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In 1945–1949, Lars Onsager made an exact analysis of the high-Reynolds-number limit
for individual turbulent flow realisations modelled by incompressible Navier–Stokes
equations, motivated by experimental observations that dissipation of kinetic energy does
not vanish. I review here developments spurred by his key idea that such flows are
well described by distributional or ‘weak’ solutions of ideal Euler equations. 1/3 Hölder
singularities of the velocity field were predicted by Onsager and since observed. His theory
describes turbulent energy cascade without probabilistic assumptions and yields a local,
deterministic version of the Kolmogorov 4/5th law. The approach is closely related to
renormalisation group methods in physics and envisages ‘conservation-law anomalies’, as
discovered later in quantum field theory. There are also deep connections with large-eddy
simulation modelling. More recently, dissipative Euler solutions of the type conjectured
by Onsager have been constructed and his 1/3 Hölder singularity proved to be the sharp
threshold for anomalous dissipation. This progress has been achieved by an unexpected
connection with work of John Nash on isometric embeddings of low regularity or ‘convex
integration’ techniques. The dissipative Euler solutions yielded by this method are wildly
non-unique for fixed initial data, suggesting ‘spontaneously stochastic’ behaviour of
high-Reynolds-number solutions. I focus in particular on applications to wall-bounded
turbulence, leading to novel concepts of spatial cascades of momentum, energy and
vorticity to or from the wall as deterministic, space–time local phenomena. This theory
thus makes testable predictions and offers new perspectives on large-eddy simulation in
the presence of solid walls.
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1. Introduction

This entire essay shall be concerned with a theory of ‘ideal turbulence’ which was
proposed by Lars Onsager (figure 1) in a 1949 paper entitled ‘Statistical Hydrodynamics’.
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G. Eyink

Figure 1. Lars Onsager (1903–1976). Photograph published originally in Svenska Dagbladet on 6 December
1968 shortly after the announcement of Onsager’s award of the Nobel Prize in Chemistry, reproduced on license
from ZUMA Press.

The proposal was set forth by Onsager in his characteristic laconic style in the final
paragraph of that paper, which I quote here in full:

It is of some interest to note that in principle, turbulent dissipation as described could take place
just as readily without the final assistance by viscosity. In the absence of viscosity, the standard
proof of the conservation of energy does not apply, because the velocity field does not remain
differentiable! In fact it is possible to show that the velocity field in such ‘ideal’ turbulence cannot
obey any LIPSCHITZ condition of the form

(26) |v(r′ + r) − v(r′ )| < (const.)rn

for any order n greater than 1/3; otherwise the energy is conserved. Of course, under the
circumstances, the ordinary formulation of the laws of motion in terms of differential equations
becomes inadequate and must be replaced by a more general description; for example, the
formulation (15) in terms of FOURIER series will do. The detailed conservation of energy (17)
does not imply conservation of the total energy if the number of steps in the cascade is infinite, as
expected, and the double sum of Q(k, k′) converges only conditionally. (Onsager 1949)

In fact, the germ of these remarks were contained in a short abstract on fluid turbulence
that Onsager published four years earlier, where he noted that ‘. . .various experiments
indicate that the viscosity has a negligible effect on the primary process; hence one
may inquire about the laws of turbulent dissipation in an ideal fluid’ (Onsager 1945a).
Although he never published an argument justifying his ‘it is possible to show’ assertion,
it is now known that Onsager had indeed derived a mathematical identity which implies
his conclusion and which he communicated by letter to Theodore von Kármán and
Chia-Chiao Lin in 1945 (Eyink & Sreenivasan 2006). Although Onsager’s innovative ideas
on this subject were long overlooked and conflated with the related theory of Kolmogorov
(1941a,b), it is now understood that Onsager’s work essentially refined and extended the
concepts of Kolmogorov, anticipating ideas in large-eddy simulation (LES) modelling,
modern field-theoretic notions of conservation-law anomalies and renormalisation-group
invariance, and the concept of weak Euler solutions in the mathematical theory of partial
differential equations.
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Onsager’s ‘ideal turbulence’ theory

I first became aware of Onsager’s proposal in 1990 when I was a postdoc at Rutgers
University and Uriel Frisch, visiting for the spring semester, delivered a series of seminars
on hydrodynamic turbulence. Frisch had rediscovered some of Onsager’s key ideas on his
own (Sulem & Frisch 1975) and he only learned of Onsager’s prior work himself from
Robert Kraichnan in 1972 (Frisch, private communication). Onsager’s 1/3 Hölder claim
was discussed briefly at the end of Frisch’s Rutgers lectures, which followed closely an
expository article he published that same year (Frisch & Orszag 1990). (Interestingly,
the reference to Onsager’s 1949 paper and the 1/3 Hölder claim were cut from the
published article, presumably because of length restrictions.) I looked up Onsager’s paper
and was immediately impressed by his remarks because, unlike Kolmogorov’s arguments
for 1/3 power-law scaling based upon statistical assumptions and dimensional analysis,
Onsager claimed that the 1/3 exponent could be derived on a purely dynamical basis
for individual solutions of the fluid equations. In fact, we now know that Onsager’s 1/3
result is not equivalent to that of Kolmogorov (1941a,b), e.g. being completely compatible
with inertial-range intermittency, which Onsager had already anticipated in 1945 (Eyink
& Sreenivasan 2006). After consulting with two Rutgers experts on the mathematics
of Navier–Stokes equations, Giovanni Gallavotti and Vladimir Scheffer, I was surprised
to learn that Onsager’s claims were unknown to the partial differential equation (PDE)
community in 1990 and that nothing was established about their validity. The situation
is now very different and Onsager’s ideas have become the focus of major developments
in the mathematical theory of PDEs, connecting surprisingly with ideas of John Nash on
a completely different problem of isometric embeddings of Riemannian manifolds (De
Lellis & Székelyhidi 2019). These developments by many people have in turn attracted
renewed attention to Onsager’s ideas in the fluid mechanics community, being indeed the
subject of an earlier Perspectives essay by Dubrulle (2019).

The purpose of the present work is to explain Onsager’s ideas in a pedagogical and
straightforward manner. Although I shall follow somewhat the chronological development
of the theory, the emphasis in this work is on science and not history. Most of the
research on Onsager’s theory so far has been by mathematicians and this may have led
to the impression among many that the subject is an esoteric branch of pure mathematics.
Although the rigorous development leads indeed to some non-trivial mathematical issues,
the theory is directly motivated by experimental observations and by intuitive physical
ideas. Some of these points have been explained in my earlier unpublished short note
(Eyink 2018b) and in my online turbulence course notes (Eyink 2007). In fact, I believe
that Onsager’s point of view is one of the easiest to teach to beginning students of
turbulence. The theory does not cover all turbulent phenomena, as it concerns the regime
of very high Reynolds numbers, but it is not restricted to the idealised limit of infinite
Reynolds number only (as has been sometimes misunderstood). It sheds little light,
therefore, on the important problem of transition to turbulence. However, one of the
great virtues of Onsager’s approach is the naturalness with which it extends concepts of
high-Reynolds-number turbulence from the traditional problem of incompressible fluid
turbulence to more general cases of compressible fluids, relativistic fluids, plasma kinetics
and quantum superfluids. See § 3.1.3.4.

There are, by now, a very large number of researchers who have contributed to this
subject, many at a deeper mathematical level than I have. There are already several
illuminating and insightful reviews written by mathematicians, such as De Lellis &
Székelyhidi (2013, 2019) and Buckmaster & Vicol (2020), but the present essay is not
designed as such a comprehensive review. Instead, my purpose is to explain the subject
from the personal perspective of a mathematical physicist working for some years in
this area. As with any currently active field, all researchers may not agree with my
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proffered interpretations and points of view. I endeavour, however, to give technically
correct explanations of results, even those to which I have not contributed myself. I do
not want to present the subject as a fait accompli, which it is not, but instead as a living
scientific theory with many critical questions still open. The main reason that I was excited
to write this essay is that I believe that some of the most fundamental problems in this area
remain unsolved and call for the combined efforts, not only of mathematicians, but also
of fluid mechanicians, computational scientists, turbulence modellers and physicists, both
theorists and experimentalists. The earlier essay of Dubrulle (2019) lucidly explained how
analytical tools developed in the Onsager theory could be applied to direct analysis of
empirical data. I will be concerned here instead with the complementary issue of how
the ‘ideal turbulence’ theory connects with the numerical modelling method of LES, a
topic only briefly treated in that earlier work (Dubrulle 2019, § 8.6). Although the two
subjects have developed historically with little interaction, they are in fact quite intimately
connected. For example, both LES and ‘ideal turbulence’ aspire to describe individual
realisations of a turbulent flow. In this essay, I shall focus in particular on the issue
of turbulence-wall interactions, which currently concerns deeply both the LES and the
mathematical PDE communities and which poses some of the greatest current challenges
in turbulence research. As we shall see, Onsager explored this problem himself and his
attempts anticipate some recent developments.

Since this essay is rather long, it may be useful to summarise briefly its contents and to
explain the organisation, so as to provide the reader with some guide for the journey. The
bare synopsis of the contents is as follows:

2 Background 5

3 Turbulence away from walls 8
3.1 Onsager’s result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Ideal turbulence, renormalisation group and large-eddy simulation 9
3.1.2 Local deterministic 4/5th law and dissipative anomaly . . . . . . 17
3.1.3 Implications and open questions . . . . . . . . . . . . . . . . . . 23

3.2 Onsager’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Existence of dissipative Euler solutions . . . . . . . . . . . . . . 35
3.2.2 Non-uniqueness for the initial-value problem . . . . . . . . . . . 38
3.2.3 The infinite-Reynolds-number limit . . . . . . . . . . . . . . . . 42

4 Turbulence interactions with solid walls 45
4.1 Overture on turbulence and solid surfaces . . . . . . . . . . . . . . . . . 45
4.2 Onsager RG analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Regularisation of ultraviolet divergences . . . . . . . . . . . . . . 48
4.2.2 Coarse-grained equations . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Momentum cascade in space . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Energy cascade in space and in scale . . . . . . . . . . . . . . . . 55
4.2.5 Vorticity cascade in space . . . . . . . . . . . . . . . . . . . . . 57
4.2.6 Weak-strong uniqueness and extreme near-wall events . . . . . . 59

4.3 Dissipative Euler solutions and zero-viscosity limit . . . . . . . . . . . . 61

5 Prospects 62
5.1 How do we check if it is true? . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Why does it matter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Last words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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Onsager’s ‘ideal turbulence’ theory

Our tour through this subject begins in § 2 with a summary of some of the experimental
phenomena and the basic theoretical assumptions generally made to explain them. The
first half of the essay, § 3, then treats turbulence away from solid walls, such as wakes
and jets, which was the main subject of Onsager’s original work. As I discuss, Onsager
himself made an exact and essentially rigorous analysis of this problem, deriving various
results on energy cascade, singularities, scale-locality, etc. § 3.1 on this subject is titled
‘Onsager’s Result’, although he never published his own derivations, and his results had to
be recovered and extended by the work of others. We shall examine Onsager’s unpublished
material on turbulence, which are now available, along with his unpublished results on
many other subjects, in the online Onsager Archive hosted by the Norwegian University of
Science and Technology: https://www.ntnu.edu/onsager/lars-onsager-archive. In addition,
however, Onsager made more ambitious proposals on the existence of dissipative
Euler solutions and their emergence in the infinite-Reynolds-number limit, which were
motivated by observations but for which he almost certainly had no analytical arguments.
Only much later was dramatic progress made on these questions and, as I review in § 3.2
entitled ‘Onsager’s Conjecture’, this has involved rather sophisticated mathematical tools.
The second half of my essay, § 4, deals with the subject of wall-bounded turbulence,
which is of crucial importance for most terrestrial turbulent flows and a keen interest
of Onsager’s, but which has only recently been seriously tackled by his methods. This
section closely parallels the previous ones, with § 4.1 reviewing particular features of
the high-Reynolds-number limit for turbulent-wall interactions, and early ideas of Taylor
and Onsager on the subject. Then § 4.2 describes in detail how the analysis pioneered
by Onsager applies to wall-bounded turbulence and, in recent work of many researchers,
leads to a picture of both spatial and scale cascades of momentum, energy and vorticity,
but understood as deterministic and space–time local processes. The concluding § 5 of
this essay offers some final remarks about the empirical status and future importance of
Onsager’s theory.

2. Background

Before I can discuss any theory, I must briefly review the ‘various experiments’ on
turbulent energy dissipation mentioned by Onsager (1945a) that motivated his analysis.
The specific work cited by Onsager (1949) was the experimental study of Hugh L. Dryden
(1943) on wake turbulence behind a grid using hotwire anemometry, which reported that
the decay rate of kinetic energy Q = −(d/dt)3

2 u′2 satisfies the scaling law

Q ∼ A
u′3

L
(2.1)

with A .= 0.2056 at sufficiently high Reynolds number Re = u′L/ν, where u′ is the
root-mean-square (r.m.s.) streamwise velocity fluctuation, L is the velocity integral length
and ν is the kinematic viscosity of the fluid. The scaling law (2.1) seems to have been first
hypothesised by Taylor (1935), who already argued in Taylor (1917) that kinetic energy
can be ‘dissipated in fluid of infinitesimal viscosity, when the turbulent motion takes
place in three dimensions’. Onsager inferred from the results of Dryden (1943) that the
coefficient A(Re) becomes constant for Re � 1, but the first systematic evidence was
obtained by Sreenivasan (1984) based on a compilation of data from several experiments
with different types of grids. See figure 2(a). Note that the same hypothesis of the
asymptotic Re-independence of non-dimensionalised energy dissipation rate was made
also by Kolmogorov (1941a,b).
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Figure 2. Some key pieces of empirical evidence that turbulent energy dissipation is anomalous
(non-vanishing) at high Reynolds numbers. (a) Quantity A = QL/u′3 for bi-plane square-mesh grids, compiled
from several experiments, ε denoting my Q and �f my L. Reproduced from Sreenivasan (1984), with permission
of AIP Publishing. (b) Drag coefficient for flow past a circular disk oriented normal to the flow. Open red
triangles from Hoerner (1965), open circles from Roos & Willmarth (1971), orange squares from Shoemaker
(1926). Reproduced with permission from https://kdusling.github.io/teaching/Applied-Fluids.

Although this observation is basic to several theories of high-Reynolds turbulence and
is thus sometimes referred to as the ‘zeroth law of turbulence’, the experimental situation
is in fact more complex and interesting. It is indeed true that the result is observed to hold
well in wake flows, such as those past bluff or streamlined bodies. One evidence for this is
the common observation that the drag coefficient of the body

CD = Fd
1
2ρU2∞A

(2.2)

tends to a constant value for Re � 1, where Fd is the drag force, ρ is fluid mass density,
U∞ is external flow velocity and A is the frontal area of the body. See figure 2(b) for the
example of a circular disk and Frisch (1995, § 5.2) for the connection with dissipation in
the wake. However, there is a striking dichotomy for internal flows such as flows through
pipes or channels, likewise Taylor–Couette, Rayleigh–Bénard and von Kármán flows, and
as well for flat-plate boundary layers, in all of which the strict independence from Reynolds
number depends upon whether the solid boundary is hydraulically smooth or hydraulically
rough. For mathematical readers, I must clarify that this distinction has nothing to do
with the mathematical smoothness of the boundary and ‘hydraulic roughness’ means
simply that the solid boundary has small ripples, ridges, etc. with some characteristic
roughness height k that impede the flow. Thus, a hydraulically rough surface may in some
cases be modelled by a C∞ manifold. The general observation in these flows is that the
dimensionless dissipation rate becomes asymptotically independent of Reynolds number
only when the solid boundary is hydraulically rough. This fact was noted as early as
the 18th century by the French engineer Antoine de Chézy who attributed the seasonal
variation of drag in the Parisian water canals to the growth and decline of algae and moss
on the sidewalls. A more quantitative observation was made in straight circular pipe flows
by Nikuradse (1933) who studied the friction factor

λ =
−∂P

∂x
(2R)

1
2ρŪ2

, (2.3)
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Onsager’s ‘ideal turbulence’ theory

where −(∂P/∂x) is the applied pressure gradient, R is the pipe radius and Ū is the mean
flow velocity. He found that λ(Re) slowly decayed to zero as Re → ∞ for a smooth-wall
pipe but, with sand-grains glued to the wall, instead tended to a positive constant that
depended on the grain height k. These same qualitative observations have been confirmed
in a great variety of internal flows, e.g. see Cadot et al. (1997). Onsager, by the way, was
certainly aware of such observations as indeed he cited in his 1949 paper the work of
Montgomery (1943), who considered drag laws in pipe flows with both smooth and rough
walls, and who discussed the classic works of Nikuradse (1933) and others.

The starting point of the theoretical analysis of Onsager (1949) was the incompressible
Navier–Stokes equation

∂tu + (u · ∇)u = −∇p + ν�u, ∇ · u = 0, (2.4)

where p = P/ρ is kinematic pressure, in line with the common assumption that all
turbulence phenomena at low Mach numbers can be described within this continuum
approximation. Most of my essay will present results that have been obtained from
this standard point of view. It is not, however, entirely obvious that this equation
should be adequate to describe turbulent energy dissipation fully, since the fundamental
fluctuation-dissipation relation of statistical physics implies that molecular dissipation
phenomena and thermal fluctuations are intrinsically intertwined and must always occur
together. Onsager was, of course, deeply familiar with the statistical theory of thermal
fluctuations. The so-called ‘Onsager principle’, which he proposed in his 1931 work
on reciprocal relations (Onsager 1931a,b) and which was worked out by Onsager
& Machlup (1953) for the linear regime, is probably the most elegant form of the
fluctuation-dissipation relation, expressing the probability of a time-history to arise by
thermal fluctuations directly in terms of the time-integrated dissipation. The prediction
that thermal fluctuations should fundamentally modify the turbulent dissipation range
starting at the Kolmogorov length scale η = ν3/4/ε1/4 (with ε the mean dissipation rate
of kinetic energy per unit mass) was apparently published first in this journal by Betchov
(1957). However, it was not until the work of Landau & Lifshitz (1959), and independently
Betchov (1961), that a stochastic version of the Navier–Stokes equation was formulated
that incorporates the fluctuation-dissipation relation. For a low-Mach incompressible fluid
this equation for fluctuating velocity field ũ takes the form

∂tũ + (ũ · ∇)ũ = −∇p̃ + ν�ũ + ∇ · τ̃ , ∇ · ũ = 0, (2.5)

where τ̃ is a Gaussian random stress field with mean zero and covariance

〈τ̃ij(x, t)τ̃kl(x′, t′)〉 = 2νkBT
ρ

(
δikδjl + δilδjk − 2

3
δijδkl

)
δ3(x − x′)δ(t − t′), (2.6)

which represents the thermal momentum transport. Here T is absolute temperature and
kB is Boltzmann’s constant. Recently, evidence has emerged from numerical simulation
of the stochastic equation (2.5) and related models which confirm Betchov’s prediction
(Bandak et al. 2022; Bell et al. 2022). I shall therefore critically examine also in this essay
the question whether the deterministic equations (2.4) are sufficient to explain all of the
experimental observations on turbulent energy dissipation.

Since it has been traditionally assumed that the Navier–Stokes equations are an adequate
model of incompressible fluid turbulence, direct numerical simulation (DNS) of those
equations has also been used as a tool to study turbulent energy dissipation. I am not
aware of any systematic DNS study of the Reynolds-dependence of dissipation in 3-D
wall-bounded flows (but see Nguyen van yen et al. (2018) for a 2-D flow). Instead, most
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of the attention has been focused on turbulence in a periodic box stirred by a large-scale
body force, which has been considered a close analogue of the decaying turbulence behind
a grid. A great advantage of numerical simulations is that the entire flow field is accessible
and thus local viscous energy dissipation per mass

ε(x, t) = 2νSij(x, t)Sij(x, t), (2.7)

with strain rate tensor Sij = (∂ui/∂xj + ∂uj/∂xi)/2, can be calculated exactly for
Navier–Stokes solutions, limited only by numerical resolution and machine precision.
Corresponding to the prefactor A studied in grid turbulence is the dimensionless
dissipation rate

D = ε

u′3/L
= 2

Re
ŜijŜij, (2.8)

where the hat denotes the strain tensor calculated from the dimensionless variables
û = u/u′, x̂ = x/L, t̂ = t/(L/u′). Numerical results of Sreenivasan (1998) and Kaneda
et al. (2003) are consistent with the hypothesis that the volume- and time-averaged
dimensionless dissipation rate D̄(Re) are asymptotically independent of Re. Of course,
no empirical data could ever strictly verify this hypothesis, as it would be impossible to
rule out an extremely slow decay.

3. Turbulence away from walls

Except for brief mention of pipe flow, Onsager (1949) restricted his attention to the
‘simplest type of turbulence’ which is the ‘nearly homogeneous and isotropic turbulence
[produced] by means of a grid in a streaming gas’. I shall therefore consider this topic first
in this essay, since most subsequent work has been done on this problem. I emphasise at
the outset, however, that no statistical assumptions of homogeneity or isotropy are required
for the results mentioned in the final paragraph of Onsager’s paper. The conclusions thus
apply more generally to turbulence away from walls, such as in ubiquitous wake flows
that are neither homogeneous nor isotropic. It is a bit ironic that Onsager suggested a
completely deterministic approach to the analysis of turbulent flow in a paper entitled
‘Statistical Hydrodynamics’!

3.1. Onsager’s result
In the quote that began this essay, Onsager (1949) wrote that ‘it is possible to show that’,
which was his characteristic catchphrase to assert that HE had shown something and to
invite others to prove it as well. He never published his own calculations (which was
also customary), but, as I shall discuss below, he had worked out the essential steps of
a proof that energy will be conserved when the velocity field satisfies a Hölder–Lipschitz
condition ‘for any order n greater than 1/3’. The first published result was given by Eyink
(1994), who attempted to transform the brief argument using Fourier series sketched by
Onsager (1949) into a rigorous proof. The idea was to show that the triply infinite series of
Fourier coefficients which arises from the time-derivative of kinetic energy is absolutely
summable on the assumption of Hölder regularity with exponent > 1/3. This ultimately
requires a bound on the spectral energy flux Π(k), similarly as in the work of Sulem &
Frisch (1975). It was quickly obvious that the 1/3 claim would hold if the spectral flux were
dominated by ‘local’ wavevector triads with all three wavevectors of magnitudes roughly k.
This approach is plagued by difficulties, however, not least because there is no necessary
and sufficient condition for Hölder continuity in terms of absolute Fourier coefficients.
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Onsager’s ‘ideal turbulence’ theory

By 1992, I finally managed to work out a proof of Onsager’s 1/3 claim, but invoking a
condition on absolute Fourier coefficients stronger than Hölder continuity.

At the same time, it appeared from the analysis that most contributions to the energy flux
could be bounded even with a weaker assumption on the velocity of ‘Besov regularity’,
which corresponds to Hölder regularity in space-mean sense, closely related to standard
structure functions (Eyink 1995a). After developing my first proof, I discussed the problem
with Weinan E at the Institute for Advanced Study in 1992 and, the following year E and
his collaborators, Peter Constantin and Edriss Titi, found an extremely simple proof not
only of Onsager’s original claim but also of the natural Besov result (Constantin, Weinan
& Titi 1994). After being informed privately of this development by E, I realised that their
method of proof was closely related to LES modelling and renormalisation group, and
that it could be simply explained in those terms (Eyink 1995b). It is this argument that I
present first in this section, before considering the alternative technical derivation given
by Onsager himself. Note that I refer to the energy conservation statement, however, as
‘Onsager’s result’ rather than by the term ‘Onsager’s conjecture’ used by Constantin et al.
(1994), which was at a time when Onsager’s own mathematical argument was unknown.
I prefer to use the term ‘Onsager’s conjecture’ for the deeper statement that inviscid energy
dissipation is possible when the Euler velocity field has Hölder regularity ≤ 1/3, which
was only proved much later.

