subspace g−α⊕gα of g = psl2 is nilpotent in characteristic two, although
of dimension larger than 1 = dim n.

(ii) Similarly, the subspace gα1
⊕ gα2

⊕ g−α1−α2
of psl3 is nilpotent in characteristic three, and not

conjugate to n while of dimension 3 = dim n.

(iii) The same argument shows that the subspace V := gα1
⊕ gα2

⊕ gα1+α2
⊕ g−2α1−α2

in psp4 is
nilpotent in characteristic two. In fact, V is the image of the subspace

U :=







0 r t 0
0 0 s t
0 0 0 −r
u 0 0 0




∣∣∣∣∣∣∣∣
r, s, t, u ∈ K




⊂ sp4

under the adjoint representation. A short calculation shows that A4 is a scalar matrix for
all A ∈ U which implies, in characteristic two, that the image of A in psp4 is nilpotent.
Hence, V is nilpotent of dimension 4 = dimn, but V is not conjugate to n. This example is
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excluded from our Theorem 1 because of Condition 1: for all root subgroups Gα ⊂ PSp4 one
has (Gα, Gα) � PSL2.

(iv) If char K = 2 and G is of type G2, then the space

V := g−2α1−α2
⊕

⊕
α∈Φ+\{2α1+α2}

gα

is a six-dimensional T -stable nilpotent subspace of g, but not conjugate to a maximal nilpotent
subalgebra of g (see Example 2 in § 1).

A.4 Proof of Lemma 2

We write α, β for the simple roots, where α is short, and αmax for the highest root. Unfortunately,
the proof needs a case-by-case analysis.

The case A2. If char K is not 3, then g is isomorphic to sl3, with the adjoint representation
factoring through PGL3. If char K = 3, then G is isomorphic to SL3 by Condition 2.

In either case, it suffices to treat the case where G = SL3. Now in the defining representation
of SL3, where we choose B and T as usual, any matrix supported in gα, gβ, and g−αmax

has a
non-zero determinant and is therefore not nilpotent.

The case C2. If char K �= 2, then g is isomorphic to sp4, with the adjoint representation factoring
through PSp4. If char K = 2, then Condition 1 assures that G is isomorphic to Sp4, as the subgroup
(Gα, Gα) in PSp4 is isomorphic to PSL2 (see Example A.2(iii) above).

Hence we need only deal with the case where G = Sp4, defined as above by the ‘skew diagonal
form’ (x, y) := x1y4 + x2y3 − x3y2 − x4y1. With T consisting of diagonal matrices and B of upper
triangular matrices, any element x of sp4 supported exactly in {α, β,−αmax} is of the form

x =



0 r 0 0
0 0 s 0
0 0 0 −r
t 0 0 0




with r, s, t �= 0. However, then detx �= 0, hence x is not nilpotent.

The case G2. This is a variation of the argument for C2 and A2. Recall that char K �= 2 by
Condition 2. We will use the fact that the two-dimensional and the three-dimensional representations
of SL2 of highest weight 1 and 2, respectively, remain irreducible in char K �= 2, and that sl2 acts
as usual on them.

Recall that G of type G2 is simply connected. Let V be its seven-dimensional representation
corresponding to the fundamental weight 2α + β, and write Vγ for the γ-weight space of V . Let δ
be a root and let γ be a weight in V for which γ + δ is a weight in V . Then the observation above
applied to Gδ

∼= SL2 shows that xδVγ �= 0 for all non-zero xδ ∈ gδ.

Now let x = xα + xβ + x−αmax be an element of g with xα ∈ gα, xβ ∈ gβ , and x−αmax ∈ g−αmax

all non-zero. Then one readily verifies that x5V2α+β = Vα+β . It therefore is enough to show that
x2Vα+β �= 0. Let v ∈ Vα+β be non-zero. Now compute

x2v = x(xαv + x−αmaxv) = x−αmaxxαv + xαx−αmaxv;

as −αmax + α is not a root, the corresponding components of x commute and the last expression is
equal to 2xαx−αmaxv and thus non-zero, as claimed.

This finishes the proof of Lemma 2.
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