3.1.1. Ideal turbulence, renormalisation group and large-eddy simulation
The most basic conclusion that can be inferred from the empirical observations of
Re-independence in (2.1) or (2.8) is that the non-dimensionalised velocity gradients, if
interpreted as ordinary classical derivatives, must diverge as |∇̂û| → ∞ when Re →
∞. This was the starting point of Onsager’s own line of argument, who began the
short abstract in Onsager (1945a) with the observation: ‘The dissipation of energy by
turbulence is regarded as primarily a “violet catastrophe”.’ In the language of modern
field theory, turbulence exhibits ultraviolet (UV) divergences of velocity gradients in the
limit Re → ∞. As a consequence, the equations of motion (2.4) (or alternatively (2.5))
cannot remain valid in a naïve sense in the infinite-Re limit. Just as in field theory, to
obtain a dynamical description of turbulence as Re → ∞, one must somehow regularise
these UV divergences. The simple but effective approach of Constantin et al. (1994) was
to perform what is called ‘low-pass filtering’ in engineering, ‘spatial coarse-graining’ in
physics and ‘mollifying’ in mathematics. This method involves the use of a smooth kernel
G for space dimension d that satisfies:

(i) G(r) ≥ 0;
(ii) G(r) → 0 rapidly for |r| → ∞;

(iii)
∫

ddr G(r) = 1.

It is understood that G is centred at r = 0,
∫

ddr r G(r) = 0 and that
∫

ddr|r|2G(r) ≈ 1.
We can then set

G�(r) ≡ �−dG(r/�) (3.1)

so that all of the above properties hold, except that now
∫

ddr|r|2G�(r) ≈ �2, with � > 0
the regularisation length scale. Finally, one defines a coarse-grained velocity at length
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scale � by the following formula involving a convolution integral:

ū�(x, t) = (G� ∗ u)(x, t) =
∫

ddr G�(r) u(x + r, t), (3.2)

spatially averaging over the eddies of size < �.

This coarse-grained field is roughly analogous to a ‘block spin’ in critical phenomena
and field theory. An identical operation is also employed in the ‘filtering approach’
to turbulence advocated by Leonard (1974) and Germano (1992), but with a different
motivation than regularisation of divergences. For Onsager’s theory, the important point is
that the coarse-graining operation (3.2) regularises gradients, so that ∇ū� remains finite as
ν → 0 for any fixed length � > 0. This may be shown using the simple integration-by-parts
identity

∇ū�(x, t) = −1
�

∫
ddr(∇G)�(r) u(x + r, t), (3.3)

which by Cauchy–Schwartz inequality yields the bound |∇ū�(x, t)| ≤ (1/�)√
C�

∫
ddr|u(r, t)|2 with constant C� = ∫

ddr|(∇G)�(r)|2. Thus, the coarse-grained
gradient is bounded as long as the total kinetic energy remains finite as ν → 0
(which is necessarily true for freely decaying turbulence with no stirring). The price
of this regularisation, as for quantum field-theory divergences, is that a new, arbitrary
regularisation scale � has been introduced.

Because divergences have been eliminated, one may now seek a dynamical description
in terms of the coarse-grained field defined in (3.2). The equation which is satisfied is
easily found to be

∂tū� + ∇ · (uu)� = −∇p̄� + ν�ū�, ∇ · ū� = 0, (3.4)

because the coarse-graining operation commutes with all space- and time-derivatives,
and one may inquire about its limit as Re → ∞. For this purpose, one should
non-dimensionalise the above equation and introduce hats everywhere, but doing so
simply replaces the physical viscosity with the dimensionless viscosity ν̂ = 1/Re. Thus, as
customary in the mathematical literature, one may omit the hats on non-dimensionalised
variables and consider the limit Re → ∞ as a ‘zero-viscosity limit’ limit ν → 0. I shall
do so hereafter, when this causes no confusion. Because the quantity �ū� in (3.4) remains
bounded by a similar estimate as (3.3), one can easily show rigorously that ν�ū� → 0 as
ν → 0 for fixed �. If one indexes the solutions uν of the Navier–Stokes equation (2.4) by
viscosity ν, then the above results suggest that a limiting field u = limν→0 uν will satisfy
the equation

∂tū� + ∇ · (uu)� = −∇p̄�, ∇ · ū� = 0. (3.5)

Since one is dealing with velocity fields in function spaces, a careful statement of this
hypothesis requires a suitable notion of convergence uν → u. It is not hard to show that
strong L2 convergence suffices, which is the condition that limν→0 ‖uν − u‖2 = 0 where

‖u‖p :=
[

1
T

∫ T

0
dt

1
|Ω|

∫
Ω

ddx|u(x, t)|p
]1/p

, p ≥ 1. (3.6)

As I shall discuss later (see § 3.2.3), such strong L2-convergence is not guaranteed a priori,
although it is in fact implied by some relatively mild assumptions on the energy spectrum
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Onsager’s ‘ideal turbulence’ theory

which can be tested empirically. For the moment, I shall simply assume such convergence
so that (3.5) directly follows, but I return to this issue later.

An important observation is that the validity of the coarse-grained equations (3.5) for
all lengths � > 0 is equivalent to the condition in mathematical PDE theory that the
velocity u is a weak solution of the incompressible Euler equations. Readers may be
more familiar with the standard formulation of weak solutions by smearing the dynamical
equations with smooth space–time test functions, so that the equations hold in the sense
of distributions or generalised functions. A simple proof that ‘coarse-grained solutions’,
satisfying (3.5) for all � > 0, are equivalent to standard weak solutions is given in § 2
of Drivas & Eyink (2018). Furthermore, these notions of weak solution are equivalent to
what Onsager (1949) meant when he wrote that ‘the ordinary formulation of the laws of
motion in terms of differential equations becomes inadequate and must be replaced by a
more general description; for example, the formulation (15) in terms of FOURIER series
will do’. Indeed, the incompressible Euler equations written as an infinite-dimensional
set of ordinary differential equations (ODEs) for the Fourier coefficients of the velocity
field yield also standard weak solutions, as discussed by Eyink (1994) and De Lellis &
Székelyhidi (2013). All of these equivalent formulations of weak solutions make sense
even when spatial derivatives of velocity no longer exist in the classical sense, but only in
the sense of distributions.

It may appear odd to some readers that (3.5) can be interpreted as ‘Euler equations’,
since the filtered equations (3.5) are generally regarded as unclosed whereas the Euler
equations are closed PDEs. It is indeed true that (3.5) are not closed equations for
the coarse-grained velocity ū� itself. This fact is usually underlined by introducing the
turbulent/subscale stress

τ �(u, u) := (uu)� − ū�ū�, (3.7)

so that (3.5) can be rewritten as

∂tū� + ∇ · [ū�ū� + τ �(u, u)] = −∇p̄�, ∇ · ū� = 0 (3.8)

with the non-closed term τ � distinguished. However, the coarse-grained velocity ū� =
G� ∗ u and the subscale stress τ �(u, u) are both explicit functions of the fine-grained
velocity field u, as emphasised by my notation, and thus (3.8) are explicit conditions on
that field. I may note that it is quite standard to consider that the large-scales > � in a
turbulent flow must satisfy the Euler fluid equations. For example, Landau & Lifshitz
(1959, § 31), wrote that: ‘We therefore conclude that, for the large eddies which are the
basis of any turbulent flow, the viscosity is unimportant and may be equated to zero, so that
the motion of these eddies obeys Euler’s equation.’ What needs to be stressed is that the
proper interpretation of such commonplace remarks is not that the coarse-grained velocity
ū� satisfies the Euler equations in the usual naïve sense, but instead that u is described by
a weak Euler solution at those scales, in the sense that (3.8) holds. Although this point is
elementary, it is frequently misunderstood and the source of common errors.

There is another very important conceptual point which must be emphasised about
the coarse-grained equations (3.8). Some critics have argued that these equations are
unphysical and not appropriate as the basis for a fundamental theory of turbulence because
both the length scale � and the filter kernel G are arbitrary. For example, Tsinober
(2009) wrote ‘The filter decomposition is formally more general than the Reynolds
decomposition. However, the former is one among many decompositions, so to say, of
a technical nature’ (p. 379) and also ‘After all Nature may and likely does not know
about our decompositions’ (p. 114). These are very shrewd remarks. In fact, I agree
completely with these concerns of Tsinober (2009) that Nature should not care about such
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(b)(a) (c)

Figure 3. Schematic illustration of spatial coarse-graining for turbulent flow past a grid: (a) fine-grained flow
resolved to the dissipation scale η; (b) flow coarse-grained at a length scale � > η; (c) flow coarse-grained
further at scale �′ > �. At each stage, eddies smaller than the coarsening scale are unresolved and ignored.
Panel (a) is reproduced from Laizet et al. (2012) and panels (b,c) modified by image filtering, with permission
from Elsevier.

arbitrary choices. Interestingly, this same problem has arisen in another area of physics,
relativistic quantum field theory, which is also plagued with similar UV divergences. In
that case also, arbitrary regularisations are required to eliminate the divergences and these
introduce a new arbitrary length scale, equivalent to � or, more commonly, a related energy
scale μ = c�/�, with c the speed of light and � Planck’s constant. In the renormalised field
theory, fundamental parameters of the theory such as coupling constants λ(μ) become
dependent on this arbitrary scale, in the same manner that τ � becomes dependent upon �.
Elementary particle physicists in the 1950s were also worried that predictions of the theory
should not depend upon such arbitrary choices and the concept of renormalisation group
(RG) invariance arose as the commonsense demand that any observable consequence of
the theory should be independent of μ. For a very clear discussion, see Gross (1976, § 4.1).
What makes RG invariance interesting and important is that non-trivial consequences can
be deduced precisely by varying μ and demanding that physical results be μ-independent.
What we shall see is that Onsager anticipated such arguments in the 1940s and that his 1/3
Hölder claim for turbulent velocities is an exact non-perturbative consequence of such RG
invariance.

To underscore the nature of the argument, I emphasise that coarse-graining is a purely
passive operation – ‘removing one’s spectacles’ – which changes no physical process. The
effect of the coarse-graining operation in (3.2) is illustrated by figure 3, which shows the
velocity field observed at successively coarser spatial resolutions �. Although the dynamics
of the velocity field resolved at the Kolmogorov scale � = η is described rather well by
the Navier–Stokes equation (2.4), the coarse-grained velocity field ū� at scales � � η

is described by the highly non-Newtonian equation (3.8). While the description of the
dynamics changes with resolution �, nevertheless objective facts cannot depend upon the
‘eyesight’ of the observer. Thus, an energy dissipation rate which is non-vanishing in the
limit as ν → 0 implies that kinetic energy will decrease over a fixed interval of time [0, t],
as observed by experiment, and this fact cannot depend upon the arbitrary scale �. An
observation at resolution � can only miss some kinetic energy of smaller eddies, since by
convexity

1
2 |ū�(x, t)|2 ≤ 1

2

(|u(x, t)|2)
�
, (3.9)

and it then follows that E�(t) := (1/2)
∫

ddx|ū�(x, t)|2 ≤ (1/2)
∫

ddx|u(x, t)|2 = E(t). If
kinetic energy continues to decay even in the limit as ν → 0, then such persistent energy
decay must also be seen by the ‘myopic’ observer who observes fluid features only at
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Onsager’s ‘ideal turbulence’ theory

space-resolution �. As I now show, however, the persistent energy decay observed at the
fixed length scale � with ν → 0 is not due to molecular viscosity acting directly at those
scales.

The local kinetic energy balance at length scales � in the inertial-range obtained for the
limit ν → 0 is calculated straightforwardly from (3.8) to be

∂t

(
1
2 |ū�|2

)
+ ∇ ·

[(
1
2 |ū�|2 + p̄�

)
ū� + τ � · ū�

]
= −Π�, (3.10)

where the quantity on the right-hand side of the equation is given (with A : B = ∑
ijAijBij)

by
Π�(x, t) = −∇ū�(x, t) : τ �(x, t), (3.11)

and represents the ‘deformation work’ of the large-scale strain acting against small-scale
stress, or the ‘energy flux’ from resolved scales > � to unresolved scales < �. The
mechanism of loss of energy by the inertial-range eddies is thus ‘energy cascade’, a
term first used in this connection by Onsager (1945a). A key observation is that the
stress-tensor τ �(u, u) may be rewritten in terms of velocity-increments δu(r; x, t) =
u(x + r, t) − u(x, t), as

τ �(u, u) = 〈δuδu〉� − 〈δu〉�〈δu〉�, (3.12)

where 〈 f 〉�(x, t) := ∫
ddr G�(r)f (r; x, t). This formula was originally obtained by

Constantin et al. (1994) in a slightly different form, and as above by Eyink (1995b) as
a physical re-interpretation of their result. Equation (3.12) is easy to verify by direct
calculation, but it can be simply understood as due to the invariance of the second-order
cumulant τ �(u, u) to shifts of u by vectors that are ‘non-random’ with respect to the
average 〈·〉� over displacements r, i.e. that are independent of r. This allows u(x + r, t) in
the definition (3.7) of τ �(u, u) to be replaced with δu(r; x, t), yielding (3.12). Similarly,
one may rewrite (3.3) for coarse-grained velocity-gradients in terms of increments as

∇ū�(x, t) = −1
�

∫
ddr(∇G)�(r)δu(r; x, t), (3.13)

using the fact that
∫

ddr(∇G)�(r) = 0.

As an immediate application of these formulae, one can rederive the prediction of
Onsager (1949) that Hölder singularities h ≤ 1/3 are required in the velocity field for
energy dissipation to persist in the limit ν → 0. Indeed, assuming for some constant C > 0
that

|δu(r; x, t)| ≤ C|r|h, (3.14)

then it is straightforward to show using (3.11), (3.12) and (3.13) that

Π�(x, t) = O
(
�3h−1

)
. (3.15)

As is clear from (3.10), persistent energy decay at resolution length � can only occur if∫
ddx Π�(x, t) > 0 as ν → 0. However, the resolution scale � is completely arbitrary.

For any fixed �, one can take ν sufficiently small so that the ‘ideal equations’ (3.5) or
(3.8) hold to any desired accuracy at that scale, and then sequentially further decreasing �,
one can correspondingly decrease ν. If the Hölder regularity (3.14) held for all (x, t) with
h > 1/3, then clearly by (3.15), it would follow that

∫
ddxΠ�(x, t) → 0 as � → 0. This

is a contradiction, since the rate of decay of energy must be independent of the arbitrary
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length scale of resolution � as � → 0. Just as done by Onsager (1949), we thus infer that
there must appear Hölder singularities h ≤ 1/3 in the limit as ν → 0, or Re → ∞. As I
shall discuss in § 3.1.2, Onsager had given a very similar argument to that above in his
unpublished work.

As an aside, I remark that the RG character of this argument can be made even more
explicit by a somewhat different technical approach of Johnson (2020, 2022), where it is
observed for a Gaussian kernel G(r) = exp(−r2/2)/(2π)3/2 that (∂/∂�2)ū� = 1

2�ū� and
thus

∂

∂�2 τ � = 1
2
�τ � + (∇ū�)

�∇ū�. (3.16)

In this approach, the subscale stress that ‘renormalises’ the bare Navier–Stokes dynamics
can in fact be obtained by solving an equation that evolves τ � in the scale parameter
�, analogous to the RG flow equations in high-energy physics and critical phenomena
(Wilson 1975; Gross 1976). Solving (3.16) with the initial data τ �|�=0 = 0, Johnson (2020)
obtained

τ � =
∫ �2

0
dλ2 ((∇ūλ)�∇ūλ)√

�2−λ2 . (3.17)

Assuming the Hölder condition (3.14) then gives ∇ūλ = O(λh−1) as before and, from the
identity (3.17), τ � = O(�2h). Thus, the same bound (3.15) is deduced once again and this
implies the 1/3 Hölder claim of Onsager. See also Isett & Oh (2016) for a similar approach.

The paper of Constantin et al. (1994) derived in fact a stronger result, by replacing
the Hölder regularity originally assumed by Onsager (1949) with a weaker assumption of
Besov regularity. As discussed by Eyink (1995b), Besov regularity can be understood in
terms of deterministic pth-order ‘velocity-structure functions’ defined for absolute velocity
increments and for space-averages over the flow domain Ω :

Sp(r) = 1
|Ω|

∫
Ω

ddx|δu(r; x)|p. (3.18)

Although power laws in the separation distance |r| are generally observed empirically for
turbulent fluid flows, Besov regularity requires only an upper bound

Sp(r) ≤ Cp|r|ζp, |r| ≤ 1. (3.19)

If this inequality holds along with the modest assumption of finite pth-order moments

1
|Ω|

∫
Ω

ddx|u(x)|p < ∞, (3.20)

then the velocity field u is said to belong to the Besov space Bσ,∞
p (Ω) with σ = σp :=

ζp/p. Note that the optimal constant Cp = sup|r|≤1Sp(r)/|r|ζp in the inequality (3.19) is
related to the so-called ‘Besov semi-norm’ in the mathematical literature by the formula
|||u|||Bσ,q

p
= C1/p

p , so that the abstract semi-norm is given by the prefactor in expected
power scaling laws (Drivas & Eyink 2019). Note further that the Hölder condition (3.14)
is equivalent to the Besov condition (3.19) for p = ∞, with σ∞ = h.

The result of Constantin et al. (1994) was that energy dissipation non-vanishing in
the limit as ν → 0 requires ζp ≤ p/3 for all p ≥ 3 or, equivalently, σp ≤ 1/3 for p ≥ 3.
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The argument generalises that given previously for p = ∞ and uses the simple bound
from the Hölder inequality valid for any p ≥ 3,∣∣∣∣ 1

|Ω|
∫

Ω

ddx Π�(x, t)
∣∣∣∣ ≤ ‖Π�‖p/3 ≤ ‖∇ū�‖p‖τ �‖p/2 = O

(
�3σp−1

)
, (3.21)

since ‖∇ū�‖p = O(�σp−1) and ‖τ �‖p/2 = O(�2σp). For mathematical details, see
Constantin et al. (1994), Eyink (1995b) or Eyink (2007). Just as before, if the Besov
regularity (3.19) held with σp > 1/3, then it would follow that

∫
ddx, Π�(x, t) → 0 as

� → 0. This would yield the same contradiction as previously, since the rate of decay
of energy must be independent of the arbitrary length scale of resolution � as � → 0.

Generalising the statement of Onsager (1949), one can infer that in fact σp ≤ 1/3 for all
p ≥ 3 in the limit as ν → 0.

Onsager’s ideas anticipate the ‘multifractal model’ proposed by Parisi & Frisch (1985)
for the turbulent velocity field; see also Frisch (1995) for a comprehensive exposition. In
fact, it is worth recalling the first sentence of Parisi & Frisch (1985): ‘A simple way of
explaining power law structure function is to invoke singularities of the Euler equations
considered as limit of the Navier–Stokes equations as the viscosity tends to zero.’ Parisi &
Frisch (1985) proposed that the turbulent velocity field possesses a spectrum of Hölder
exponents h ∈ [hmin, hmax] with each exponent h occurring on a set S(h) ⊂ Ω with
Hausdorff dimension D(h). The velocity scaling exponents are then obtained by the
formula

ζp = inf
h

{hp + (3 − D(h))}, (3.22)

thus accounting for the observed deviations from the prediction ζp = p/3 of Kolmogorov
(1941a,b). The velocity scaling exponent relevant in this context can be understood as the
‘maximal Besov exponent’ σp = ζp/p for any p ≥ 0 with

ζp := lim inf
|r|→0

log Sp(r)
log |r| , (3.23)

a concept which is meaningful even without any power-law scaling (Eyink 1995a). As we
shall see later, Onsager had arrived at similar conclusions already by 1945 (but without
the modern concept of fractals). Note that hp = dζp/dp is the Hölder exponent h that
yields the infimum in (3.22) for each p ≥ 0. It then follows from (3.22) or even directly
from the concavity of ζp in p (Frisch 1995; Eyink 2007) that hp ≤ σp for all p ≥ 0. Thus,
the theorem of Constantin et al. (1994) implies also that hp ≤ 1/3 for p ≥ 3 and the
original result of Onsager (1949) is equivalent to the statement that h∞ = hmin ≤ 1/3.

It is important to emphasise that these are predictive statements which have received
subsequent support from empirical determination of the multifractal dimension spectrum
D(h) both from numerical simulations (Kestener & Arneodo 2004) and from hot-wire
experiments (Lashermes et al. 2008). As I shall discuss later, the ‘ideal turbulence’ theory
makes connection also with the alternative multifractal theory for the energy dissipation
rate (Kolmogorov 1962; Mandelbrot 1974, 1989; Meneveau & Sreenivasan 1991).

Another successful prediction made by Onsager (1945a, 1949) concerned the locality
of the energy cascade, which is the statement that the nonlinear flux Π� defined in
(3.11) as a cubic function of the velocity field u is determined predominantly by velocity
modes or ‘eddies’ of scale near �. In the words of Onsager (1945a): ‘The modulation
of a given Fourier component of the motion is mostly due to those others which
belong to wavenumbers of comparable magnitude.’ In his 1945 letter to von Kármán
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and Lin (reproduced in Eyink & Sreenivasan 2006, appendix B), Onsager stated more
precisely that ‘With a hypothesis slightly stronger than (14) the motion which belongs
to wave-numbers of the same order of magnitude as k itself will furnish the greater
part of the effective rate of shear’, where the mentioned condition (14) asserts that u
is square-integrable but that ∇u is not. A condition of exactly this type is the Hölder
condition (3.14), which may be shown for any 0 < h < 1 to imply locality. In fact, scale
locality of energy cascade holds assuming only the pth-order Besov condition (3.19)
for any 0 < σp < 1 (Eyink 2005; Cheskidov et al. 2008). These predictions have been
confirmed in a number of numerical studies, for example, Domaradzki & Carati (2007),
Aluie & Eyink (2009) and Cardesa et al. (2015).

It is crucial that these locality properties hold instantaneously and deterministically
for individual flow realisations (Kraichnan 1974). The cited mathematical analyses and
numerical simulations verify that averaging over velocity realisations improves the degree
of locality but also that averaging is not necessary for local-in-scale interactions to
dominate in energy transfer. Locality for individual realisations is necessary for another
important feature of turbulence, the universality of small-scale statistics. The usual
argument for such universal statistics has to do with the scale invariance of the Euler
equations and the scale-locality of the energy transfer by which small scales are excited.
It is by the latter property that, in the words of Onsager (1949), ‘we are led to expect a
cascade such that the wavenumbers increase typically in a geometric series, by a factor
of the order 2 per step’. If each step in the cascade is chaotic and also of comparable
nature to the previous steps, because of scale-invariance, then it is reasonable to expect
that the details of large-scale flow features will be lost and superseded by motions intrinsic
to the local Euler dynamics. It is further quite obvious that scale-locality for energy
transfer only in the mean sense would be inadequate for such universality, because then
long-range communication between large and small scales could exist instantaneously
which is cancelled only by averaging over time or initial data.

This universality is one of the many features that connects Onsager’s ‘ideal turbulence’
with the LES method of modelling turbulence. In LES, the large-scale motions (large
eddies) of turbulent flow are computed directly and only small-scale (sub-grid scale;
SGS) motions are modelled, resulting in a significant reduction in computational cost
compared with DNS (Piomelli 1999; Meneveau & Katz 2000). The justification for the
LES scheme is that the turbulent small-scales are expected to be statistically similar
for every flow and thus may be universally modelled, while the non-universal large
scales are explicitly computed at far lower cost. LES originated in the pioneering work
of Smagorinsky (1963) and Lilly (1967), and it has developed historically with little
connection to Onsager’s theory of ‘ideal turbulence’, although the two are quite intimately
related. At the most superficial level, the analysis used by Constantin et al. (1994) to
prove Onsager’s 1/3 result is the same as the filtering approach advocated by Leonard
(1974) and Germano (1992), and widely used in LES. Thus, the filtered equations (3.8)
used to derive Onsager’s theorem are the same as those employed in LES. However,
filtering/coarse-graining is just one specific form of regularisation and other schemes are
possible (e.g. Onsager used also Fourier series as a regulariser). The specific regularisation
by spatial filtering is not intrinsic to either method. More important is that both approaches
aim to describe individual flow realisations, unlike Reynolds-averaged Navier–Stokes
(RANS) modelling which resigns itself to calculation of time- or ensemble-averaged
velocities only. Furthermore, Onsager’s theory justifies the truism that an LES model
should run even with molecular viscosity set to zero and thus should describe turbulent
dissipation at infinite Reynolds number.
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Onsager’s ‘ideal turbulence’ theory

Figure 4. Mixing of cream in a mug of coffee, moderately turbulent from mild stirring. Reproduced on
license from Shutterstock.

In concluding this section, I want to emphasise the conceptual and practical importance
of a deterministic description of turbulent flow for individual flow realisations. In much
of the scientific literature on fluid turbulence, it is often reflexively assumed that any
mathematical description must be statistical in nature. However, this instinctive reaction
does not permit one to discuss even such a commonplace flow as your morning cup of
coffee (see figure 4). This flow has a decent Reynolds number that may be estimated of
order Re = UD/ν = 3 × 104 (assuming stirring velocity U = 20 cm s−1, cup diameter
D = 6 cm and kinematic viscosity ν = 0.4 mm2 s−1) and is thus modestly turbulent.
However, there is no ensemble in sight! The coffee is stirred only a few times to mix
the cream and thus the flow is decaying, so that one cannot average over time. Also, the
size of the largest eddies is of the order of the cup diameter and thus one cannot average
over many integral lengths of the flow. Nevertheless, the fluid flow in the cup is turbulent
each time you stir it and one must be able to describe the specific, individual flow. This
need is common in many areas of science, such as geophysics and astrophysics, where
some specific hurricane or some specific supernova must be understood. These remarks
are not intended to deny the intrinsic stochasticity of turbulent flow. It is also true that
when you stir your morning cup of coffee, each time, you will see a different pattern of the
cream, no matter how carefully you try to repeat your actions each day. However, in many
discussions of turbulence, the applications of probabilistic methods are entirely gratuitous.
It is only by eliminating the superficial and unnecessary resorts to a statistical description
that one can uncover where probability theory is truly essential.

3.1.2. Local deterministic 4/5th law and dissipative anomaly
One of the landmark results of the statistical approach to turbulence is the celebrated
4/5th law derived by Kolmogorov (1941a), who invoked statistical hypotheses of local
homogeneity and isotropy of the flow. In a remarkable work developing Onsager’s ideas,
Duchon & Robert (2000) have shown that the 4/5th law holds not only deterministically
for individual flow realisations, not requiring any statistical hypotheses, but also that it
holds in a much stronger space–time local form. As we shall see, these developments were
also foreshadowed by Onsager’s own unpublished work. Here I shall sketch the essential
ideas in the work of Duchon & Robert (2000) and discuss their various ramifications. For
a much more detailed explanation, see the online course notes of Eyink (2007, § III.C).

The analysis of Duchon & Robert (2000) again attempts to understand the zeroth-law of
turbulence or the ‘inertial-dissipation’ of kinetic energy. The basic problem remains that
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UV divergences must appear in the inviscid limit, so that the fluid equations can no longer
be understood as PDEs in the naïve sense. The starting point of Duchon & Robert (2000)
is a balance equation for a point-split kinetic energy density 1

2 u(x, t) · u(x + r, t):

∂t

(
1
2 u · u′

)
+ ∇ ·

[(
1
2 u · u′

)
u + 1

2 ( pu′ + p′u) + 1
4 |u′|2δu − ν∇

(
1
2 u · u′

)]
= 1

4∇r · [δu|δu|2] − ν∇u : ∇u′ + 1
2 ( f · u′ + f ′ · u), (3.24)

where I have introduced the abbreviated notation

u = u(x, t), p = p(x, t), f = f (x, t),

u′ = u(x + r, t), p′ = p(x + r, t), f ′ = f (x + r, t),

δu = u′ − u = u(x + r, t) − u(x, t),

⎫⎪⎬⎪⎭ (3.25)

and I have permitted a body force f in the Navier–Stokes equation, for greater
generality. Similar exact equations were introduced somewhat later by Hill (2001, 2002)
as deterministic versions of the Kármán–Howarth–Monin relations. However, the balance
equation (3.24) does not yet eliminate UV divergences by point-splitting alone, which
requires further multiplying through by a filter kernel G�(r) and integrating over r. This
yields a corresponding balance equation for the regularised energy density 1

2 u · ū�:

∂t

(
1
2

u · ū�

)
+ ∇ ·

[(
1
2

u · ū�

)
u + 1

2
( pū� + p̄�u) + 1

4
(|u|2u)�

− 1
4
(|u|2)�u − ν∇

(
1
2

u · ū�

)]
= − 1

4�

∫
ddr(∇G)�(r) · δu(r) |δu(r)|2 − ν∇u : ∇ū� + 1

2
( f · ū� + f̄ � · u). (3.26)

It is now easy to check that all terms remain bounded in the limit as ν → 0.

The next step of Duchon & Robert (2000) was to study the convergence as ν → 0 of the
various terms in the regularised energy balance (3.26), under the assumption of strong
L3-convergence of Navier–Stokes solutions uν to some u, i.e. limν→0 ‖uν − u‖3 = 0.

Note that u is then necessarily a weak Euler solution. As with the prior assumption of
strong L2-convergence, this even stronger convergence assumption is not guaranteed a
priori, but we shall see that it is implied by other empirically observed properties. Taking
strong L3-convergence for granted, it is easy to check that all of the terms proportional to
ν in (3.26) in fact disappear in the limit. Furthermore, all of the remaining terms are found
to converge in the sense of distributions to the same expression but with Navier–Stokes
velocity uν replaced with the limiting field u, yielding a modified energy balance for the
inviscid Euler solution:

∂t

(
1
2

u · ū�

)
+ ∇ ·

[(
1
2

u · ū�

)
u + 1

2
( pū� + p̄�u) + 1

4
(|u|2u)� − 1

4
(|u|2)�u

]
= − 1

4�

∫
ddr(∇G)�(r) · δu(r)|δu(r)|2 + 1

2
( f · ū� + f̄ � · u). (3.27)

Note, in particular, that validity in the sense of distributions means that the above balance
equation is implicitly smeared with a smooth test function ϕ(x, t) in space–time and that
all derivatives acting on u or related solution fields can be moved over to the test function.
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Onsager’s ‘ideal turbulence’ theory

From these remarks, it is then easy to check further that the limit as � → 0 of all terms
exist directly, except for the term containing (∇G)�(r). However, because all other terms
in the equation converge, this term must also converge. Duchon & Robert (2000) thus
concluded that a local kinetic energy balance holds in the sense of distributions for the
limiting Euler solution

∂t

(
1
2 |u|2

)
+ ∇ ·

[(
1
2 |u|2 + p

)
u
]

≡ −D(u) + f · u, (3.28)

where

D(u) = lim
�→0

1
4�

∫
ddr(∇G)�(r) · δu(r)|δu(r)|2 := lim

�→0
D�(u). (3.29)

The naïve kinetic energy balance of the Euler equations is broken by the term D(u), which
can be easily shown to vanish unless the velocity has Besov regularity exponent σp ≤
1/3 for p ≥ 3. Note in fact that the same final equation (3.28) can be obtained also by
considering the coarse-grained energy balance (3.10) with both factors of u filtered and
then taking the limit � → 0 in the same manner yields

D(u) = lim
�→0

Π� (3.30)

so that the ‘inertial dissipation’ in fact represents nonlinear energy cascade to
infinitesimally small length scales.

Physically, this loss of energy must arise from viscous dissipation. Notice, however,
(3.27)–(3.30) can be derived for any weak Euler solution, under the sole requirement that
u ∈ L3. Because the notion of weak Euler solution is time-reversible but D(u) is cubic in
the velocity field, it follows that any Euler solution with D(u) > 0 yields by time-reversal
another Euler solution with D(u) < 0. It is only Euler solutions obtained in the inviscid
limit, or so-called ‘viscosity solutions’ of Euler, which can be expected to satisfy the
physical expectation of positive dissipation. Because coarse-graining is purely optional,
one should be able to obtain the limiting energy balance (3.28) directly in the limit ν → 0.

This is what Duchon & Robert (2000) did, starting with the familiar kinetic energy balance
for Navier–Stokes solutions uν :

∂t

(
1
2 |uν |2

)
+ ∇ ·

[(
1
2 |uν |2 + pν

)
uν − ν∇

(
1
2 |uν |2

)]
= −ν|∇uν |2 + f · uν. (3.31)

(Here I note in passing that Duchon & Robert (2000) considered a more general situation
where the Navier–Stokes solutions are themselves singular and must be interpreted
distributionally à la Leray (1934), in which case, the ‘=’ in (3.31) is replaced by ‘≤’.
For reasons discussed later, I am not interested physically in this mathematical generality.)
Now assuming once more the strong L3 convergence uν → u, it is easy to see that all of
the terms on the left-hand side converge distributionally as ν → 0 to the expected limit on
the left-hand side of (3.28) and likewise f · uν → f · u. The only term which cannot be
shown directly to converge is the viscous dissipation ν|∇uν |2, but, since all other terms
in the Navier–Stokes balance (3.31) converge, so also does this term. One thus derives the
same local energy balance (3.28) as before for the limiting Euler solution, but one obtains
furthermore the new expression

D(u) = lim
ν→0

ν|∇uν |2 ≥ 0. (3.32)

This result can be understood as a matching relation for the ‘viscosity solutions’ of Euler
equations, which equates the energy carried by nonlinear cascade to infinitesimally small
scales and the usual energy dissipation by molecular viscosity.
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A final important result obtained by Duchon & Robert (2000) exploited additional
freedom in the regularisation of UV divergences. In fact, not only is the length scale �

arbitrary, but so also is the precise choice of the kernel G. This freedom can be exploited
by choosing a rotationally symmetric kernel for which

∇G(r) = r̂G′(r). (3.33)

In that case, the d-dimensional integral over r in (3.29) for D(u) can be transformed into
hyperspherical coordinates so that

D�(u) = 1
4�

∫ ∞

0
rd−1 dr

∫
Sd−1

dωd(r̂)r̂ · δu(r)|δu(r)|2(G′)�(r), (3.34)

where Sd−1 is the unit hypersphere and dωd is the measure on in d-dimensional solid
angles. Using the integration by parts identity

∫∞
0 rdG′(r) dr = d, one can infer a new

identity

lim
r→0

〈δuL(r)|δu(r)|2〉ang

r
= −4

d
D(u), (3.35)

where 〈·〉ang denotes for any function of r the average with respect to ωd over the
direction r̂, and δuL(r) = r̂ · δu(r) is the longitudinal velocity increment. Combined with
the previous expression (3.32) for D(u) in terms of the viscous dissipation, one can see that
(3.35) for d = 3 has the form of the Kolmogorov–Yaglom 4/3rd law (Antonia et al. 1997).
It is well known in the standard derivation by ensemble averages that the Kolmogorov
4/5th and 4/15th laws are equivalent to the 4/3rd law under the assumption of statistical
isotropy. Since the angle average in the present derivations provides isotropy without any
statistical hypotheses, some further manipulation (Eyink 2003; Novack 2023) yields

lim
r→0

〈δu3
L(r)〉ang

r
= − 12

d(d + 2)
D(u), (3.36)

lim
r→0

〈δuL(r)δu2
T(r)〉ang

r
= − 4

d(d + 2)
D(u), (3.37)

where δuT(r) = δu(r) − r̂δuL(r) is the full transverse velocity increment and δuT(r) is the
magnitude of any particular (fixed) component. One can see for d = 3 that (3.36) has the
form of the usual 4/5th law and (3.37) has the form of the 4/15th law.

Note, however, that the relations (3.35)–(3.37) are deterministic, holding for individual
flow realisations, and are furthermore space–time local in the sense of distributions.
The latter statement simply means that they hold with both sides smeared by an
arbitrary space–time test function ϕ(x, t), taking first ν → 0 and then r → 0. Thus,
these results represent a considerable strengthening of the original ensemble-average
relations of Kolmogorov (1941a). An effort was made by Taylor, Kurien & Eyink (2003)
to test these deterministic local relations in pseudospectral numerical simulations, but
the 5123 resolution available at the time was insufficient. It was possible to show
that angle-averaging greatly improved the validity of the observed 4/5th law, attaining
results comparable to those at 10243 resolution even without time-averaging. Thus, the
local 4/5th law appeared in fact to hold instantaneously, without smearing in time,
beyond what could be proved mathematically. Note that it is only with simulations
of 16 3843 resolution that the 4/5th law has recently been demonstrated convincingly,
exploiting both angle-averaging and time-averaging (Iyer, Sreenivasan & Yeung 2020).
This brings us close to being able to check the local 4/5th law in simulations of 32 7683
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resolution by dividing the computational cube into eight 16 3843 subcubes, and verifying
that the relation holds with the structure functions and mean dissipation calculated by
space-averages individually over each subcube. Of course, the result should hold with any
space–time test function ϕ held fixed in the limit first ν → 0 and then r → 0, but current
computational limitations seem to make characteristic functions of octants the only choice
consistent with the stringent condition that the local Reynolds number must be high. It is
worth remarking that the analogue of the deterministic, local 4/5th law can be rigorously
derived for the ‘viscosity solutions’ of the inviscid Burgers equation, ∂tu + ∂x(

1
2 u2) = 0.

In that case, the local energy balance holds

∂t

(
1
2 u2

)
+ ∂x

(
1
3 u3

)
= −D(u) (3.38)

with the ‘inertial dissipation’ given by

lim
r→0

〈δu3
L(r)〉ang

|r| = −12D(u), (3.39)

where δuL(r) := sign(r)δu(r) and 〈δu3
L(r)〉ang = [δu3(+|r|) − δu3(−|r|)]/2. See Eyink

(2007, § III) and Novack (2023). These relations correspond to the ensemble-averaged
‘12th law’ for Burgulence, but valid in space–time local form with ‘inertial dissipation’
arising entirely from shock singularities.

It should be emphasised again that the deterministic versions of the 4/5th law (3.36)
and the 4/15th law (3.37), and all of the earlier results in this section, require no
statistical assumptions whatsoever. Neither local homogeneity, local stationarity, isotropy
nor any other hypothesis about the flow statistics was invoked in their derivation. In
particular, these relations will apply in the ‘non-equilibrium decay regime’ highlighted
in the review of Vassilicos (2015) on turbulent energy dissipation. Vassilicos (2015)
reported observations in a near wake region of various grids and bluff bodies that the
time-averaged quantity Cε := 〈D〉 = 〈ε〉/(u′3/L) scales as Rem

I /Ren
L, where in his notation,

ReI = ULb/ν is the ‘global’ or ‘inlet Reynolds number’ based on the inlet flow speed
U and a length Lb giving the overall size of the grid or body, whereas ReL = u′L/ν

is the ‘local Reynolds number’. In the wake flows considered by Vassilicos (2015),
both the r.m.s. velocity fluctuation u′ and integral length L are statistical quantities that
depend upon the longitudinal distance x of the observation point from the grid/body.
Since wake flows involve interactions with solid walls, I shall treat the energy cascade
in such flows in § 4.2.4, but here I note that all of our previous results carry over, with
possible modifications only directly at the solid surface. As I shall discuss in § 4.1, for
flows with walls or solid bodies, I always consider the global Reynolds number ReI,
which appears in the non-dimensionalisation of the Navier–Stokes equation. As noted
already by Vassilicos (2015, p. 108), the quantity Cε at each x-location is ‘more or less
independent of the Reynolds number’ ReI , even in the non-equilibrium decay region
because ‘m ≈ 1 ≈ n, and ReL increases linearly with ReI’. In fact, m = n corresponds
exactly to the ‘dissipative anomaly’ conjectured by Onsager (1949) and all of our
previous conclusions follow in the limit ReI → ∞. In particular, the local 4/5th law
(3.36) and the 4/15th law (3.37) will hold in the non-equilibrium decay region, not
only for time-/ensemble-averages but even for individual flow realisations. Vassilicos
(2015) has observed that ‘the Richardson–Kolmogorov cascade does not seem to be the
. . .interscale energy transfer mechanism at work’, but the dissipative anomaly for ReI � 1
must occur by Onsager’s local cascade mechanism, which generalises Kolmogorov’s
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equilibrium picture. I agree with the observation of Vassilicos (2015) that the 4/5th law of
Kolmogorov (1941a) need not be valid in general for r � L. In fact, our local, deterministic
version (3.36) will generally only hold for r � Lϕ, where Lϕ measures the spatial diameter
of the support of the test function ϕ required to make (3.36) meaningful.

Amazingly enough, most of the previous developments were foreseen by Onsager in
his unpublished work in the 1940s. When I was on sabbatical at Yale in 2000, I was
able to examine Onsager’s private research notes available there on microfiche and I was
astonished to discover that Onsager’s own proof of his 1/3 Hölder claim was essentially
identical to that given by Duchon & Robert (2000). These notes are now all available
online through the Onsager Archive hosted by the NTNU in Trondheim and the reader
can peruse them at https://ntnu.tind.io/record/121183. The essential calculations are on
pp. 14–19 of Onsager’s notes in this folder, where he derives the identity (3.27) but
in a space integrated form and with the filtering function G�(r) denoted F(r). It is
interesting that on p. 15, Onsager begins the calculation by writing an overbar, his notation
for ensemble-average, but then scratches out the overbar in the second line, apparently
realising that volume-averaging was sufficient to derive the result. This seems to have been
the moment that the theme of my essay was born. Onsager communicated his identity
to von Kármán and Lin in his letter of June 1945 (reproduced as appendix B in Eyink
& Sreenivasan 2006) where he gave an argument for 1/3-scaling by taking F(r) to be
a spherical tophat filter of radius a and then letting a → 0. It is further interesting that
Onsager in this same letter also foresaw that inertial-range intermittency could lead to an
energy spectrum having a steeper slope than −5/3, writing that, ‘As far as I can make

out, a more rapid decrease of a2
k with increasing k would require a “spotty” distribution

of the regions in which the velocity varies rapidly between neighboring points.’ Onsager
then notes that all velocity increments supported in discontinuities at vortex sheets would
produce S2(r) ∝ r, corresponding to a k−2 energy spectrum as for Burgers equation. Such
sheets would also be consistent with S3(r) ∝ r, but Onsager remarks that they would not
agree well with experimental observations on velocity traces. It is worth remarking that
vortex sheets cannot, in fact, be the origin of anomalous energy dissipation (De Rosa &
Inversi 2024). For more discussion of Onsager’s insights on inertial-range intermittency,
see Eyink & Sreenivasan (2006, § IV.C).

The local kinetic energy balance (3.28) derived by Duchon & Robert (2000) for weak
Euler solutions is the most succinct formulation of Onsager’s proposal for turbulent
dissipation ‘without the final assistance by viscosity’. This result has a very familiar
appearance to a modern field-theorist, because it is reminiscent of anomalies in classical
conservation laws due to UV divergences in the quantum field theory. This analogy
seems to have been first pointed out by Polyakov (1992, 1993), who did not know about
Onsager’s work, of course, but who based his discussion on the statistical theory of
Kolmogorov. Polyakov pointed out the essential similarity between turbulent cascades and
chiral anomalies in quantum Yang–Mills theory, as both involve a constant flux through
wavenumbers which vitiates a naïve conservation law. He pointed out also that the first
derivation of the chiral anomaly in quantum electrodynamics by Schwinger (1951) using
a point-splitting regularisation was very similar to the derivation of the 4/5th law by
Kolmogorov (1941a). It is interesting that Schwinger seemingly did not fully appreciate the
significance of his own calculation and did not point out its implication that conservation
of axial charge is violated (Adler 2005). However, we now see that Onsager had used
a similar point-splitting regularisation already in the 1940s and had fully appreciated its
consequence that naïve conservation of kinetic energy in the inviscid limit is broken by the
‘violet catastrophes’ in turbulent flows. This phenomenon is thus now commonly called a
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turbulent dissipative anomaly, because of the close connection with quantum field theory
anomalies. For more detailed discussion of this analogy, see Eyink & Sreenivasan (2006,
§ IV.B).

I would like to make just a brief remark why the term ‘anomaly’ is apt for the turbulent
phenomenon, independent of the connection with quantum field theory. It should be
emphasised that no fundamental microscopic conservation laws for total energy, total
linear momentum, total angular momentum, etc. are ever violated by such anomalies.
However, there is obviously no microscopic law of ‘conservation of kinetic energy’! This
conservation law is an emergent property of inviscid hydrodynamics due to its Hamiltonian
character, in which the kinetic energy of the fluid is itself the conserved Hamiltonian
(Salmon 1988; Morrison, Francoise & Naber 2006). It is because of this Hamiltonian
structure of the Euler equations that kinetic energy conservation is formally expected
and thus the breakdown of this conservation is ‘anomalous’. The same is true more
generally for turbulent dissipative anomalies. For example, conservation of helicity and
conservation of circulation on arbitrary loops are not sacrosanct microscopic laws but
are instead emergent laws connected with ‘relabelling symmetry’, an infinite-dimensional
symmetry group of the action for three-dimensional ideal Euler equations. It is such
emergent conservation laws of the ideal fluid which may be afflicted with dissipative
anomalies in turbulent flows. It is interesting that some of these symmetries are preserved
in a formulation of the viscous Navier–Stokes via a stochastic least-action principle (Eyink
2010), suggesting that not all of these emergent conservation laws will be explicitly broken
by dissipative anomalies but may instead be realised in an unconventional stochastic form.
See further discussion in § 3.1.3.2.

Finally, I point out that the work of Duchon & Robert (2000) makes a connection
between the ‘ideal turbulence’ theory and the multifractal model of energy dissipation.
After Kolmogorov (1962) had proposed his lognormal model of turbulent energy
dissipation to account for intermittency corrections, Mandelbrot (1974, 1989) introduced
a more general description of the energy dissipation as a multifractal measure with a
spectrum of singularities. Subsequent experimental studies of Meneveau & Sreenivasan
(1991) supported these predicted scaling properties of turbulent energy dissipation. The
result (3.32) of Duchon & Robert (2000) shows that the dissipative anomaly term D(u)

in the inviscid energy balance coincides exactly with this multifractal measure. In fact,
the analysis of Duchon & Robert (2000) implies that the inviscid limit of the viscous
energy dissipation εν = 2ν|Sν |2 exists and coincides with D(u), which is a non-negative
distribution and, thus, a measure. Recent rigorous results relate the fractal dimension of
the support of this measure to the inertial-range intermittency of the velocity increments
(De Rosa & Isett 2024).

3.1.3. Implications and open questions
There are many questions raised by the original analysis of Onsager (1945a, 1949) and also
many subsequent developments extending and elaborating his ideas. Here I shall briefly
review and discuss such further implications and open issues.

3.1.3.1. Origin of singularities Onsager’s result and its extensions by Constantin et al.
(1994), Eyink (1994), Duchon & Robert (2000) and others show that singularities of the
velocity field are required to explain anomalous dissipation of kinetic energy in the inviscid
limit of incompressible hydrodynamic turbulence. However, this theory does not explain
the origin of such singularities. The traditional view has been that these singularities arise
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from finite-time blow-up of smooth Euler solutions, e.g. see Frisch (1995, § 9.3). The most
significant argument in favour of this view is based on a set of results in mathematical
theory of PDEs which goes by the name weak-strong uniqueness. Such results state that
a weak Euler solution (or an Euler solution in even a more general sense: see § 3.2)
which has total kinetic energy non-increasing in time must coincide with a strong (i.e.
smooth) solution with the same initial data, over the entire time-interval for which the latter
exists. For example, see Lions (1996), Brenier, De Lellis & Székelyhidi (2011), Bardos
& Titi (2013) and Wiedemann (2018). These results can be used to infer that a weak
Euler solution obtained by a zero-viscosity limit of a Navier–Stokes solution, even in a
weaker sense of limit than discussed in § 3.1.2, must coincide with any such smooth Euler
solution. In particular, these weak-strong uniqueness results rule out the appearance of
anomalous energy dissipation over any finite time interval, if the Navier–Stokes equation
is solved with initial data that are a smooth velocity field or that even converge (say in
L2) to a smooth field, and if the Euler solution with that initial data does not blow up.
These arguments seem to suggest that anomalous dissipation requires finite-time Euler
singularities. There has also been recent progress in showing blow-up of strong Euler
solutions, both by numerical simulations (Luo & Hou 2014; Hou 2023) and by rigorous
mathematical analysis (Elgindi & Jeong 2019; Chen & Hou 2021, 2022; Elgindi 2021).

However, there are significant reasons to doubt that finite-time blow-up of smooth Euler
solutions has anything at all to do with empirical observations on fluid turbulence. First,
weak-strong uniqueness is known to break down in the presence of solid boundaries
(Bardos, Titi & Wiedemann 2019), requiring in that case additional assumptions that
may well be violated. This point will be discussed at length in § 4.2.6. Furthermore, the
hypothesis that dissipative singularities in incompressible turbulence form from finite-time
Euler singularities does not correlate well with observations. For example, it does not
account for the dichotomy demonstrated by Cadot et al. (1997) between flows with
hydraulically smooth and rough walls, with vanishing dissipation for hydraulically smooth
walls and a dissipative anomaly for hydraulically rough walls. In fact, the best numerical
and mathematical evidence for a finite-time blow-up is in a cylindrical domain with
smooth boundaries (Luo & Hou 2014; Chen & Hou 2021, 2022), where empirical evidence
suggests anomalous dissipation does not exist! I personally am of the opinion that solid
walls must play a crucial role in the appearance of anomalous energy dissipation in
incompressible fluid turbulence, as I shall discuss in more detail in § 4. I just note here that
all of the laboratory experiments and natural observations that support a turbulent anomaly
involve fluid–solid interactions, e.g. the interactions with the solid grid for decaying
turbulence in a wind-tunnel.

The obvious objection to these remarks is the evidence for a dissipative anomaly arising
from numerical simulations in a periodic box, with no walls. However, the evidence for
anomaly via blow-up from simulations is weak. For example, the simulation of Kaneda
et al. (2003) does not start with smooth initial data. As already discussed by Drivas &
Eyink (2019, Remark #4), the simulation reported by Kaneda et al. (2003) uses an iterative
initialisation procedure which builds in an initial quasi-singularity, corresponding to an
increasing range of Kolmogorov-type spectrum. This common device is widely regarded
as a numerical short-cut to accelerate the convergence to a steady state, but it renders
the simulations irrelevant to the issue of finite-time singularity. There are simulations
that do employ smooth initial data, e.g. the Taylor–Green vortex as discussed recently
by Fehn et al. (2022). However, here the evidence for anomalous dissipation in a finite
time is weaker, with no completely compelling convergence to a non-zero limit within
computational limitations.
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Figure 5. Sketch of the solutions of a deterministic ODE dx/dt = u(x, t) for deterministic initial data x0 but
with singular velocity u. Unlike traditional unique solutions, the trajectories spread randomly, like a plume of
smoke. Reproduced with permission from Falkovich, Gawȩdzki & Vergassola (2001). Copyright (2001) by the
American Physical Society.

3.1.3.2. Lagrangian spontaneous stochasticity One of the most remarkable
consequences of Onsager’s Hölder singularity result was first discovered in the work of
Bernard, Gawȩdzki & Kupiainen (1998), who studied Lagrangian fluid particle trajectories
that solve the initial-value problem:

ẋ = u(x, t), x(0) = x0. (3.40)

When u is the limiting Euler solution at infinite-Re then, as recalled by Bernard et al.
(1998), the maximal Hölder regularity derived by Onsager (1949) is insufficient to
guarantee a unique solution of (3.40) and there is generally a continuous infinity of
solutions with exactly the same initial data. It was realised by Bernard et al. (1998) that
this non-uniqueness permits stochasticity to persist in the high-Reynolds-number limit.
For example, the position of a Brownian particle such as a small colloid or a dye molecule
advected by a turbulent flow will satisfy instead a stochastic ODE:

dx̃ = u(x̃, t) dt +
√

2D dW̃ (t), x(0) = x0, (3.41)

where D is the molecular diffusivity of the particle and W̃ (t) is a Wiener
process modelling the Brownian motion. To study the high-Re limit, one may again
non-dimensionalise by defining û = u/u′, x̂ = x/L, t̂ = t/(L/u′) and then D is replaced
by 1/Pe, where Pe = u′L/D is the Péclet number. In the joint limit Re � 1, Pe � 1,

the Lagrangian particle trajectories x̃(t) solve the limiting deterministic ODE (3.40),
but Bernard et al. (1998) showed that they may remain random in the limit with a
non-trivial transition probability density pu(x, t|x0, 0) to arrive at position x at time t
(see figure 5). The essential physics was implicit already in the work of Richardson
(1926) on two-particle turbulent dispersion, according to which initial particle separations
are ‘forgotten’ at sufficiently long times. It is important to note however that there is
no averaging over velocities in the prediction of Bernard et al. (1998) and that the
transition probability represents stochastic particle evolution in a fixed realisation u of the
turbulent velocity field. Bernard et al. (1998) furthermore showed that this ‘spontaneous
stochasticity’ of Lagrangian particles provides a mechanism for anomalous dissipation of
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a concentration field c of such tracers, which satisfies the advection–diffusion equation

∂tc(x, t) + u(x, t) · ∇c(x, t) = D�c(x, t), c(x, 0) = c0(x). (3.42)

Since the solution of this equation (in non-dimensionalised form) has the exact
Feynman–Kac representation

c(x, t) =
∫

pRe,Pe
u (x, t|x0, 0)c0(x0) ddx0, (3.43)

the existence of a non-trivial limit limRe,Pe→∞ pRe,Pe
u (x, t|x0, 0) = pu(x, t|x0, 0) implies

by convexity that
∫ 1

2 c2(x, t) ddx <
∫ 1

2 c2
0(x0) ddx0 in the limit Re, Pe → ∞.

The original work of Bernard et al. (1998) was carried out for the synthetic turbulence
model of Kraichnan (1968), who considered advection by Gaussian random velocity fields
that are delta-correlated in time. Note that for suitable power-law spatial correlations to
mimic inertial-range turbulent velocity fields, the realisations of the Kraichnan velocity
ensemble are Hölder continuous with probability one. A very important feature of this
model is that the limiting probability distributions

pu(x, t|x0, 0) = lim
Re,Pe→∞

pRe,Pe
u (x, t|x0, 0) (3.44)

are independent of the particular subsequences Rek, Pek → ∞ and, in fact, are
independent of the particular form of regularisation and noise, e.g. the Brownian motion
W̃ (t) in (3.41) might be replaced with a fractional Brownian motion and the limit would
be the same. This strong result for the Kraichnan model follows from a rigorous study
by Le Jan & Raimond (2002) who gave a direct construction of a Markov transition
probability pu(x, t|x0, 0) for the zero-regularisation, zero-noise problem by a Weiner
chaos expansion in the white-noise advecting velocity field u(x, t). It is a consequence
of this construction that any reasonable spatial regularisation and noisy perturbation will
converge to this same transition probability in the zero-regularisation, zero-noise limit. It
was also shown by Le Jan & Raimond (2002) that the realisations x̃(t) of the limiting
Markov process with transition densities pu(x, t|x0, 0) are solutions (in a generalised
sense) of the deterministic initial-value problem (3.40) for each fixed realisation u of
the Kraichnan velocity ensemble. Thus, in this case, the Markov process x̃(t) should be
regarded as the proper solution of the above initial-value problem (3.40), which is then
well-posed in the sense of Hadamard. Spontaneous stochasticity in the strong sense should
be understood to include such universality of the limiting random process, that is, the
robustness of the stochastic solution to different regularisations and noisy perturbations.

Extensions of the work of Bernard et al. (1998) and further developments on the
Kraichnan model are described by Falkovich et al. (2001). This comprehensive review
makes clear that many of the results have validity extending beyond the Kraichnan
model and, in fact, Drivas & Eyink (2017a) showed that spontaneous stochasticity is
the only possible mechanism of scalar anomalous dissipation away from solid walls,
for both passive and active scalars advected by a general incompressible velocity field.
Note that universality of the limiting spontaneous statistics is not required in this case,
so that different limiting random processes yielding anomalous dissipation may result
from different subsequences and/or different regularisations. There are, however, only
a handful of model velocity fields for which Lagrangian spontaneous stochasticity can
be demonstrated from first principles (Drivas & Mailybaev 2021; Drivas, Mailybaev
& Raibekas 2023). Renormalisation group methods from statistical physics apply to
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velocity fields with suitable scaling properties and yield universality of the limit (Eyink
& Bandak 2020), but the underlying ergodic properties of the dynamical flows that are
required for this method are difficult to establish in general. One interesting example
of a velocity field solving a PDE is the solution of the inviscid Burgers equation,
where Lagrangian spontaneous stochasticity holds backwards in time at shock locations
and explains anomalous energy dissipation (Eyink & Drivas 2015). There is no such
spontaneous stochasticity for particles advected forwards in time by the Burgers velocity
field and it has been speculated that similar time asymmetry may be a more general feature
of Lagrangian spontaneous stochasticity in dissipative weak solutions of PDEs obtained
as inviscid limits.

As far as Navier–Stokes turbulence is concerned, there is so far no compelling evidence
of Lagrangian spontaneous stochasticity from laboratory experiments (Bourgoin et al.
2006; Tan & Ni 2022). However, numerical simulations of homogeneous, isotropic
turbulence in a periodic domain provide reasonable evidence for the ‘forgetting’ of
initial separations of deterministic Lagrangian particles (Bitane, Homann & Bec 2013;
Buaria, Sawford & Yeung 2015) and ‘forgetting’ of both initial separations and molecular
diffusivity of stochastic Lagrangian trajectories (Eyink 2011; Buaria, Yeung & Sawford
2016). Setting aside the important issue of empirical evidence, another crucial question
is what implications Lagrangian spontaneous stochasticity might have for incompressible
Navier–Stokes turbulence. A Feynman–Kac representation of Navier–Stokes solutions was
derived by Constantin & Iyer (2008) which is similar to (3.43) for the advection–diffusion
equation but more non-trivial, because of the nonlinearity of the equations. It was
pointed out by Eyink (2010) that the Constantin–Iyer representation corresponds to
a stochastic principle of least-action, thus making connection with Hamiltonian fluid
mechanics. In particular, the stochastic action functional for incompressible Navier–Stokes
is invariant under the infinite-dimensional symmetry group of particle-relabelling just
as is the action for deterministic Euler. The remarkable properties of vorticity under
Euler dynamics that follow from that symmetry therefore carry over to Navier–Stokes
in a stochastic fashion. For example, the Kelvin theorem of conservation of circulation
on an arbitrary Lagrangian loop for Euler holds also for Navier–Stokes in the sense
that the circulation on stochastically advected loops is a backwards-in-time martingale
(Constantin & Iyer 2008; Eyink 2010). This property prescribes the ‘arrow-of-time’ of
the irreversible Navier–Stokes dynamics and it is plausible that a similar property carries
over to dissipative weak Euler solutions obtained in the inviscid limit (Eyink 2006). The
dissipative anomaly for Navier–Stokes turbulence may be characterised also in terms of the
time asymmetry of separation of stochastic Lagrangian particle (Drivas 2019; Cheminet
et al. 2022), which in three dimensions separate faster backwards in time than they do
forwards in time (Eyink 2011; Buaria et al. 2016).

3.1.3.3. Finite Reynolds numbers A frequently made criticism of Onsager’s ‘ideal
turbulence’ theory is that it applies only to the unrealistic limit Re = ∞ and is thus
inapplicable to real-world turbulence which is, of course, always at a finite Reynolds
number. As an example, I may quote from the monograph of Tsinober (2009, § 10.3.2):
‘. . .it is not clear why results for finite Re (i.e. for NSE having no singularities or extremely
“intermittent” ones) are relevant for the limit (if such exists) Re → ∞ (e.g. for Euler
equation with space-filling singularities)’. In some respects, such criticisms are a simple
misunderstanding of the elementary concept of limit. Indeed, the predictions of a theory
for Re → ∞ are experimentally falsifiable, as they must be valid to arbitrary accuracy
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by taking Reynolds numbers larger (but finite). There is, however, a legitimate question
regarding any such predictions of an ‘ultimate regime’ concerning how large Re must be
chosen to observe the predictions of the theory. This is especially important for Onsager’s
theory since, as has often been observed, the strict requirement for its validity is that the
number of cascade steps must be large, that is, log2 Re � 1 and this condition is hard
to satisfy in even the highest Reynolds number terrestrial turbulent flows. There are two
responses to this very important question.

First, there are explicit error estimates in the mathematics of the Onsager theory
which provide bounds on the correction terms at large but finite Re. For example, in the
coarse-grained energy balance equation (3.10), there is at finite Reynolds number a viscous
dissipation term ν|∇ū�|2 in addition to the inertial flux term Π�. It is not difficult to derive
bounds of the form

ν|∇ū�|2 = O(νδu2(�)/�2) (3.45)

locally in space–time with δu(�) = sup|r|<� |δu(r)|, or similar bounds in terms of Besov
norms for space-integrated dissipation. These estimates provide concrete upper estimates
on the finite-Re corrections, which can explain departures from the Re = ∞ theory.

Second, Onsager’s RG-type arguments can also be applied directly to the Navier–Stokes
equations at large but finite Re and do not require any assumptions about existence of
weak Euler solutions in the limit Re → ∞. For example, Drivas & Eyink (2019) study
the balance of the subscale kinetic energy k� := (1/2)Tr τ � for the forced Navier–Stokes
equation, which takes the form

∂tk� + ∇ · J � = −(ν|∇u|2)� + ν|∇ū�|2 + Π� + τ�( f ; u), (3.46)

where J � is a suitable spatial flux of the subscale kinetic energy and τ�( f ; u) := (u · f )� −
ū� · f̄ � is the direct power input by the force into unresolved scales. If one assumes
suitable Besov regularity of the Navier–Stokes solutions, uν ∈ Bσ,∞

p , p ≥ 3, uniform in
the Reynold number, then one may derive bounds of the form

D = (1/Re)|∇̂û|2 = O(Re(1−3σ)/(1+σ)). (3.47)

These bounds follow by the same basic principle of independence of the physics on
the arbitrary coarse-graining scale �, which allows one to choose �/L ∝ Re−1/(1+σ) to
optimise the estimates. Following the same ideas of Onsager’s argument, one can then
deduce the existence of ‘quasi-singularities’ in the Navier–Stokes solutions from the
observation of energy dissipation vanishing slowly with Re:

D = (1/Re)|∇̂û|2 ∝ Re−α, (3.48)

which will require σ ≤ σα := (1 + α)/(3 − α). Note that when α = 0, one recovers
Onsager’s critical value σ = 1

3 , but when α > 0 instead, σα > 1
3 . This is a significant

strengthening of the Onsager’s original result, because empirical observations alone could
never allow one to distinguish α = 0 from a very tiny value of α. Nevertheless, Onsager’s
conclusions about ‘quasi-singularities’ are robust, remaining valid even under the weaker
condition (3.48).

The condition (3.48) on the dimensionless dissipation rate for α > 0 has been
evocatively termed a ‘weak dissipative anomaly’ by Bedrossian et al. (2019). Note that
whenever α < 1 in (3.48), then |∇̂û|2 ∝ Re1−α → ∞ as Re → ∞ and thus classical
solutions of the PDEs can no longer exist in the limit of infinite Re. Although no
assumption about the existence of weak solutions is necessary to derive the bound
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(3.47), such weak Euler solutions nevertheless emerge under the natural assumption
of some Besov regularity with σ < σα that is uniform in Re (Drivas & Eyink 2019).
Note furthermore that Bedrossian et al. (2019) have proved that the Kolmorogov 4/5th
law remains valid under the assumption of a weak dissipative anomaly only, unlike the
original derivation of Kolmogorov (1941a) which assumed a strong dissipative anomaly
(α = 0). It is easy to check that the Taylor microscale defined by λ2 = 15νu′2/ε satisfies
limRe→∞ λ/L = 0 precisely when α < 1 in (3.48) and then it is proved in Bedrossian et al.
(2019) that the maximum difference between 〈δu3

L(r)〉/r and −4
5εν becomes vanishingly

small over an increasing range of length scales λ� r � L. This important result shows
that validity of the 4/5th law cannot be taken as evidence for a strong anomaly. The proof
by Bedrossian et al. (2019) considers the statistical steady-state of turbulence in a periodic
domain driven by a body force which is a Gaussian random field, delta-correlated in time
and takes advantage of simplifications of that stochastic forcing. More recently, analogous
results have been derived by Novack (2023) for incompressible Navier–Stokes equations
with a deterministic forcing and are valid for individual flow realisations.

These results have gained some added significance by a recent surprising observation
that the scaling exponent ζ3 of absolute third-order structure functions defined by (3.19)
or (3.23) for p = 3 in fact satisfies ζ3 > 1 in some high-Re numerical simulations
of forced turbulence in a periodic domain (Iyer et al. 2024). This observation is, of
course, inconsistent with the bound ζ3 ≤ 1 derived by Constantin et al. (1994) under the
assumption of a strong dissipative anomaly. Iyer et al. (2024) appear to have found instead
that the normalised dissipation rate D very slowly decays at high Re according to the bound
(3.47) derived by Drivas & Eyink (2019). Therefore, only a weak dissipative anomaly
appears to occur in this particular simulation of forced homogeneous and isotropic
turbulence in a periodic box. Consistent with the results of Bedrossian et al. (2019)
and Novack (2023), however, the Kolmogorov 4/5th law is still observed to hold in this
simulation, in agreement with earlier observations of Iyer et al. (2020). These observations
need to be confirmed with other forcing schemes and extended to even higher Reynolds
numbers, but they raise additional doubts about the simplification of forced turbulence in
a periodic box as a valid paradigm for incompressible fluid turbulence more generally.

3.1.3.4. Extensions One of the great virtues of Onsager’s ‘ideal turbulence’ theory
is that it extends readily to turbulent flows in other physical systems than incompressible
fluids. For example, consequences have been worked out for turbulence in compressible
fluids, both barotropic (Feireisl et al. 2017) and with a general thermodynamic equation
of state (Drivas & Eyink 2018; Eyink 2018a), in quantum superfluids (Tanogami 2021), in
relativistic fluids (Eyink & Drivas 2018), in magnetohydrodynamics, both incompressible
(Caflisch, Klapper & Steele 1997; Galtier 2018; Faraco, Lindberg & Székelyhidi 2022) and
compressible (Lazarian et al. 2020, § IV.B), and in kinetic plasmas at low collisionality
(Eyink 2015, 2018a; Bardos, Besse & Nguyen 2020). In many of these examples, the
dimensional and statistical reasoning of Kolmogorov (1941a,b) does not obviously apply
and the Onsager theory provides the only first-principles formulation. Almost all of
the just-listed examples have applications in astrophysics and space science and, in
particular, most astrophysical fluids and plasmas are compressible. Astrophysics provides,
in many ways, the optimal arena for Onsager’s theory. For one thing, the Reynolds
numbers in astrophysics are often much larger than the highest Reynolds numbers
attainable in terrestrial turbulence. In addition, problems such as the physical origin of
fluid singularities are much easier to address in compressible fluids. A well-advanced
mathematical theory already exists for generic development of shocks in smooth solutions
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of compressible Euler equations and the consequent production of vorticity (Buckmaster,
Shkoller & Vicol 2023). Shocks and baroclinic generation of vorticity are expected to
be a common source of astrophysical turbulence, e.g. supernovae-driven shocks in the
interstellar medium (Gatto et al. 2015).

Other recent results on the Re → ∞ limit involve incompressible fluids, but fully
incorporating the usually neglected effect of thermal fluctuations. Starting with the
fluctuating hydrodynamic equations (2.5) of Landau & Lifshitz (1959) for a low-Mach
incompressible fluid (see also Forster, Nelson & Stephen 1977; Donev et al. 2014), Eyink
& Peng (2024) have studied the limiting dynamics in the inertial range. The earlier
work of Bandak et al. (2024), which shall be discussed more below, already considered
the standard large-scale non-dimensionalisation of the equations via û = u/u′, x̂ = x/L,

t̂ = u′t/L, which takes the form

∂t̂û + (û · ∇̂)û = −∇̂p̂ + 1
Re

�̂û +
√

2θη

Re15/4 ∇̂ · ξ̂ + �f̂ , (3.49)

where the dimensionless quantity θη = kBT/ρu2
ηη

3 is the thermal energy relative to the
energy of an eddy of Kolmogorov scale η and with Kolmogorov velocity uη = (νε)1/4,

with θη generally of order 10−6 or even smaller. In deriving (3.49), Bandak et al. (2024)
assumed the Taylor relation ε ∼ u′3/L and an external body force with dimensionless
magnitude � = frmsL/u′2 has also been included to generate turbulence. It is naïvely clear
that, on inertial-range scales, the direct effect of the thermal noise term must be negligible,
even smaller than the viscous diffusion. In fact, the noise term leads to a mathematically
ill-defined dynamics, unless the stochastic noise field ξ̃ and velocity field ũ are both cut off
at some high wavenumber Λ, or Λ̂ = ΛL after non-dimensionalisation. In the statistical
physics literature, such a cutoff is standard and represents physically a coarse-graining
length � = Λ−1 of the measured velocity field, which is chosen somewhere between η and
the molecular mean-free path length �mfp. In the limit Re → ∞ and Λ̂ → ∞, Eyink &
Peng (2024) prove under natural conditions that are observed in experiment (see § 3.2.3
below) that the limiting velocity fields are weak solutions of incompressible Euler, as
assumed in the Onsager (1949) theory.

It is important to stress that Onsager’s ‘ideal turbulence’ description does not apply in
the dissipation range and, indeed, Onsager never discussed dissipation-range turbulence in
any of his published or unpublished writings, to my knowledge. This is perhaps one reason
why he never discussed the possible interactions of thermal fluctuations and turbulence.
This issue was raised approximately a decade later, however, by Betchov (1957, 1961), who
pointed out that the kinetic energy spectrum of thermal fluid fluctuations

E(k) ∼ kBT
ρ

4πk2

(2π)3 (3.50)

must surpass the spectrum of turbulent fluctuations at a wavenumber of order kη ∼ 1/η.

This same idea was rediscovered much later by Bandak et al. (2022) who provided
numerical evidence for the conjecture in a shell model, before full verification by Bell
et al. (2022) in a numerical simulation of the Landau–Lifschitz fluctuating hydrodynamic
equations (2.5). Confirmation by laboratory experiment is crucial but appears much
more difficult at this time. In principle, all turbulent processes at sub-Kolmogorov scales
should be strongly affected by thermal noise, including droplet formation, combustion,
biolocomotion, etc. but it is unclear whether such probes of the small-scale physics
can show the clear signature of thermal noise at large scales. A prototypical example
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is high-Schmidt-number turbulent advection, where the classical theories of Batchelor
(1959) and Kraichnan (1968) that ignore thermal fluctuations miss power-law scaling
of the concentration spectrum below the Batchelor dissipation scale (Eyink & Jafari
2022). However, the classical prediction of a k−1 spectrum in the viscous-convective
range remains intact, because the strong effect of thermal hydrodynamic fluctuations in
renormalising the molecular diffusivity in that range is exactly the same as in laminar
flows (Onsager 1945b) and thus hidden phenomenologically. There are effects of thermal
noise even in the turbulent inertial range (Bandak et al. 2024), but these are much more
subtle and will be discussed further below.

3.1.3.5. Physicality of weak solutions A frequent objection made by physicists and
fluid mechanicians to the ideal turbulence theory is that the mathematical concept of a
‘weak solution’ is unphysical. In fact, such criticisms are directed not only at Onsager’s
proposed Euler solutions, but also against the weak solutions of the incompressible
Navier–Stokes equation constructed by Leray (1934). To quote again from Tsinober
(2009, § 10.3.1), regarding Leray’s work: ‘An important point is that if one looks at
real turbulence at finite Reynolds numbers (however large) there seems to be no need
for weak solutions at all.’ Here the presumption is that smooth, strong solutions of
Navier–Stokes must exist, as there is no obvious empirical evidence for the severe
singularities required to overcome the viscous regularisation. This issue of the physical
meaning of weak solutions is quite important, since it is at the centre of the empirical
testability of Onsager’s theory. Thus, I must discuss the matter briefly here. Furthermore,
my own views may not coincide with those of most mathematicians who work on
Onsager’s theory, and these differences must be carefully explained. The issues are subtle
and intimately related with the famous Sixth Problem of Hilbert (1900), which was
‘the problem of developing mathematically the limiting processes . . .which lead from
the atomistic view to the laws of motion of continua’ and which remains still largely
unresolved.

As I have already emphasised, ‘weak solutions’ are mathematically equivalent to
‘coarse-grained solutions’ such as (3.4) for Navier–Stokes and (3.5) for Euler, when those
equations are imposed for all � > 0 (Drivas & Eyink 2018). In reality, the ‘coarse-grained
solution’ of Euler equation (3.5) is an accurate physical description of a turbulent flow only
in the inertial range of scales for � � η. The most important fact about the formulation
in (3.5) of ‘weak Euler solutions’, or its equivalent (3.8), is that it involves only the
coarse-grained fields ū� and p̄� for � � η, since the subscale stress τ �(u, u) depends as
well only upon ū�′ with �′ � � by the fundamental property of scale locality. To state
my view succinctly, it is the coarse-grained fields such as ū� and p̄� which are physical,
because they correspond to what is experimentally measurable. In fact, every experiment
has some spatial resolution �, such that only averaged properties for length scales > �

are obtained. It is instead the fine-grained/bare fields such as u(x) which are unphysical,
because they are unobservable objects corresponding to a mathematical idealisation
ū� → u as � → 0, which goes beyond the validity of a hydrodynamic description and
is physically unachievable.

The above views are probably not the same as those held currently by the majority
of mathematicians and fluid mechanicians who work on turbulence, who mostly have
followed von Neumann (1949) in believing that

‘Turbulent’ and ‘molecular’ disorder are in general distinct. A macroscopic and yet turbulent u
(and, more generally, a complete system of system of fluid dynamics with such characteristics)
can be defined. (von Neumann 1949, § 3.2, p. 446)
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According to this common view, the deterministic Navier–Stokes equations are assumed
valid for scales � � λmfp, the molecular mean free path length, with ū� ≈ u, the
Navier–Stokes solution, for all � in the range η � � � λmfp. There is, however, no
rigorous mathematical theory that justifies this assumption and there are no experimental
measurements available at scales � < η to confirm it. A major problem with this view is
that it omits the physical effects of thermal fluctuations, which leads to deviations from
the predictions of deterministic Navier–Stokes at scales � � λmfp that are experimentally
well observed in laminar flows (de Zarate & Sengers 2006). In fact, deterministic
Navier–Stokes is a physically inconsistent set of equations, because it incorporates
molecular dissipation without including the corresponding molecular fluctuations. It thus
violates the fundamental fluctuation-dissipation theorem of statistical physics (Onsager &
Machlup 1953). I therefore do not regard solutions of deterministic Navier–Stokes, either
weak or strong, as having fundamental physical significance. Deterministic Navier–Stokes
is instead just a reasonably accurate ‘large-eddy simulation’ model of turbulence for
resolved scales down to � ∼ η.

A more fundamental model of molecular fluids are the fluctuating hydrodynamic
equations of Landau & Lifshitz (1959) which incorporate the fluctuation-dissipation
relation and which explain the experiments on thermal fluctuations in laminar flows
(de Zarate & Sengers 2006). It was first pointed out by Betchov (1961) that fluctuating
hydrodynamics is an appropriate model of the turbulent dissipation range and, in
fact, the incompressible, low-Mach-number equations (2.5) were proposed in his work
independently of Landau & Lifshitz (1959). However, as observed in the previous
subsection, fluctuating hydrodynamics is not a continuum theory but instead involves an
explicit cutoff Λ = �−1 and it is believed to describe the evolution of the coarse-grained
fields ū� for all scales � � λmfp (or, in fact, for the incompressible version (2.5), only at
scales where |ū�| � cs, the sound speed Donev et al. 2014). Furthermore, the viscosity
ν� in the model depends upon the scale �, as shown, for example, by the renormalisation
group analysis of Forster et al. (1977). Thus, even in laminar flows, the observed viscosity
ν� at length scale � is an ‘eddy-viscosity’, although the fluctuating eddies arise there from
thermal fluctuations rather than turbulent fluctuations. In the language of modern physics,
the Landau–Lifschitz fluctuating hydrodynamics equations are low-wavenumber ‘effective
field theories’ (Schwenk & Polonyi 2012; Liu & Glorioso 2018).

An important consequence of these considerations is that velocity-gradients are
�-dependent at all length scales � in a turbulent flow and not only for � > η. However,
it should be true to a good approximation that, for typical thermal fluctuations,

∇ū� ∼ ∇u + O

((
kBT
ρ�5

)1/2
)

, � � η, (3.51)

where u is again the solution of deterministic Navier–Stokes. It then easily follows that

ν�〈|∇ū�|2〉 � ν〈|∇u|2〉, ν = νη, (3.52)

where 〈·〉 denotes a space–time average and �/η spans approximately 2–3 decades of
scales. For more details, see Eyink (2007, § II.E). In this sense, typical thermal fluctuations
should matter little for mean energy dissipation. However, this statement is presumably
not true for large, rare thermal fluctuations. Indeed, in a simple particle model of
hydrodynamics, the ‘totally asymmetric exclusion process’, dissipative weak solutions of
inviscid Burgers equation arise with overwhelming probability (law of large numbers) but
rare fluctuations (large deviations) can lead to weak solutions with local energy production
in some space–time regions rather than dissipation everywhere (Jensen 2000; Varadhan
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2004). Furthermore, higher-order gradients ∇kū� with k > 1 will be much more strongly
affected by thermal noise and, indeed, the numerical simulation of Bell et al. (2022) found
that such higher-order gradients are completely dominated by thermal noise already for
� � η.

I therefore fundamentally disagree with a common view, clearly expressed by Tsinober
(2009), that hypothetical fine-grained fields u and their gradients are physically more
‘objective’ than coarse-grained fields ū�:

There is a generic ambiguity in defining the meaning of the term small scales (or more generally
scales) and consequently the meaning of the term cascade in turbulence research. As mentioned
in chapter 5, the specific meaning of this term and associated inter-scale energy exchange/cascade
(e.g. spectral energy transfer) is essentially decomposition/representation dependent. Perhaps, the
only common element in all decompositions/ representations (D/R) is that the small scales are
associated with the field of velocity derivatives. Therefore, it is natural to look at this field as
the one objectively (i.e. D/R independent) representing the small scales. Indeed, the dissipation
is associated precisely with the strain field, sij, both in Newtonian and non-Newtonian fluids.
(Tsinober 2009, § 6.2, p. 127)

This point of view is based on the belief, without evidence, that there is some hypothetical
fine-grained field u = lim�→0 ū� and that objectivity is achieved by ‘convergence’ as
� → 0. The existence of such a fine-grained velocity in turbulent flow was probably first
questioned by the visionary scientist, Lewis Fry Richardson, whose famous paper on
turbulent pair-dispersion contained a section entitled ‘Does the Wind possess a Velocity?’
He wrote there:

This question, at first sight foolish, improves on acquaintance. A velocity is defined, for example,
in Lamb’s “Dynamics” to this effect: Let �x be the distance in the x direction passed over in a
time �t, then the x-component of velocity is the limit of �x/�t as �t → 0. But for an air particle
it is not obvious that �x/�t attains a limit as �t → 0. (Richardson 1926, § 1.2, p. 709)

Indeed, each individual air molecule is moving at approximately 346 m s−1, the speed of
sound in that fluid, with the mean wind velocity a small correction, and the local measured
velocity will depend entirely upon the resolution scale � which is adopted.

I certainly agree that science should be concerned with objective facts. However, in
contrast to the 19th-century continuum mechanics perspective that objectivity is achieved
by convergence, the modern tool to achieve objectivity is the renormalisation group. I may
cite here the physics Nobel laureate Kenneth G. Wilson:

A procedure is now being developed to understand the statistical continuum limit. The procedure
is called the renormalisation group. It is the tool that one uses to study the statistical continuum
limit in the same way that the derivative is the basic procedure for studying the ordinary
continuum limit. (Wilson 1975, p. 774)

The fundamental understanding that arose in physics was that for systems with strong
fluctuations at all length scales – a class which includes both quantum field theories and
turbulent flows – the effective description varies with the length scale � of resolution. In
that case, the proper goal is not to seek for some idealised and unobservable ‘truth’ at
� → 0, but instead to attain objectivity by understanding how the description changes as
� is varied. The application of this approach to hydrodynamics has mostly been restricted
to flows much simpler than turbulence, cf. Forster et al. (1977), where weak-coupling
perturbation expansions are applicable, and only recently has some progress been made on
non-perturbative application to turbulence by functional renormalisation group methods
(Canet 2022). It is conceptually important, however, to understand that LES models
resolved at length scale � are not really continuum models. Indeed, it is a truism in
the LES community that the true model is not the ‘continuum’ LES model but instead
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the discretisation of the model used to solve it numerically. It therefore makes sense to
combine the steps of coarse-graining and numerical discretisation, as in some approaches
to modelling thermal fluctuations (Español, Anero & Zúñiga 2009). I shall return to this
theme later in discussing the relation of Onsager’s ‘ideal turbulence’ theory with LES
modelling.

3.2. Onsager’s conjecture
The quote from Onsager (1949) on which I base this essay began with a provocative
suggestion that ‘turbulent dissipation as described could take place just as readily
without the final assistance by viscosity’. It is important to emphasise that none of the
mathematical results that I have reviewed so far, including those of Onsager himself,
establish this hypothesis. Such arguments give only necessary conditions for anomalous
dissipation, but not sufficient conditions. An example of an instantaneous velocity field
in Ch was found by Eyink (1994) showing that the proofs of conservation for h > 1/3
cannot be extended to h ≤ 1/3, but such examples also fall far short of proving Onsager’s
conjecture, as already stated there:

It must not, of course, be concluded that, simply because our argument fails when h ≤ 1/3, that
non-conservation is actually possible for h ≤ 1/3. We emphasize that to demonstrate this it is
necessary to construct an appropriate solution v(., .) with v(., t) ∈ Ch, 0 < h < 1/3 for t ∈ [0, T],
for which the energy indeed decreases or increases in the interval. (Eyink 1994)

There are several elements involved in Onsager’s conjecture which are highly non-trivial,
e.g. that weak Euler solutions exist in the limit Re → ∞ and that dissipation remains
positive in that limit. As to the first matter, I note that inviscid limits of Navier–Stokes
solutions can be proved to exist without any further assumptions, at least for flows in
infinite Euclidean space or in a periodic domain. However, the limiting Euler solutions
so obtained are much weaker even than those postulated by Onsager, consisting of
‘measure-valued solutions’ with a distribution px,t(du) of possible velocity values at
each space–time point (x, t) (DiPerna & Majda 1987; Wiedemann 2018) or satisfying
cumbersome energy inequalities (Lions 1996). In addition, such generalised weak Euler
solutions are proved to exist only for subsequences of viscosity νk → 0 and may differ
from subsequence to subsequence.

Recently, however, considerable progress has been made on these problems, in
particular, a rigorous proof has been found that dissipative Euler solutions as conjectured
by Onsager (1949) do exist with u ∈ C1/3−ε for any ε > 0 (Buckmaster et al. 2018;
Isett 2018). Furthermore, advances have been made on deriving such results from the
incompressible Navier–Stokes equations in the limit Re → ∞ (Bruè & De Lellis 2023)
and even more progress has been made on related problems in passive scalar turbulence
(Bedrossian, Blumenthal & Punshon-Smith 2022). In this section, I shall attempt to give
a broad overview of these developments as appropriate to this essay, but certainly no
comprehensive review, which would be difficult in any case for such a rapidly moving and
growing literature. See De Lellis & Székelyhidi (2019) and Buckmaster & Vicol (2020)
for some recent reviews by lead researchers in this area.

It must be emphasised at the outset that, as spectacular as these recent mathematical
developments might be, they cannot in principle justify the correctness of Onsager’s ‘ideal
turbulence’ as a physical theory. In fact, the final judge of the truth of any physical theory is
experiment, not mathematics. I wholeheartedly agree with the famous dictum of Einstein:

Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher, und
insofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit. [Insofar as the propositions

988 P1-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.415


Onsager’s ‘ideal turbulence’ theory

of mathematics refer to reality, they are not certain, and insofar as they are certain, they do not
refer to reality.] (Einstein 1921, p. 3)

Even if Onsager’s conjectures could be rigorously derived from a fundamental model
such as the Landau–Lifschitz fluctuating hydrodynamic equations (2.5), serious questions
arise whether those equations themselves might break down locally in space–time in the
vicinity of extreme intermittent events (Bandak et al. 2022). Instead, the novel predictions
of Onsager’s theory must be carefully compared with experiments to test their validity.
In fact, we know already from the brief review of experimental observations in § 2 that
Onsager’s 1/3 Hölder result cannot be the whole story, because it makes no reference to
solid walls and, in particular, it does not elucidate the difference in the wall geometries
where anomalous dissipation occurs and where it does not. I discuss this crucial issue
more in § 4.

3.2.1. Existence of dissipative Euler solutions
The program which has successfully led to a mathematical construction of the weak Euler
solutions conjectured by Onsager (1949) in breakthrough work by Isett (2018) was initiated
by the works of De Lellis & Székelyhidi (2009) and De Lellis & Székelyhidi (2010), which
both appeared as preprints already in 2007. A very good review of this early work is given
by De Lellis & Székelyhidi (2013) and an updated review is to be found in De Lellis
& Székelyhidi (2019). These authors pointed out a remarkable connection of Onsager’s
conjecture with famous work of the mathematician John Nash (1954) on C1 isometric
embeddings. I give here a very succinct review, following closely the discussions in the
previous references.

Nash (1954) addressed a classical problem of differential geometry, whether a smooth
manifold M of dimension n ≥ 2 with Riemannian metric g may be isometrically imbedded
in m-dimensional Euclidean space Rm, i.e. whether a C1 embedding map u : M → Rm

exists so that the Riemannian metric induced by the embedding agrees with g, or

∂iu · ∂ju = gij. (3.53)

To answer this question, Nash considered a more general problem of short embeddings
which do not preserve lengths of curves on M but can only decrease lengths, so that

∂iū · ∂jū ≤ gij (3.54)

in the matrix sense. The startling result obtained by Nash, with some improvement due to
Kuiper (1955), is the following:

NASH–KUIPER THEOREM. Let (M, g) be a smooth closed n-dimensional Riemannian
manifold, and let ū : M → Rm be a C∞ strictly short embedding with m ≥ n + 1. For any
ε > 0, there exists a C1 isometric embedding u : M → Rm with |u − ū|C0 < ε.

This result is surprising for two reasons. First, the condition (3.53) is a set of n(n + 1)/2
equations in m unknowns. A reasonable guess would be that the system is solvable, at
least locally, when m ≥ n(n + 1)/2 and this indeed was a classical conjecture of Schläfli.
However, for n ≥ 3 and m = n + 1, the system (3.53) is hugely overdetermined! It is not
obvious that there should be any solutions at all, but the Nash–Kuiper theorem shows
that there exists an enormous set of C1-solutions that are C0-dense in the set of short
embeddings. I shall not discuss here the details of Nash’s proof of his astonishing result,
but just remark that his construction of the isometry u was in a series of stages, by adding at
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Figure 6. First four stages in the iterative construction of a C1-isometric embedding of the flat 2-torus T2 into
R3. The initial map is corrugated along the meridians to increase their length. Corrugations are then applied
repeatedly in various directions to produce a sequence of maps. Each successive map is strictly short, with
reduced isometric default. Reproduced from Borrelli et al. (2012), with permission of PNAS.

each stage a new small, high-frequency perturbation. The construction is not an ‘abstract
nonsense’ argument that requires the Axiom of Choice or some other non-constructive
element, and, in fact, the entire procedure can be implemented to any finite stage of
iteration, in principle, by a computer algorithm. For example, see the work of Borrelli
et al. (2012) which calculates numerically a C1-isometric embedding of the flat 2-torus T2

into R3 and figure 6 for the first four stages of iteration. It is interesting to note that Nash
himself regarded his 1954 paper as a ‘sidetrack’ on the problem of isometric embeddings
(Raussen & Skau 2016) and attached greater importance to his later work that constructed
C∞ embeddings in higher dimensions (Nash 1956). The latter paper is notable for its
introduction of the Nash–Moser implicit function theorem and also for its exploitation of
a smooth mollification scheme with a continuous parameter �, involving a careful study of
variations with � similar to an RG approach (L. Székelyhidi, Jr., private communication).
A very intriguing recent stochastic formulation of Menon (2021) and Inauen & Menon
(2023) makes this analogy more clear.

The fundamental contribution of De Lellis and Székelyhidi Jr. was to realise that
there is a very close mathematical analogy between the problem of isometrically
embedding a smooth manifold by a map of low regularity and the problem of solving
the Cauchy initial-value problem for incompressible Euler equations by a velocity field
of low regularity, and that Nash’s method of construction can be carried over to the
latter. The analogue of a ‘short mapping’ for the Euler system is what De Lellis and
Székelyhidi Jr. call a smooth subsolution, i.e. a smooth triple (ū, p̄, τ̄ ) with τ̄ a symmetric,
positive-definite tensor such that

∂tū + ∇ · (ū ū + τ̄ ) = −∇p̄, ∇ · ū = 0. (3.55)

Everyone from the turbulence modelling community will recognise at once that this has
the form of an LES model equation incorporating a positive-definite ‘turbulent stress’
tensor τ̄ . Approximation results can be obtained for subsolutions entirely analogous to the
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Nash–Kuiper theorem on approximation of short embeddings. As an example, a theorem
of Buckmaster et al. (2018) states the following result.

THEOREM (Buckmaster et al. 2018). Let (ū, p̄, τ̄ ) be any smooth, strict subsolution of the
Euler equations on T3 × [0, T] and let h < 1/3. Then there exists a sequence (uk, pk) of
weak Euler solutions such that uk ∈ Ch(T3 × [0, T]) satisfy, as k → ∞,∫

T3
d3x f uk →

∫
T3

d3x f ū,

∫
T3

d3x f ukuk →
∫

T3
d3x f (ū ū + τ̄ ) (3.56)

for all f ∈ L1(T3) uniformly in time, and furthermore for all t ∈ [0, T] and all k,∫
T3

d3x 1
2 |uk|2 =

∫
T3

d3x 1
2 (|ū|2 + Tr τ̄ ). (3.57)

The notion of convergence in this theorem can be made more physically transparent by
taking f (r) = G̃δ(x + r) for δ > 0, in which case the approximation property implies that
pointwise,

ũk,δ → ˜̄uδ, τ̃δ(uk, uk) → τ̃δ(ū, ū) + ˜̄τ δ. (3.58)

Thus, if the subsolution (ū, p̄, τ̄ ) arose from a coarse-grained Euler solution in the sense
of Drivas & Eyink (2018), so that ū = ū�, p̄ = p̄�, τ̄ = τ̄ �(u, u), then the simple identity
of Germano (1992) for the convolution filter ˜̄G�,δ = Ḡ� ∗ G̃δ ,

˜̄τ �,δ(u, u) = τ̃δ(ū�, ū�) + ˜(τ̄ �(u, u))δ, (3.59)

implies that for any δ > 0,

ũk,δ → ˜̄u�,δ, τ̃δ(uk, uk) → ˜̄τ�,δ(u, u) (3.60)

pointwise in space. When δ � �, this yields the remarkable statement that a
coarse-grained Euler solution ( ˜̄u�,δ, ˜̄p�,δ) � (ū�, p̄�) at scale � can be well approximated
pointwise in space by a sequence (ũk,δ, p̃k,δ) of coarse-grained Euler solutions at the much
smaller scale δ.

The constructions of such weak Euler solutions follow a strategy similar to that of
Nash, by a sequence of stages u0, u1, u2, . . . . At stage n, one has, after coarse-graining, a
subsolution

∂tun + ∇ · (unun + τ n) = −∇pn, (3.61)

which is supported on wavenumbers < Λn. By adding a small-scale carefully chosen
perturbation, one can succeed to cancel a large part of the stress τ n so that, in the limit,
τ n → 0 weakly and one obtains a weak limit u which is a distributional Euler solution.
A number of different models of the small scales have been employed, such as Beltrami
flows (De Lellis & Székelyhidi 2013) and Mikado flows (Buckmaster et al. 2018; Isett
2018), together with other operations, such as evolving under smooth Euler dynamics
locally in time and ‘gluing’ the different time-segments. In the language of LES
modelling, the constructions can be regarded as a sort of iterative ‘defiltering’, in which
unresolved scales are successively restored. A physicist might prefer to call this an ‘inverse
renormalisation group’, the reverse of the successive coarse-graining employed by Wilson
(1975). Clearly, there is a huge number of subsolutions, since one may adopt any positive
definite tensor τ̄ whatsoever. A consequence is therefore results such as the following
theorem:
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THEOREM (Buckmaster et al. 2018). Let e : [0, T] → R+ be any strictly positive, smooth
function. Then for any 0 < h < 1/3, there exists a weak Euler solution u ∈ Ch(T3 ×
[0, T]) such that ∫

T3
d3x 1

2 |u|2 = e(t). (3.62)

In particular, one may take e(t) to be any function strictly decreasing in time and then the
Euler solution of the above theorem (globally) dissipates kinetic energy.

The details of the constructions are complex and rapidly evolving, so that they may
be best gleaned from the journal articles themselves. I therefore make here just a few
remarks. First, in addition to solutions that satisfy physical constraints, one can construct
by the same methods solutions with obviously unphysical behaviours (e.g. kinetic energy
increasing in time for unforced 3-D incompressible flows!) Thus, it is clear that the
methods suffice to answer some very fundamental PDE questions, but they still miss much
essential physics. Another important point is that the existence proofs of the weak Euler
solutions are constructive, exactly as are the Nash constructions of isometric embeddings.
Frisch, Székelyhidi & Matsumoto (2018) have attempted to compute numerically the
weak Euler solutions constructed by Mikado flows (Buckmaster et al. 2018; Isett 2018).
Visualisation, however, appears difficult with current constructions because of the very
tiny scales of the added eddies. These weak Euler solutions can be regarded as a
sophisticated sort of ‘synthetic turbulence’ (Juneja et al. 1994), manufactured space–time
fields with many of the same properties as a physical turbulent flow velocity, but in addition
solving exactly the inviscid equations of motion. Such solutions have been constructed
which satisfy additional observed properties such as spatial intermittency (Novack &
Vicol 2023; De Rosa & Isett 2024). We might hope in coming years to see weak Euler
solutions with features in ever closer agreement with physical turbulent flows. As in
the field of artificial intelligence and the Turing test, it would then be crucial to design
tests of increasing sensitivity that could distinguish a true turbulent velocity field and
such artificially constructed flows. This exercise could help to clarify better the essential
properties that characterise physical turbulence.

3.2.2. Non-uniqueness for the initial-value problem
One very fundamental feature of the result of Nash (1954) which I have not yet duly
emphasised is the profligate non-uniqueness of the C1 isometric embeddings produced by
his construction. This stands in stark contrast to embeddings with higher smoothness Cn,
n ≥ 2 for which the the Gauss–Codazzi equations relate the second fundamental form of
the embedded surface to the Riemann curvature tensor. In fact, it is known that a compact
Riemannian surface with positive Gauss curvature may be isometrically embedded into
R3 by a C2 map in just one way, up to a rigid-body motion. Thus it is clear that isometric
embeddings have very different qualitative behaviour at low and high regularity, i.e. C1

versus C2, often referred to as a dichotomy between rigidity at high regularity versus
flexibility at low regularity. This type of wild non-uniqueness at low regularity is a central
aspect of the h-principle introduced by mathematician Mikhail Gromov (1971, 1986), with
the isometric embedding problem as a primary example. The theorem of Buckmaster
et al. (2018) that I cited in the previous subsection, as emphasised by those authors, is an
extension of the h-principle to low-regularity weak solutions of the Euler equations, which
exhibit a similar ‘flexibility’. The name convex integration for the discussed techniques
to construct these Euler solutions, by the way, goes back also to the work of Gromov
(1971, 1986), who introduced it as one of several methods to prove the h-principle.
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Onsager’s ‘ideal turbulence’ theory

The origin of the name has to do with differential relations of the type Df ∈ A, which
satisfy the h-principle when the convex hull of A contains a small neighbourhood of the
origin.

Convex integration methods have fundamental implications for non-uniqueness of weak
solutions to the Cauchy initial-value problem for the Euler equations, as discussed already
by De Lellis & Székelyhidi (2010). Theorem 1 from that paper shook many previous
expectations:

THEOREM (De Lellis & Székelyhidi 2010). Let d ≥ 2. There exist compactly supported
divergence-free vector fields u0 ∈ L∞ for which there are infinitely many weak Euler
solutions with that initial data, satisfying both the global energy equality∫

Rd
|u(x, t)|2 dnx =

∫
Rd

|u(x, s)|2 ddx for all t > s (3.63)

and the local energy equality

∂t

(
1
2 |u|2

)
+ ∇ ·

[(
1
2 |u|2 + p

)
u
]

= 0. (3.64)

Furthermore, there are infinitely many weak Euler solutions with that initial data satisfying
the global energy inequality:∫

Rd
|u(x, t)|2 ddx <

∫
Rn

|u(x, s)|2 ddx for all t > s. (3.65)

This result showed that one cannot add a local energy inequality

∂t

(
1
2 |u|2

)
+ ∇ ·

[(
1
2 |u|2 + p

)
u
]

≤ 0 (3.66)

(or even an equality) and obtain a unique weak solution to the Euler equations for
certain L∞ initial data. Furthermore, non-uniqueness occurs even if total energy is strictly
decreasing. This is in stark contrast to simpler equations such as the inviscid Burgers
model (or general hyperbolic scalar conservation laws) where it is known that insisting on
such a local energy inequality selects a unique weak solution, which also coincides with
the ‘viscosity solution’ obtained by incorporating viscosity and passing to the inviscid
limit. The above theorem shows that such a simple selection principle for ‘physical weak
solutions’ cannot succeed for the incompressible Euler equations.

Note that such initial data with non-unique solutions cannot have smoothness such
as C1+ε (velocity-gradients existing, with Cε Hölder regularity) or higher smoothness,
because this would violate the following important type of result.

THEOREM. Let u ∈ L∞((0, T); L2(Td)) be a weak Euler solution, U ∈ C1(Td × [0, T])
a strong solution, and assume that u and U share the same initial datum u0. Assume
moreover that ∫

Td
|u(x, t)|2 ddx ≤

∫
Td

|u0(x)|2 ddx (3.67)

for almost every t ∈ (0, T). Then u(x, t) = U(x, t) for almost every (x, t).

Results of this type go by the name of strong-weak uniqueness. For a clear and lucid
review, see Wiedemann (2018). The conclusion of such results is that any ‘admissible’
weak Euler solution, i.e. satisfying the global kinetic energy inequality (3.67), must
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coincide with a classical Euler solution, as long as that exists. Since local-in-time existence
of a classical solution is guaranteed for u0 ∈ C1+ε, then the results in the cited theorem
of De Lellis & Székelyhidi (2010) cannot hold for such initial data, at least for some
finite time interval. Note, by the way, that strong-weak uniqueness applies even to
‘measure-valued weak Euler solutions’ such as those constructed by DiPerna & Majda
(1987). See Wiedemann (2018).

These non-uniqueness results have since been considerably extended and the question
is still currently under active investigation. Some very important results are contained in
the more recent paper of Daneri, Runa & Szekelyhidi (2021), who prove the following
theorem:

THEOREM (Daneri et al. 2021). For any h ∈ (0, 1/3), there is a set of divergence-free
vector fields u0 ∈ Ch(T3) which is a dense subset of the divergence-free vector fields in
L2(T3) such that infinitely many Euler solutions exist with that initial data for which u(t) ∈
Ch′

(T3) for all h′ < h, t ∈ (0, T) and for which the global energy inequality (3.67) holds.

This theorem shows that the non-uniqueness holds right up to the critical Onsager 1/3
exponent and for a dense set of initial data. Thus, non-uniqueness is in some sense
‘typical’. In a recent remarkable work of Giri, Kwon & Novack (2023), it has been shown
by an L3-generalisation of convex integration methods that weak Euler solutions exist,
with u ∈ C([0, T], Bσ

3 (T3) for any σ < 1/3, which are even locally dissipative, satisfying
the local energy inequality (3.66) and not merely the global inequality (3.67). This result
suggests that non-uniqueness may hold also for locally dissipative Euler solutions up to
Onsager’s 1/3 exponent. To my knowledge, such results have been proved in the Ch-setting
so far only for h < 1/15 by Isett (2022) and subsequently for h < 1/7 by De Lellis & Kwon
(2022). Very intriguingly, De Lellis & Székelyhidi (2022) have argued heuristically that
h = 1/3 should be the critical Hölder exponent not only for conservation of kinetic energy,
but also for convex integration constructions. For a physicist, this remarkable coincidence
smacks of a turbulent ‘fluctuation-dissipation relation’.

These startling results on the ‘flexibility’ or non-uniqueness of the dissipative weak
Euler solutions that were conjectured by Onsager pose a fascinating problem for their
physical interpretation. One possible attitude is that additional conditions should be added
to select the ‘physically correct’ weak solution obtained in the inviscid limit, presumed
also to be unique. It is certainly true that the Euler solutions constructed by current
convex integration methods have unphysical features and thus solutions obtained in the
inviscid limit should plausibly have additional properties, e.g. the ‘martingale property’
of fluid circulations conjectured by Eyink (2006). However, I believe myself that the
non-uniqueness or ‘flexibility’ uncovered by the convex integration theory is probably
physically real and that, even if sufficient conditions are identified to select physical
solutions, infinitely many, non-unique solutions for the same initial-data will remain. One
motivation for this conjecture is the ‘spontaneous stochasticity’ phenomenon discovered
by Bernard et al. (1998), which was proposed by Eyink (2014) to manifest not only in
Lagrangian particle trajectories but also in the Eulerian evolution of the turbulent velocity
field itself. Independently and much more concretely, Mailybaev (2016) presented strong
evidence from numerical simulations that such Eulerian spontaneous stochasticity appears
in the Sabra shell model in the high-Re limit. Mailybaev (2016) used another evocative
term ‘stochastic anomaly’ for this phenomenon, stressing the close formal relation with the
‘dissipative anomaly’, and pointed out also connections with the classic paper of Lorenz
(1969) on turbulence predictability. Indeed, the pioneering work of Lorenz (1969) nearly
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Onsager’s ‘ideal turbulence’ theory

anticipated the modern concept of Eulerian spontaneous stochasticity, as is clear from the
first sentences in the abstract of that paper:

It is proposed that certain formally deterministic fluid systems which possess many scales of
motion are observationally indistinguishable from indeterministic systems; specifically, that two
states of the system differing initially by a small “observational error” will evolve into two states
differing as greatly as randomly chosen states of the system within a finite time interval, which
cannot be lengthened by reducing the amplitude of the initial error. (Lorenz 1969, p. 289)

Stated differently, the claim of Lorenz (1969) was that deterministic fluid systems at high
Reynolds numbers with ‘many scales of motion’ may exhibit stochastic solutions, even
as random errors in the initial data are taken to zero. This is the essence of spontaneous
stochasticity. The only thing missing from the concept of Bernard et al. (1998) is the clear
understanding that such stochastic behaviour is made possible by non-uniqueness of the
solutions of the initial-value problem for the limiting ideal evolution equation as Re → ∞.

Mailybaev and his collaborators have gone on to provide numerical evidence for
Eulerian spontaneous stochasticity in some prototypical fluid instabilities, such as
the Rayleigh–Taylor mixing layer (Biferale et al. 2018) and a Kelvin–Helmholtz
unstable vortex sheet (Thalabard, Bec & Mailybaev 2020). It is noteworthy that for
both of these problems, Rayleigh–Taylor (Gebhard, Kolumbán & Székelyhidi 2021)
and Kelvin–Helmholtz (Székelyhidi 2011; Mengual & Székelyhidi 2023), non-unique
solutions of the Cauchy problem for the limiting inviscid equations have been
demonstrated by convex integration methods. These examples suggest that spontaneous
stochasticity must be a fairly widespread phenomenon in geophysics and astrophysics.
Mailybaev & Raibekas (2023b) discuss also some simple multiscale models with known
ergodic mixing properties, based on the Arnold cat map or irrational rotations of the circle,
where Eulerian spontaneous stochasticity can be rigorously proved a priori. Furthermore,
Mailybaev & Raibekas (2023a) have set up a general renormalisation group approach
which can demonstrate Eulerian spontaneous stochasticity by identifying a suitable RG
fixed point and establish also universality properties of the limiting spontaneous statistics.
Finally, Bandak et al. (2024) provide evidence that the Landau–Lifschitz fluctuating
Navier–Stokes equations (2.5) should exhibit spontaneously stochastic solutions in the
limit Re → ∞ for turbulent initial data, triggered just by thermal noise, by means of
shell-model simulations.

I therefore believe that the non-uniqueness or ‘flexibility’ phenomenon uncovered by
convex integration theory is manifested by the essential unpredictability of individual
turbulent flow realisations, but whose statistics are universal and predictable. The
ground-breaking work of Lorenz (1969) identified a physical mechanism for such turbulent
unpredictability through an ‘inverse error cascade’, in which dissipation-scale errors
propagate up to the largest scales of the flow in a time of the order of the large-eddy
turnover time (Bandak et al. 2024). The ideas of Lorenz (1969) are paradigm-altering,
fundamentally changing the methods and aims of scientific prediction. I believe that
the revolutionary nature of the work by Lorenz (1969) was obscured by his use of a
quasi-normal closure to enable numerical calculations, but which hid the underlying
mathematical foundations of his ideas. The paper of Palmer, Döring & Seregin (2014)
has recalled attention to the ‘real butterfly effect’ of Lorenz (1969) but, in my opinion,
mis-identified the origin of the phenomenon in the non-uniqueness of solutions of
the viscous Navier–Stokes dynamics. However, their proposal does not explain the
observations of Thalabard et al. (2020) on the 2-D vortex sheet, for example, since
the 2-D Navier–Stokes equation has unique solutions. I believe that the fundamental
unpredictability identified by Lorenz (1969) has its origin instead in the non-uniqueness
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of solutions of the ideal Euler equations obtained in the limit Re → 0 and the Eulerian
spontaneous stochasticity associated with statistical distributions over those non-unique
solutions (Bandak et al. 2024). I hope that proper understanding of the mathematical
foundations will help to accelerate progress on this important problem.

We see furthermore that probability re-enters Onsager’s ‘ideal turbulence’ theory, as an
essential aspect. Although your stirred morning cup of coffee, or similar turbulent flows
at higher Reynolds numbers, are described by a single velocity realisation, the same is not
true if one considers the ensemble of flows that arise from all of the cups prepared over a
long sequence of mornings. No matter how carefully one arranges to stir the coffee in the
same manner each day, the individual flows in the cup and the patterns and whorls of cream
will differ on each individual day. In fact, the coarse-grained Euler equation (3.8) becomes
a stochastic equation when considered as an initial-value problem for ū� alone, since the
initial data for the unresolved eddies u′

� := u − ū� are unknown. In that case, the turbulent
stress term τ � becomes a random quantity (Eyink 1996), rationalising the introduction of
‘eddy noise’ (Rose 1977) or ‘stochastic backscatter’ (Leith 1990) in large-eddy simulation
modelling. What spontaneous stochasticity tells us is that such randomness persists even
in the idealised limit � → 0. It is in the prediction of the future from present initial data
that probability enters turbulence theory intrinsically.

3.2.3. The infinite-Reynolds-number limit
None of the weak Euler solutions discussed so far are obtained by taking
infinite-Reynolds-number limits of the solutions of fluid equations valid at
dissipation-range scales, such as the incompressible Navier–Stokes equation (2.4) (valid
down to approximately the Kolmogorov scale η) or the incompressible Landau–Lifschitz
equations (2.5) (valid down to approximately the mean-free-path length �mfp). The Euler
solutions of physical relevance are just approximations to these more basic equations in
the inertial range of length scales (� � η) and such solutions must possess very special
properties not shared by general weak Euler solutions, including those manufactured by
convex integration methods. Several very challenging problems remain in the investigation
of the infinite-Re limits, which include the existence and uniqueness of the limits
themselves. Another important issue is the selection problem, which is the question
whether suitable constraints or conditions can be formulated which fully characterise a
priori the Euler solutions obtained in the inviscid limit, without actually passing to the
limit. The latter problem is important for potential practical applications, since one of the
great hopes of Onsager’s ‘ideal turbulence’ theory is that it might provide a shortcut to
describe and compute the infinite-Re limit directly, avoiding the great expense to resolve
the small dissipation-range scales. I provide here a very brief review of a few significant
mathematical results that bear on these questions.

A basic problem in the theory of the inviscid limit is that the principal a priori bounds
on the velocity field follow from the decay of kinetic energy and such ‘L2-bounds’ alone
provide insufficient compactness to guarantee that inviscid limits are standard weak Euler
solutions, even along suitable subsequences. Without additional conditions, the inviscid
limits are more general objects such as ‘measure-valued Euler solutions’ (DiPerna &
Majda 1987; Wiedemann 2018) or clumsy ‘dissipative Euler solutions’ in the sense of
Lions (1996). There are some researchers who take measure-valued solutions as the
proper physical description and who investigate numerical schemes converging to such
solutions (Fjordholm et al. 2017). However, an important observation was made by Chen
& Glimm (2012) and Isett (2022) (see also Drivas & Eyink 2019; Drivas & Nguyen
2019) who observed that empirical observations on scaling laws of energy spectra and
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velocity structure functions guarantee strong inviscid limits that are standard weak Euler
solutions. The criterion can be stated in terms of instantaneous structure functions of
absolute velocity increments, where, as in (3.19), strict power-law scaling is not required
but only a power-law upper bound of the form

Sp(r, t) ≤ Cp(t)Up|r/L|ζp, ηp ≤ |r| ≤ L, (3.68)

where ηp/L → 0 as Re → ∞. If the pth-order moment condition (3.20) holds and if also

C̄p := 1
T

∫ T

0
Cp(t) dt < ∞ (3.69)

for some p ≥ 2 and for some Re-independent values ζp > 0 and C̄p > 0, then it follows
that strong limits of Navier–Stokes solutions exist in Lp([0, T] × Td) along subsequences
Rek → ∞ and the limiting velocities are standard weak Euler solutions. Of course, these
solutions may not be unique for the same initial data u0 and different subsequences Rek →
∞ may yield different limiting Euler solutions. These results have recently been extended
to the Landau–Lifschitz equations (2.5) in a probabilistic setting (Eyink & Peng 2024),
where the argument now yields a probability distribution P on space–time velocity fields
in the limit Rek → ∞ whose realisations, with probability one, are standard weak Euler
solutions with the specified initial data u0 (either deterministic or random).

Perhaps the most impressive results that have been achieved to date are on the problem of
scalar turbulence, in particular, for the viscous-convective regime described by the theories
of Batchelor (1959) and Kraichnan (1968) for the limit of high Schmidt number. In the
breakthrough work of Bedrossian et al. (2022), the Onsager ‘ideal turbulence’ predictions
have been derived from first principles for the vanishing diffusivity limit of a passive
scalar advected by a 2-D Navier–Stokes flow (or a 3-D hyperviscous Navier–Stokes flow)
at fixed Reynolds number, when both the scalar advection–diffusion equation (3.42) and
the Navier–Stokes equation (2.4) are forced by low-wavenumber random sources, Gaussian
and white-in-time. Bedrossian et al. (2022) study the unique stationary measures μRe,Sc

of the joint velocity-scalar fields (u, c) in the limit as Sc = ν/D → ∞ and establish the
existence of limiting measures μRe,∞ for which the scalar concentration field c has the
Batchelor k−1 spectrum and a constant scalar flux χ to infinite wavenumbers. Furthermore,
Bedrossian et al. (2022) show that the scalar advection equation obtained from (3.42) in
the formal limit D → 0 still has unique weak solutions in a natural integral form and
the limiting measures μRe,∞ are invariant under this limiting joint dynamics of (u, c) for
Sc → ∞. The analogue of Onsager’s 1/3 criterion for dissipative weak solutions of the
scalar in the Batchelor range advected by a smooth velocity field u is the statement that
c /∈ Bσ,∞

2 for any σ > 0 and Bedrossian et al. (2022) prove that the scalar fields c for the
limiting measures μRe,∞ indeed cannot possess such regularity. This is the only example
I know where, in a quite physical setting, the analogue of Onsager’s conjectures can be
rigorously derived from first principles. Although probabilistic methods are not ‘intrinsic’
to this problem in the same sense as for spontaneous stochasticity, this is a beautiful
example where a probabilistic approach is able to achieve physical results where purely
deterministic techniques are still inadequate. Extending such results appears quite difficult.
The enstrophy cascade of two-dimensional turbulence (Kraichnan 1967; Batchelor 1969) is
physically very similar to the Batchelor regime, but here the vorticity ω is an active scalar
with Sc = 1. The analogue of the Onsager theory for the 2-D enstrophy cascade (Eyink
2001; Lopes Filho, Mazzucato & Nussenzveig Lopes 2006) closely resembles the results
derived by Bedrossian et al. (2022) for the Batchelor regime, but now the limit Re → ∞
must be tackled directly to prove anything rigorously.
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It seems very difficult to extend the results of Bedrossian et al. (2022) even to the passive
scalar in the inertial-convective range, where likewise Sc is held fixed and Re → ∞
or, equivalently, Péclet number Pe = ScRe → ∞. However, there has been interesting
progress on this problem by Colombo, Crippa & Sorella (2023), and especially by
Armstrong & Vicol (2023) and Burczak, Székelyhidi & Wu (2023). None of these authors
consider an advecting velocity field which satisfies the Navier–Stokes equations, but
instead they construct ‘synthetic turbulence’ velocity fields which are divergence-free and
such that the passive scalar satisfying the advection–diffusion equation (3.42) exhibits
anomalous dissipation. The velocity fields in these constructions all have (in a suitable
sense) the spatial Hölder regularity Ch with 0 < h < 1 that is expected for an inertial-range
velocity field and the advected scalar exhibits anomalous dissipation in the sense that, with
dimensionless diffusivity D̂ = 1/Pe,

lim sup
D̂→0

∫ T̂

0
dt̂
∫

T2
d2x̂ D̂|∇̂ĉ|2 > 0, (3.70)

where (̂·) denotes outer-scale non-dimensionalisation. A striking result of these
constructions is that there are distinct limit points ĉ∗ for the scalar field obtained along
different subsequences D̂k → 0, which give different weak solutions of the ideal advection
equation for the same initial data ĉ0. Similar non-uniqueness was found also by Huysmans
& Titi (2023) for a passive scalar advected by a rougher divergence-free velocity field that
is only L∞ in space, and here the non-unique solutions of the ideal advection equation
conserve the scalar energy. Such non-uniqueness is somewhat surprising for passive
scalar advection. Recall that the scalar advection equation for the Batchelor regime at
Sc → ∞ was shown by Bedrossian et al. (2022) to have unique solutions and likewise
the white-noise advection model of Kraichnan (1968) in the inertial-convective regime
is known to have unique weak solutions of the scalar advection equations (Lototskii &
Rozovskii 2004; note that the latter solutions are ‘weak’ in the PDE sense but strong in
the stochastic sense, with exactly one solution for each realisation of the advecting random
velocity field). The recent results raise the intriguing possibility of Eulerian spontaneous
stochasticity also for passive scalar advection in the inertial-convective range.

There are important differences between the methods in the above papers which may be
appreciated by reading the originals, but which deserve to be emphasised briefly here.
See also the extensive review by Armstrong & Vicol (2023, § 1.1). The construction
of Colombo et al. (2023) combines alternating shear flows that focus in a singular
manner at the final time step. A drawback of this approach is that the anomalous scalar
dissipation occurs only at the final time and the velocity field has only one active scale
at each time, both features very uncharacteristic of physical turbulence. Armstrong &
Vicol (2023) overcome these problems, synthesising a true multiscale velocity field for
h < 1/3 that produces anomalous scalar dissipation at all times. Their approach is an
iterative homogenisation technique which has much in common with renormalisation
group methods in physics, generating an eddy-diffusivity at each scale by integrating
over the smaller scales. Furthermore, the synthetic turbulent field which is constructed
by Armstrong & Vicol (2023) has a very fundamental feature of true turbulent flows that
small eddies are advected by larger eddies, which turns out to be essential in obtaining
anomalous dissipation for the scalar at all times. To my knowledge, this is the first example
of a synthetic turbulent velocity which captures the sweeping properties of a physical
Navier–Stokes or Euler solution. Burczak et al. (2023) have extended this approach by
combining it with convex integration techniques to ensure that the advecting velocity field
is in fact a weak solution of the Euler equations.
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The methods of Colombo et al. (2023) have recently been applied to prove the existence
of kinetic energy dissipation anomaly for the forced 3-D Navier–Stokes equation (Bruè
et al. 2023; Bruè & De Lellis 2023). For a sequence of body forces f Re that satisfy some
modest uniform smoothness properties, such as

sup
Re>0

‖ f Re‖C([0,T],Ch(T3)) < ∞, (3.71)

for any h ∈ (0, 1), it has been proved that the viscous dissipation by the Navier–Stokes
solution is anomalous for ν̂ = 1/Re → 0 in the sense that

lim sup
ν̂→0

∫ T̂

0
dt̂
∫

T3
d3x̂ ν̂|∇̂û|2 > 0. (3.72)

Although the body force is not a smooth, large-scale forcing as usually assumed in
turbulence theory, it is regular enough that the previous lim-sup vanishes for the linear
Stokes equation, which lacks nonlinear energy cascade. Even more interestingly, the
inviscid limits are found to be non-unique exactly as in the passive scalar case, with
different subsequences of Reynolds numbers Rek → ∞ yielding distinct weak solutions
of the Euler equations with the same initial data u0 and the same body force f =
limRe→∞ f Re (Bruè et al. 2023).

4. Turbulence interactions with solid walls

4.1. Overture on turbulence and solid surfaces
All of the previous theoretical results that I have discussed involve turbulence away
from walls and solid boundaries, although terrestrial turbulence arises most frequently
at fluid–solid interfaces (and somewhat less often at gas–liquid interfaces). Surprisingly, it
is only recently that the methods of Onsager (1949) have been applied to such problems, in
what may be called the ‘Onsager theory of wall-bounded turbulence’. Here I shall briefly
review this recent work following Eyink (2023), where more details can be found. It is
not entirely ahistorical to refer to an ‘Onsager theory of wall-bounded turbulence’, since
Onsager (1949) mentioned turbulent pipe flow as an example of this type:

Such a familiar type of turbulence as exists in a liquid flowing through a cylindrical tube is neither
homogeneous nor isotropic. The mean fluctuations of the velocity vary over the cross-section
of the tube, the local macroscale is generally comparable to the distance from the wall, and
fluctuations as well as correlations are more or less anisotropic. (Onsager 1949, p. 283)

The observations reported in this quotation were attributed by Onsager to a paper by
Montgomery (1943) on smooth- and rough-walled pipes. Onsager was also a friend of
Theodore Theodorsen from their time in Trondheim together, the originator of the concept
of ‘hairpin vortices’ in wall-bounded turbulence (Theodorsen 1952), and they reportedly
discussed turbulence, among other scientific topics. I shall unfortunately not have space in
this essay to explore how Onsager’s ideas relate to the modern descendent of Theodorsen’s
ideas, the ‘Attached Eddy Model’ (Marusic & Monty 2019), although both attempt to
describe the high-Reynolds-number limit of wall-bounded flows. Connections can be
glimpsed from the results presented in §§ 4.2.3–4.2.5. In fact, we shall see that Onsager
pursued his interest in wall-bounded turbulence further in his unpublished notes and that
his calculations anticipate some modern research directions.

However, it is clear already from the brief summary of the experimental evidence
presented in § 2 that Onsager’s 1/3 Hölder result and the various analyses that follow
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it, ignoring the crucial role of the solid walls, cannot be a complete theory of the
turbulent dissipative anomaly for incompressible fluid flows. Onsager’s result applies
indeed to wall-bounded turbulence, as we shall see, but it gives only a necessary condition
for anomalies, without explaining the sufficient conditions that may generate them. In
particular, the literature reports a sharp dichotomy in certain flows which have been
characterised as ‘internal’ or ‘closed’ (Cadot et al. 1997), but which I believe are better
described as ‘wall-parallel’, with the mean flow everywhere tangent to the solid boundary.
In these flows – which include such common examples as flows through straight pipes
and flat-walled channels, flat-plate boundary layers, and Taylor–Couette flows – there is
no empirical evidence for energy dissipative anomaly with walls that are hydraulically
smooth, but only with walls that are hydraulically rough. Furthermore, this dichotomy does
not apply to turbulent wakes behind solid bodies, either bluff or streamlined, where there
is solid evidence for a dissipative anomaly in the wake independent of the wall roughness.
No theory of the turbulent dissipative anomaly can be complete which does not account
for these crucial dependencies on the nature of the wall. It is these conundrums, among
others, which makes the problem of high-Re wall-bounded turbulence such a fascinating
science problem.

It should be emphasised at the outset that the very meaning of ‘infinite-Reynolds-number
limit’ becomes ambiguous for flows with wall roughness, and such roughness is always
present in any physical surface to some degree (Jiménez 2004). The difficulty is that
the typical roughness height k introduces a new length scale in addition to the overall
dimension L of the flow and thus Reynolds’ law of hydrodynamic similarity breaks down.
Dimensional analysis yields that, in addition to the usual Reynolds number Re = UL/ν,

there is another dimensionless number group, which may be taken to be either the length
ratio k̂ = k/L or else the ‘roughness Reynolds number’ Rek = Uk/ν. It now matters greatly
how the parameter regime Re � 1 is reached. In a fixed laboratory apparatus of dimension
L, it is most common to vary Re by varying the flow speed U, but this has the effect
also of varying Rek. When Rek � 1, the transitionally rough regime, then roughness
effects begin to be felt and these effects become dominant in the fully rough regime for
Rek � 1. The high-Re limit with smooth walls that is most popular with mathematicians
instead corresponds to flow around bodies of large size L so that Re = UL/ν � 1 while
simultaneously Rek � 1 and k̂ � 1.

Another crucial difference with turbulence away from solid walls is that kinetic energy
is not the only inviscid invariant of smooth Euler solutions that is subject to possible
dissipative anomalies. For example, fluid linear momentum is strictly conserved in smooth
wall-parallel Euler flows, as pressure stress cannot transfer the wall-parallel momentum
component normal to the wall. Instead, in viscous flow, the skin friction vector

τw = 2νS · n, (4.1)

with n the surface unit normal pointing into the fluid, can transfer parallel momentum,
possibly even in the limit as Re → ∞. This possibility seems to have been first raised by
Taylor (1915) in a paper on eddy motion in the atmosphere:

. . .a very large amount of momentum is communicated by means of eddies from the atmosphere
to the ground. This momentum must ultimately pass from the eddies to the ground by means of
the almost infinitesimal viscosity of the air. The actual value of the viscosity of the air does not
affect the rate at which momentum is communicated to the ground, although it is the agent by
means of which the transference is effected.
. . .
The finite loss of momentum at the walls due to an infinitesimal viscosity may be compared
with the finite loss of energy due to infinitesimal viscosity at a surface of discontinuity in a gas.
(Taylor 1915, pp. 25–26)
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It is remarkable that Taylor in this early paper not only recognised that there could
be a finite loss of momentum due to an ‘infinitesimal viscosity’, but also compared
this phenomenon with discontinuous shock solutions which we now understand to be
described, in modern language, by weak solutions of inviscid fluid equations. This
proposal goes well beyond the laminar boundary-layer theory of Prandtl (1905). In addition
to momentum, another conserved quantity is the total volume-integrated vorticity, which
vanishes identically according to the theorem of Föppl (1913) and is thus, trivially,
conserved. However, it has been emphasised by Lighthill (1963) and Morton (1984) that
this ‘trivial’ conservation law imposes very important constraints on the flow and, in
particular, vorticity has a local source at solid surfaces of the form

σ = −n × ∇p = n × ν(∇ × ω). (4.2)

The middle expression in (4.2) describes the creation of vorticity by tangential pressure
gradients (which occurs even in smooth Euler flows) and the final expression describes the
viscous diffusion of vorticity from the surface, with both terms instantaneously in balance
for stick boundary conditions (b.c.) u = 0 on the velocity field. In a turbulent flow, the
source (4.2) drives an ‘inverse cascade of vorticity’ away from the solid surface (Eyink
2008; Kumar, Meneveau & Eyink 2023) and one naturally wonders if this cascade may
persist in the infinite-Re limit.

Before undertaking any mathematical analysis, it is crucial to review briefly some
representative results from experiments and numerical simulations, providing a few more
details than in § 2, so that we have some clear idea of the observations that require
explanation. McKeon et al. (2004) report on experimental measurements of the friction
factor (2.3) in a smooth-wall pipe with Rek � 1, finding good agreement with the classical
Prandtl–Kármán law for appropriate constants. Extrapolated to very high Reynolds
numbers, this result gives λ ∼ C/(ln Re)2 for Re � 1. Although there is considerable
ongoing debate about the precise asymptotics, all observations are consistent with λ
tending to zero as Re → ∞, although much more slowly than the rate λ ∼ 64/Re for
laminar pipe flow. Noting the simple relation ∂ p̄/∂x = 2τ̄w,x/R from mean momentum
balance, with R the pipe radius, we see that τ̄w,x/Ū2 ∼ C′/(ln Re)2 according to the results
of McKeon et al. (2004). There is thus no ‘strong momentum anomaly’ in this flow of
the type conjectured by Taylor (1915), but only a ‘weak anomaly’ in the terminology of
Bedrossian et al. (2019). However, the experiment of Nikuradse (1933) with ‘sand-grain’
roughness, which varied Re by changing Ū for fixed values of k̂ = k/R, found that
λ ∼ Ck̂1/3 for Re � 1. Although this experiment indicates a ‘strong anomaly’, it does not
mean that τ̄w,x/Ū2 tends to a non-vanishing value. In fact, various numerical simulations
of rough-walled pipe and channel flow such as that of Busse, Thakkar & Sandham (2017)
indicate that indeed τ̄w,x/Ū2 → 0 as Re → ∞ and the non-vanishing drag is due to the
net pressure force acting on the roughness elements, or the ‘form drag’. There is therefore
a close correspondence between the wall-parallel flows with hydraulically rough walls
and the wake flows past bodies, where likewise the time-averaged skin friction tends
to zero with increasing Re and non-vanishing drag is due to the asymmetric pressure
forces acting on the body. A good example of the latter type is the flow past the sphere
studied at high-Re by Achenbach (1972), who measured both skin friction and pressure
profiles on the surface of the sphere. Experimental visualisations of flow around individual
‘sand-grain’ roughness elements in turbulent duct flow (Gao, Agarwal & Katz 2021)
show remarkable similarity to flow around bluff bodies such as a sphere, with separating
boundary layers and recirculation zones in the wake. The apparently non-vanishing surface
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pressure gradients in these flows suggest also a ‘strong vorticity anomaly’, due to persistent
vorticity flux into the flow.

Most of the attempts to understand these observations have been based on the
incompressible Navier–Stokes equation (2.4) in the flow domain Ω , with stick b.c. u = 0
of the velocity on the boundary ∂Ω of the domain and kinematic pressure obtained from
the Poisson problem with Neumann boundary conditions:

−�p = tr(∇u)2, in Ω,
∂p
∂n

= n · ν�u, on ∂Ω. (4.3)

Of course, this mathematical model is just an approximation to reality for molecular fluids
in nature and various refinements have been considered. For example, many analyses have
considered also the slip conditions of Navier that determine a velocity slip δus at the wall

δus = �s
∂u
∂n

, on ∂Ω (4.4)

rather than stick b.c. for the velocity field, with slip length �s estimated by Maxwell
to be of the order of the molecular mean free path length �mfp. One also cannot rule
out effects of thermal fluctuations, since these generally appear at lengths much larger
than �mfp. Here it should be noted that the correct formulation of the Landau–Lifschitz
fluctuating hydrodynamics equations in the vicinity of a fluid–solid interface is still a
hotly debated issue; see Reichelsdorfer (2016) for a very readable summary. I leave
such issues mostly to the side in my review below, where I shall discuss how far the
‘standard model’ of incompressible Navier–Stokes with stick b.c. can be used to explain
the empirical observations. I just note finally that the various conditions for convergence
of Navier–Stokes solutions to weak Euler solutions in the limit Re → ∞, which were
discussed in § 3.2.3, carry over also to wall-bounded flows. See Drivas & Nguyen (2019)
for an excellent overview of such results.

4.2. Onsager RG analysis

4.2.1. Regularisation of ultraviolet divergences
A key conclusion that may be be drawn from the brief summary of empirical observations
in the previous section is that new UV divergences appear at the solid interfaces in
wall-bounded turbulence for Re � 1. In fact, whenever the non-dimensionalised wall
shear stress τ̂w = τw/U2 = (1/Re)(∂û/∂ n̂) vanishes more slowly than the laminar rate
∝ 1/Re, then the non-dimensionalised velocity-gradient at the wall diverges:

lim
Re→∞

∂û
∂ n̂

= ∞. (4.5)

Note that such divergences appear at the wall even if there is only a ‘weak anomaly’ in
the turbulent momentum balance. To obtain a dynamical description that remains valid in
the limit Re → ∞, these new divergences at the wall must be regularised along with the
divergences of the non-dimensionalised gradients ∇̂û in the bulk of the flow.

A recent paper of Bardos & Titi (2018) has initiated the mathematical investigation
of Onsager’s ‘ideal turbulence’ theory for wall-bounded flows, followed already by
several works with improvements (Drivas & Nguyen 2018; Bardos et al. 2019; Chen,
Liang & Wang 2022). These works employ as regulariser a modification of the spatial
coarse-graining of the velocity defined in (3.2). It is convenient to assume that the filter
kernel G is supported in a ball of radius 1, so that the definition of ū�(x, t) makes
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0 h h + �

δ0

1

Figure 7. Window function θh,� used to screen from observation fluid eddies near the wall.

sense for points x ∈ Ω with distance at least � from the boundary ∂Ω. To eliminate
also the divergences of the velocity-gradients at the wall and to obtain a well-defined
coarse-grained velocity, one may also smoothly ‘window out’ eddies at distances < h to
the wall, with h > �. This can be accomplished by taking a smooth windowing function
θh,�(δ) with the properties that

θh,�(δ) =
{

0, δ < h,

1, δ > h + �
(4.6)

and θh,�(δ) monotone increasing on the interval [h, h + �] (see figure 7). Finally, one
defines η�,h(x) := θ�,h(d(x)) and for all x ∈ Ω ,

ũ�,h(x, t) = η�,h(x)ū�(x, t), (4.7)

where d(x) measures the distance of x ∈ Ω to the boundary:

d(x) = inf
y∈∂Ω

|x − y|. (4.8)

With this definition, ∇ d(x) = n( yx) := n(x), where n( y) is the inward-pointing unit
normal vector at a point y ∈ ∂Ω and yx ∈ ∂Ω is the point at which the infimum in (4.8) is
achieved for each x ∈ Ω. See Bardos & Titi (2018). The coarse-grained velocity defined
by (4.7) may be described picturesquely as the fluid velocity seen by an observer who is
myopic and who also has tunnel vision, with parameter � characterising the blurriness of
their eyesight and h their loss of peripheral vision.

It is important to emphasise here that this specific choice of regularisation is not
essential to the theory. Just as in quantum field theory, there are many possible regularisers
to eliminate UV divergences (Gross 1976), and it is ultimately a matter of convenience and
ease of application which to choose for a particular problem. Onsager in his unpublished
research notes in fact explored a different regularisation method for plane-parallel channel
flow based on expansion of the velocity field in eigenmodes of the linear Stokes operator.
See the folder of notes in the online Onsager Archive at https://ntnu.tind.io/record/121186,
pp. 4–8, where Onsager solves the eigenproblem for the Stokes operator ADw := P(−�)w
with Dirichlet b.c. w = 0, where P is the Leray projection onto divergence-free fields:

ADwn = λnwn, n = 0, 1, 2, . . . . (4.9)

Identical results were published later by Rummler (1997). Onsager clearly had the idea to
expand the turbulent velocity field in the channel into such eigenmodes, thus regularising
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all UV divergences. With a smooth exponential cutoff, this would correspond to taking

ū� =
∞∑

n=0

e−λn�
2
cnwn (4.10)

for some regularisation scale �, where u = ∑∞
n=0cnwn. With this approach, ∇ · ū� = 0 in

Ω exactly and ū� = 0 on ∂Ω. Note that the above expansion is equivalent to defining the
regularised velocity field by the auxiliary initial-value problem for the Stokes equation:

∂ū�

∂�2 = −ADū�, ū�|�=0 = u. (4.11)

Exactly this PDE approach to spatial filtering in wall-bounded domains was proposed
recently by Johnson (2022), which can be regarded as a version of the heat-kernel
regularisation of Isett & Oh (2016), adapted to manifolds with boundaries. This PDE
approach is more flexible than the original eigenmode-expansion of Onsager, since it is
difficult for general domains to calculate the eigenfunctions explicitly. Note that one may
apply this Stokes regularisation also with the operator AN for Neumann b.c. ∂w/∂n = 0
on ∂Ω, so that

∫
Ω

ū� dV = ∫
Ω

u dV.

In general, the necessity of some spatial filtering or coarse-graining closely connects
the Onsager theory with the turbulence modelling method of LES. Note that wall-bounded
turbulence is currently one of the most challenging areas of LES research and the subject of
intense effort (Bose & Park 2018). Many other types of spatial filtering or regularisation
have been explored in that context, including regularisations specified by elliptic PDE
problems such as

ū� − ∂

∂xk

(
�2 ∂ū�

∂xk

)
= u, in Ω, (4.12)

for some chosen length scale �(x), which may now be chosen to depend on position. See
Germano (1986a,b), Bose & Moin (2014) and Bae et al. (2019). As stated in the quote of
Onsager (1949), the integral length in wall-bounded turbulence is generally proportional
to the distance from the wall, or L(x) ∼ κ d(x) with κ the so-called Kármán constant.
Thus, one might be tempted to take �(x) ∝ L(x), which would correspond to integrating
out all eddies smaller than the local integral length. This so-called ‘wall-resolved LES’ is,
however, almost as computationally expensive as DNS of the full Navier–Stokes equation
(Yang & Griffin 2021), so that one is generally interested in taking �(x) � L(x) for
practical applications. This problem of coarse-graining and LES modelling in the presence
of solid walls is an important application area where mathematicians and engineers can
very productively interact.

4.2.2. Coarse-grained equations
The filtering procedures employed in LES lead to effective coarse-grained equations
which contain quantities unclosed in terms of the coarse-grained velocity itself, which
may then be modelled. The same is true also of the regularisation procedures used
by mathematicians to study the infinite-Reynolds limit. For example, the combined
spatial filtering and windowing introduced by Bardos & Titi (2018) when applied to the
Navier–Stokes equation (2.4) leads to an exact regularised equation for the coarse-grained
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field ũ�,h of the form

∂ũ�,h

∂t
+ ∇ · [τ̃�,h(u, u) + ũ�,hũ�,h + p̃�,hI − ν∇̃u�,h

] = −f �,h. (4.13)

Here, the turbulent (or subgrid) stress due to eddies of size < � may be defined as usual by

τ̃�,h(u, u) = (ũu)�,h − ũ�,hũ�,h. (4.14)

In addition, a new inertial drag force appears associated with the eliminated near-wall
eddies

f �,h = −θ ′
�,h(d(x)) n(x) · [(uu)� + p̄�I − ν∇ū�

]
, (4.15)

and represents momentum transfer to the unresolved near-wall eddies. It is non-vanishing
only for h < d(x) < h + �. This force includes resolved viscous momentum diffusion, but
nonlinear transfer dominates for Re � 1 at fixed �, h. Mathematically, the regularised
equation (4.13), when considered for all possible choices of h > �, is equivalent to the
standard weak formulation of the incompressible Navier–Stokes equation in a domain with
boundary (see Boyer & Fabrie 2012, Ch. V.1.2).

If (4.13) were considered for the purpose of LES modelling, both the subgrid stress τ̃ �,h
and the inertial drag force f �,h would need to be somehow closed or parametrised. Indeed,
one can expect that these quantities have universal statistical properties independent of
the small-scale dissipation and of the detailed properties of the wall, if the distance h
is chosen in the inertial sublayer and length scale � is chosen also sufficiently small. In
addition, however, another quantity must be modelled which appears in the coarse-grained
mass balance:

∇ · ũ�,h = σ̃�,h, (4.16)

which I call the inertial mass source

σ̃�,h := θ ′
h,�(d(x))n(x) · ū�. (4.17)

This quantity measures the mass-exchange with the unresolved near-wall eddies and it
is also non-vanishing only for h < d(x) < h + �, with furthermore a vanishing space
integral

∫
h<d<h+�

σ̃�,h dV = 0. The windowing operation has thus introduced effective
‘compressibility’ so that the Poisson equation for coarse-grained pressure becomes

−�p̃�,h = ∂tσ̃�,h + ∇∇ :
[
ũ�,hũ�,h + τ̃ �,h − ν∇̃u�,h

]− ∇ · f h,�, (4.18)

which involves derivatives of all three modelled quantities but which can yield the
resolved pressure by applying standard Poisson solvers. Similar effects appear with other
coarse-graining methods, e.g. the velocity field from the elliptic filtering (4.12) satisfies an
equation ∇ · ū� = σ̄� analogous to (4.16) with

σ̄� =
(

∂

∂xk

[
∇�2 · ∂ū�

∂xk

])
�

. (4.19)

In this case, however, it is not true that
∫
Ω

σ̄� dV = 0 unless ∂ū�/∂n = 0 at ∂Ω.

The regularised equation (4.13) involves two arbitrary lengths � and h and, as well, three
arbitrary functions G, η and d. Other choices of distance function might be more useful
for some purposes, e.g. d(x) = min{|y − H|, |y + H|} could be useful in an iterative RG
analysis of a rough-wall channel flow, with H the channel half-width, to establish universal
statistics in the ‘inertial sublayer’. A similar type of ‘time windowing’ was employed
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in the recent RG analysis of Lagrangian spontaneous stochasticity (Eyink & Bandak
2020), where it corresponds to ignoring non-universal initial times of the particle position
histories. The ‘principle of renormalisation group invariance’ is that no objective physics
can depend upon these arbitrary quantities introduced for the purpose of regularisation
(Gross 1976; Eyink 2018b). The present example is a case of a several-parameter
renormalisation group involving changes of the entire regularisation scheme, which
was encountered already in quantum field theory (Stückelberg & Petermann 1953;
Stevenson 1981; Peterman 1982) and which has been applied since to PDEs, including
boundary-value problems (Chen, Goldenfeld & Oono 1996; Kovalev & Shirkov 1999).
A key idea in RG methods is that arbitrariness in regularisation parameters may be
exploited by choosing them in some optimal way to deduce non-trivial consequences. I
describe some applications of that principle in the following section.

4.2.3. Momentum cascade in space
Most of the prior work on the Onsager theory for wall-bounded flows has considered
energy cascade and energy dissipation (Bardos & Titi 2018; Drivas & Nguyen 2018;
Bardos et al. 2019; Chen et al. 2022), but I prefer to begin first with the momentum
anomaly suggested by Taylor (1915). I shall employ the regularisation by spatial filtering
and windowing introduced by Bardos & Titi (2018), which leads to the important concept
of spatial momentum cascade. To avoid any confusion, I emphasise at the outset that the
notion of momentum cascade arising in the Onsager theory does not coincide with the one
which is now standard in the literature on wall-bounded turbulence (Tennekes & Lumley
1972; Jiménez 2012). I shall discuss the essential differences below. My analysis shall
follow closely the work of Quan & Eyink (2022a), where momentum balance in the limit
Re → ∞ is treated. It is also possible to extend this analysis to finite Reynolds numbers
and some beginning steps in this direction have been taken by Eyink, Kumar & Quan
(2022), following the ideas of Drivas & Eyink (2019) for energy cascade, but I consider
here only the regime Re � 1.

The work of Quan & Eyink (2022a) followed the same RG strategy as in prior works on
the Onsager theory such as Duchon & Robert (2000), by considering the limit Re → ∞
for both the fine-grained description and the coarse-grained description with regularisation
scales �, h. Non-trivial consequences can be deduced simply by requiring that both
descriptions lead to the same observable conclusions and exploiting the freedom to vary
h, � by taking h, � → 0. The specific example analysed by Quan & Eyink (2022a) was
external flow around a finite, smooth body B, as considered in the famous paradox of
d’Alembert (1749, 1768). As seen from the empirical results reviewed in § 4.1, this is
probably the simplest flow which provides evidence for a strong dissipation anomaly.
However, the analysis of Quan & Eyink (2022a) carries over straightforwardly to related
more complex flows, such as turbulent flows through pipes with hydraulically rough (but
mathematically smooth) walls. Since only mathematically smooth surfaces are considered,
we are investigating the limit Re = UL/ν � 1 as achieved by taking L very large (where
L would be a length such as the diameter of the body or the radius of the pipe). In the case
of a hydraulically rough wall, we keep the ratio k̂ = k/L fixed, so that the body remains
geometrically similar as Re increases.

The analysis of Quan & Eyink (2022a) (with some pedagogical simplifications
introduced by Eyink (2023)) begins with the fine-grained momentum balance/

988 P1-52

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.415


Onsager’s ‘ideal turbulence’ theory

Navier–Stokes equation smeared against a smooth space–time test function ϕ(x, t) :∫ T

0

∫
Ω

[
(∂tϕ + ν�ϕ) · uν + ∇ϕ :

(
uν ⊗ uν + pνI

)]
dV dt

=
∫ T

0

∫
∂Ω

[
τ ν

w · ϕ − pν
w(n · ϕ)

]
dS dt. (4.20)

Note that I am using the standard non-dimensionalisation with ν̂ = 1/Re, but I drop hats
(̂·) to keep notation simple. In contrast to usual discussions of weak solutions in domains
Ω with boundaries, however, the test functions adopted in this study need not vanish near
the surface ∂Ω, and thus the smeared balance equation gets surface contributions both
from the skin friction τw and also from pw, the pressure at the wall. Under the assumption
of strong L2-convergence in the space–time domain [0, T] × Ω as ν → 0 (see § 3.2.3),
we see that the left-hand side converges and thus also the limits exist, τw = limν→0 τ ν

w,

pw = limν→0 pν
w, as distributions on the surface ∂Ω, so that∫ T

0

∫
Ω

[
∂tϕ · u + ∇ϕ : (u ⊗ u + pI)

]
dV dt

=
∫ T

0

∫
∂Ω

[
τw · ϕ − pw(n · ϕ)

]
dS dt. (4.21)

The limiting fields (u, p) in [0, T] × Ω thus constitute a weak Euler solution, as seen
by restricting (4.21) to test functions ϕ whose supports vanish on ∂Ω, but (4.21) gives
additional information at the surface inherited from the Navier–Stokes solutions.

The key step is now to consider the corresponding smeared version of the coarse-grained
momentum balance (4.13):∫ T

0

∫
Ω

∂tϕ · (ηh,�ūν
�) dV dt +

∫ T

0

∫
Ω

∇ϕ : ηh,�(T̄ ν
� + p̄ν

�I − ∇ūν
�) dV dt

= −
∫ T

0

∫
Ω

ϕ · (T̄ ν
� · ∇ηh,� + p̄ν

�∇ηh,�) dV dt, (4.22)

where I have defined T̄ ν
� := (uνuν)� and also I have recalled the definition ãh,� = ηh,�ā�

for any quantity a. Taking the double limits, first ν → 0 and subsequently h, � → 0,

then it is easy to see that the left-hand side of (4.22) converges exactly to the left-hand
side of (4.21). In that case, however, the right-hand side of (4.22) must converge also to
the right-hand side of (4.21). We thereby get results on spatial cascade of wall-parallel
momentum:

lim
h,�→0

−n × T̄ � · ∇ηh,� = n × τw (4.23)

with T̄ � := (uu)�, and on spatial cascade of wall-normal momentum:

lim
h,�→0

n · [T̄ � · ∇ηh,� + p̄�∇ηh,�

] = pw, (4.24)

both convergence statements interpreted in the sense of distributions on [0, T] × ∂Ω. To
obtain these results, I had to make suitable choices for test functions ϕ and, in particular,
that allowed us to neglect limh,�→0 −n × p̄�∇ηh,� = 0 in the first statement. The physical
meaning of these results are straightforward. The first result (4.23) simply states that the
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spatial cascade of transverse momentum to the wall via turbulent nonlinear advection in
the limiting Euler solution must match onto the direct infinite-Re limit of the viscous
skin friction at the wall. Recall that ∇ηh,�(x) = n(x)θ ′

h,�(d(x)) � n(x)δ(d(x) − h), so that
the quantity on the left-hand side of (4.23) indeed represents advective momentum flux
towards the wall at distance h from the wall. Likewise, the second result (4.24) states
that the spatial cascade of wall-normal momentum away from the wall (note the change
of sign) in the limiting Euler solution must match onto the direct infinite-Re limit of the
kinematic pressure at the wall. These two results are exact analogues of that derived for
scale-cascade by Duchon & Robert (2000), i.e. the matching of the expressions (3.29),
(3.30) for nonlinear energy cascade in the limiting Euler solution and the direct infinite-Re
limit of viscous energy dissipation (3.32).

Unlike the scale-cascade of kinetic energy studied by Duchon & Robert (2000), which
can be understood very roughly as a deterministic version of the cascade of Kolmogorov
(1941a,b), in our case, the meaning of ‘momentum cascade’ is distinctly different from
the traditional one in the literature on wall-bounded turbulence. I may recall that Tennekes
& Lumley (1972) and Jiménez (2012), and many others, posit the existence in canonical
wall-bounded flows (pipe, channel, boundary-layer) of an ‘inertial layer’ where the
Reynolds stress or mean momentum flux −〈uxuy〉 (x wall-parallel, y wall-normal) is
approximately constant and equal to u2

τ = 〈τw,xy〉, the mean skin friction. This looks
superficially similar to (4.23), except that the latter is a deterministic result for the weak
Euler solutions obtained in the infinite-Re limit. However, the result (4.23) apparently
becomes trivial in all of these canonical flows where there is only a weak anomaly
and τw = 0! Conversely, both the traditional and the deterministic cascades occur in a
turbulent pipe flow with a hydraulically rough wall, but at completely different wall normal
distances. Indeed, the standard mean momentum cascade then holds in the traditional
inertial layer k � y � H, whereas result (4.23) holds in the range ν/uτ � h � k, i.e.
within the roughness sublayer! Recall that our limit is one in which Rek → ∞ so that our
flows are in the fully rough regime and completely inertial-dominated turbulence exists
between the roughness elements.

So far, I have not established a result equivalent to Onsager’s 1/3 Hölder exponent
result. As glimpsed already by Taylor (1915), a corresponding condition has to do with
continuity of the velocity at the wall. In fact, Bardos & Titi (2018); Bardos et al. (2019)
understood that the essential condition has to do with the vanishing of the normal
velocity component approaching the wall, since it is the normal velocity which transports
momentum and other conserved quantities to and from the wall. The specific condition
that I consider is that of Drivas & Nguyen (2018):

lim
δ→0

‖n · u‖L2([0,T],L∞(Ωδ))
= 0, (4.25)

which means that the maximum wall-normal velocity in the δ-neighbourhood Ωδ = {x ∈
Ω : d(x) < δ} of the boundary ∂Ω must vanish as δ → 0. With this assumption, the
advective transport of momentum to the wall can be shown without much difficulty to
vanish:

lim
h,�→0

T̄ � · ∇ηh,� = 0, (4.26)

see Quan & Eyink (2022a) and Eyink (2023) for details. In that case, the previous results
simplify drastically. The first result (4.23) reduces to

τw = 0, (4.27)
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Onsager’s ‘ideal turbulence’ theory

which is the statement that condition (4.25) rules out a strong momentum anomaly. The
second result (4.24) furthermore becomes

lim
h,�→0

p̄�θ
′
h,l(d(x)) = pw. (4.28)

This is essentially a statement about commutation of two limits: the same pressure field at
the wall is obtained either by taking the Re → ∞ limit pw of the pressure pRe

w directly at
the wall or instead by taking Re → ∞ first and then taking the limit of the pressure p of
the Euler solution in the flow interior at points approaching to the wall. This commutation
of limits may be loosely termed ‘continuity of pressure at the wall’.

The last two results seem very satisfactory. As I have already discussed in § 4.1, the
mean skin friction 〈τ 〉 (e.g. a long-time average) seems to vanish quite generally. Thus,
the absence of a strong momentum anomaly (4.27) looks consistent with experiment.
The second result (4.28) on the continuity of pressure at the wall is very good news for
LES modelling. As I have discussed in § 4.1, the limiting drag force on a moving body
at high-Re seems to arise entirely from pressure forces (form drag) with negligible drag
arising from viscous skin friction. Thus, the result (4.28) means that the asymptotic drag
on a body can be successfully calculated from the weak Euler solution, with the limiting
pressure on the body correctly calculated from the Euler pressure in the flow interior after
taking the limit approaching the body. However, it is a bit premature to take this as good
news! First, there is currently no consensus how to determine the pressure uniquely for
the weak Euler solution and in particular what boundary condition should be imposed
to replace the Neumann condition in (4.3) for the Navier–Stokes pressure (Bardos & Titi
2022; Bardos, Boutros & Titi 2023; De Rosa, Latocca & Stefani 2023, 2024). Second,
and more seriously, we shall see in § 4.2.6 that the assumption that τw ≡ 0 identically
leads to the paradoxical conclusion that all drag vanishes in the limit Re → 0 and that the
Navier–Stokes solution converges to the smooth potential Euler solution of d’Alembert
(1749, 1768) with no drag.

4.2.4. Energy cascade in space and in scale
Kinetic energy balance can be analysed in a very similar manner. Quan & Eyink (2022b)
considered external flow past a body B with fluid velocity constant at infinity, so that
the total kinetic energy was infinite. The flow was thus divided into a potential part uφ

and a rotational part uω = u − uφ, so that the ‘relative energy’ Erel(t) = ∫
Ω

[uφ · uω +
1
2 |uω|2] dV (heuristically, total energy minus energy of the potential flow) remains finite.
To keep notation simple, however, I consider here internal flow in a bounded domain Ω as
did Bardos & Titi (2018), Bardos et al. (2019), Drivas & Nguyen (2018) and Chen et al.
(2022).

The fine-grained kinetic energy balance for incompressible Navier–Stokes when
smeared with a scalar test function ϕ is easily calculated to be∫ T

0

∫
Ω

(∂t + ν�)ϕ × 1
2 |uν |2 dV dt +

∫ T

0

∫
Ω

∇ϕ ·
(

1
2 |uν |2 + pν

)
uν dV dt

+
∫ T

0

∫
Ω

ν(∇∇ϕ) : uνuν dV dt =
∫ T

0

∫
Ω

ϕ εν dV dt, (4.29)

with εν = 2ν|Sν |2 the viscous energy dissipation. As in the previous section, I allow the
smooth test function ϕ to be non-vanishing on the boundary ∂Ω but no boundary terms
arise after integration by parts because of the stick b.c. Assuming strong convergence of
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uν, pν in the bulk to u, p as ν → 0, it is easy just as in a periodic domain to obtain the
inviscid limit ∫ T

0

∫
Ω

∂tϕ × 1
2 |u|2 dV dt +

∫ T

0

∫
Ω

∇ϕ ·
(

1
2 |u|2 + p

)
u dV dt

=
∫ T

0

∫
Ω

ϕ D dV dt, (4.30)

where

lim
ν→0

∫ T

0

∫
Ω

ϕεν dV dt =
∫ T

0

∫
Ω

ϕ D dV dt. (4.31)

One can also write the inviscid coarse-grained kinetic energy balance (3.10), window
out the near-wall region and then smear with the test function ϕ to obtain∫ T

0

∫
Ω

∂tϕ × ηh,�
1
2 |ū�|2 dV dt +

∫ T

0

∫
Ω

∇ϕ · ηh,�J̄ e dV dt

=
∫ T

0

∫
Ω

ϕηh,�Π� dV dt −
∫ T

0

∫
Ω

ϕJ̄ � · ∇ηh,� dV dt, (4.32)

where I have introduced the spatial flux of coarse-grained kinetic energy:

J̄ e =
(

1
2 |ū�|2 + p̄�

)
ū� + τ � · ū�. (4.33)

Taking the limit h, � → 0, the left-hand side of the coarse-grained balance (4.32)
coincides with the left-hand side of the fine-grained balance (4.30). Thus, the right-hand
sides must also coincide and one obtains

lim
h,�→0

(
ηh,�Π� − J̄ � · ∇ηh,�

) = D. (4.34)

In contrast to the result (3.30) obtained in periodic domains where anomalous dissipation
D matches to inertial energy flux Π� alone, in wall-bounded domains, there is an additional
contribution from −J̄ � · ∇ηh,�, which represents spatial energy flux to the wall. I mention
in passing that at any finite distance from the wall, the expression (3.29) of Duchon &
Robert (2000) can also be derived here for D, as well as the 4/5th law (3.36) and 4/15th
law (3.37).

A condition on vanishing of the wall-normal velocity analogous to (4.25) (but L3

in time) suffices to show that the additional spatial flux contribution must vanish.
However, the potential presence of this additional term raises the question whether the
anomalous dissipation measure might have some contribution from the boundary, so that
D(∂Ω) > 0. This question recalls the famous theorem of Kato (1984) (see also Sueur
2012; Bardos & Titi 2013, among others), according to which vanishing of the viscous
dissipation in the boundary strip Ωcν = {x ∈ Ω : d(x) < cν} for any constant c > 0, or

lim
ν→0

∫ T

0

∫
Ωcν

εν dV dt = 0 (4.35)

is necessary and sufficient that Navier–Stokes solution uν converges strongly in
L2([0, T] × Ω) to the smooth Euler solution u with the same initial data u0, over any
time period [0, T] for which this smooth Euler solution exists. This type of result is closely
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Onsager’s ‘ideal turbulence’ theory

allied to the strong-weak uniqueness theory which I shall discuss in § 4.2.6. A consequence
is that vanishing of the energy dissipation in the ‘Kato layer’ Ωcν implies vanishing energy
dissipation everywhere in Ω, unless the smooth Euler solution u develops a singularity
before time T. Bardos & Titi (2013) have shown furthermore that the vanishing of energy
dissipation in Ωcν implies also that τw = 0. Here I may recall the numerical study by
Nguyen van yen et al. (2018) of a compact quadrupole vortex in two dimensions impacting
on a flat, solid wall. At very high Reynolds numbers, these authors find evidence for
anomalous energy dissipation arising in the Kato layer from maximum vorticity values
scaling as ων ∼ 1/ν. These high values at the wall imply that for some points on the
boundary, at least, skin friction τw = νων × n �→ 0 as ν → 0. I return to these issues
again in § 4.2.6.

4.2.5. Vorticity cascade in space
The same methods as discussed previously can be applied also to vorticity and, in some
respects, the analysis is much easier, because the vorticity balance is just the curl of the
momentum balance already treated. I describe here only a few key results, following the
more extended treatment of Eyink (2023).

The fine-grained balance of vorticity for the incompressible Navier–Stokes equation is,
of course, the viscous Helmholtz equation:

∂tω
ν = ∇ × (uν × ων − ν∇ × ων) := −∇ · Σν, (4.36)

where Σν is a suitable anti-symmetric tensor representing vorticity flux through the flow
volume (Huggins 1971, 1994). We might adopt this as the starting point to derive the
fine-grained vorticity balance in the limit ν → 0, but it is easier just to take ϕ → ∇ × ϕ
in the ideal momentum balance equation (4.21). This yields directly∫ T

0

∫
Ω

[
∂t(∇ × ϕ) · u + ∇(∇ × ϕ) : u ⊗ u

]
dV dt

=
∫ T

0

∫
∂Ω

[
τw · (∇ × ϕ) − σw · ϕ

]
dA dt, (4.37)

where surface integration by parts
∫
∂Ω

pw(n × ∇) · ϕ dA = − ∫
∂Ω

(n × ∇)pw · ϕ dA was
used in the last line to introduce the vorticity source σw = −n × ∇pw of Lighthill (1963).
The terms in this equation have mostly transparent physical meaning. Note in particular
that the τw-term arises from viscous diffusion of vorticity away from the surface in the
limit ν → 0, through the integration-by-parts identity∫

Ω

(∇ × ϕ) · ν∇ × ων = ν

∫
Ω

∇ × (∇ × ϕ) · ων +
∫

∂Ω

(∇ × ϕ) · τ ν
w dA. (4.38)

We thus see that anomalous viscous diffusion of vorticity may remain as ν → 0 if τw /= 0.

The corresponding coarse-grained vorticity balance is obtained by taking the curl of the
coarse-grained momentum balance equation (4.13) and can be written most simply as

∂t(ηh,�ω̄� + ∇ηh,� × ū�) + ∇ × [∇ · (ηh,�T̄ �)
] = −∇ × f �,h. (4.39)

In the time-derivative term, I used the identity ∇ × ũh,� = ηh,�ω̄� + ∇ηh,� × ū�, which
makes clear that the balance equation is for the sum of a vorticity ω = ∇ × u in the
flow interior and a vortex sheet n × u on the solid surface. Note that f �,h is just the
inviscid limit of the inertial-drag force defined in (4.15), which may also be written as
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f �,h = −(T̄ � + p̄�I) · ∇ηh,�. The term −∇ × f �,h in the coarse-grained vorticity balance
rationalises the force field method used in aerodynamics and wake flows behind complex
bodies, where the solid surface is replaced by a suitable body force (van Kuik 2022).
Smearing the coarse-grained vorticity balance (4.39) with a vector test function ϕ and
taking the limit h, � → 0 recovers the same (4.37) obtained from the fine-grained balance.
Note in particular that

− lim
h,�→0

∫ T

0

∫
Ω

ϕ · ∇ × f �,h dV dt =
∫ T

0

∫
∂Ω

[−τw · (∇ × ϕ) + σw · ϕ
]

dA dt, (4.40)

which relates −∇ × f �,h to inviscid generation of vorticity at the body surface and possible
anomalous viscous diffusion out of the surface. Equation (4.40) follows directly from
(4.23) and (4.24).

If the strong continuity condition for wall-normal velocity (4.25) holds so that τw ≡ 0,
then one may derive another simple relation for the surface vorticity source of Lighthill
(1963). In that case (Quan & Eyink 2022a), the pressure-continuity result (4.28) implies
that

−
∫ T

0
dt
∫

∂Ω

dA ϕ · (n × ∇)pw =
∫ T

0
dt
∫

∂Ω

dA (n × ∇) · ϕpw

= lim
h,�→0

∫ T

0
dt
∫

Ω

dV ∇ηh,� × ∇ · ϕp̄�

= lim
h,�→0

∫ T

0
dt
∫

Ω

dV − ϕ · ∇ηh,� × ∇p̄�

= lim
h,�→0

∫ T

0
dt
∫

Ω

dV ϕ · (∇ηh,� × ∂tū� + ∇ηh,� · Σ�

)
,

(4.41)

where in the last line, I used the coarse-grained momentum balance in the flow interior,
written as

∂tū� = −∇ · T̄ � − ∇p̄� = Σ∗
� − ∇p̄�, (4.42)

where Σ∗
� is the Hodge dual to anti-symmetric vorticity flux tensor Σ�, or in components

Σ∗
�,i = 1

2εijkΣ�,jk. Equation (4.41) states that under the condition (4.25), tangential
pressure gradients at the body surface act in the inviscid limit as a local source of vorticity,
which either accumulates in the surface vortex sheet or else flows away via turbulent
advection.

Vorticity flux from the body surface can be directly related to drag. Relations of this
type have been derived by many authors, including Burgers, Lighthill and many others,
as discussed in the very comprehensive review by Biesheuvel & Hagmeijer (2006). Eyink
(2021) derives such a relation for the power consumed by the instantaneous drag force
F B(t) on a body B held fixed in a flow with velocity V , making connection with ideas in
quantum superfluids. This Josephson–Anderson relation,

F ν
B(t) · V = −ρ

∫
Ω

uφ · (uν × ων − ν∇ × ων) dV

= −ρ

∫
Ω

∇uφ : uν
ωuν

ω dV + ρ

∫
∂Ω

uφ · τ ν
w dA (4.43)

is in fact a special case of a relation derived by Howe (1995). In the last line of (4.43),
integration by parts has been used to rewrite the relation in a form which should remain
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valid in the limit ν → 0, as pointed out by Eyink (2021). This inviscid limit has been
rigorously derived by Quan & Eyink (2022b) when the body surface ∂B is mathematically
smooth, i.e. when the body is very large. The Josephson–Anderson relation and the drag
on the body are related to Onsager’s dissipation anomaly by the balance equation of the
kinetic energy (1/2)|uω|2 in the rotational flow uω = u − uφ, where uφ is the stationary
potential flow of d’Alembert (1749, 1768) with no drag. This balance takes the form

−
∫ T

0

∫
Ω

1
2∂tϕ|uω|2 dV dt −

∫ T

0

∫
Ω

∇ϕ ·
[

1
2 |uω|2u + pωuω

]
dV dt

=
∫ T

0

∫
Ω

ϕuφ · τw dA dt −
∫ T

0

∫
Ω

ϕ∇uφ : uω ⊗ uω dV dt

−
∫ T

0

∫
Ω

ϕ D(u) dV dt, (4.44)

with ϕ a smooth test function that may not vanish at the boundary (Quan & Eyink 2022b).
The Josephson–Anderson relation represents a transfer of kinetic energy into rotational
fluid motions, which is then disposed by the dissipation D into heat energy.

4.2.6. Weak-strong uniqueness and extreme near-wall events
A fact of fundamental importance for the theory of incompressible turbulence is that
weak-strong uniqueness, as reviewed in § 3.1.3, is not valid unconditionally in flows with
solid walls, as it is for incompressible flows in periodic domains or in infinite space.
Bardos, Székelyhidi & Wiedemann (2014) (and see also Bardos & Titi 2013; Wiedemann
2018) have noted that additional conditions are required in wall-bounded flows to obtain
weak-strong uniqueness and the first work uses convex integration methods to construct
a counterexample showing that uniqueness indeed fails without such added hypotheses.
One sufficient condition for weak-strong uniqueness is that the inviscid limit of the skin
friction, τw = limν→0 τ ν

w, should be vanishing as a distribution at all times on the solid
surface, i.e. τw ≡ 0 when smeared with any smooth space–time test function (Bardos
& Titi 2013). Another condition which guarantees the later is the uniform vanishing of
wall-normal velocity (4.25), which I have already noted in (4.27) implies vanishing skin
friction (Quan & Eyink 2022b).

The gist of the weak-strong uniqueness result can be easily understood from the
following sketch of a proof taken from Quan & Eyink (2024), which shows in the context
of flow around a smooth body B that even the weaker condition τw · uφ ≡ 0 on [0, T] × ∂B
implies weak-strong uniqueness. The argument is based on the inviscid balance of global
kinetic energy in the rotational flow, Eω(τ) = 1

2

∫
Ω

|uω(·, τ )|2 dV, which is

Eω(τ) = Eω(0) +
∫ τ

0

∫
∂Ω

uφ · τw dA dt −
∫ τ

0

∫
Ω

∇uφ : uωuω dV dt −
∫ τ

0

∫
Ω

D dV dt.

(4.45)

This result can be obtained formally by taking ϕ ≡ χ[0,τ ]×Ω, the characteristic function of
the set [0, τ ] × Ω, in the local balance (4.44) and can be obtained rigorously by a careful
limiting argument. Using the condition τw · uφ ≡ 0 and the fact that D ≥ 0, one obtains

Eω(τ) ≤ Eω(0) −
∫ τ

0

∫
Ω

∇uφ : uωuω dV dt. (4.46)
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Since uφ is smooth and globally bounded, application of Cauchy–Schwartz inequality
gives

Eω(τ) ≤ Eω(0) + C‖∇uφ‖∞
∫ τ

0
dt Eω(t) (4.47)

and then the Gronwall inequality finally yields

Eω(τ) ≤ Eω(0) exp
(
C‖∇uφ‖∞ × τ

)
. (4.48)

If Eω(0) = 0 or equivalently u(0) ≡ uφ, then Eω(τ) ≡ 0 for all τ > 0 and thus u ≡ uφ

identically for all time. Careful examination of the proof shows that this result remains
valid even if ‖uν(0) − uφ‖L2(Ω) → 0 as ν → 0, which allows for a viscous boundary layer
in the Navier–Stokes initial data, as long as the energy Eν

ω(0) in that layer shrinks to zero as
ν → 0. Note that the estimate (4.48) allows for instability of uφ in the dynamical systems
sense, so that a small perturbation may grow exponentially. However, the inequality (4.48)
shows that if uφ · τw ≡ 0, then the smooth potential Euler solution uφ is stable in the
sense of Hadamard well-posedness and that any Navier–Stokes solution whose initial data
uν(0) converges to uφ in L2 as ν → 0 will converge globally to uφ in the inviscid limit.

In my opinion, a plausible conclusion is that weak-strong uniqueness is an inappropriate
condition to select physically correct weak solutions of the Euler equations, unlike what
has been often proposed in the mathematics literature. The clearest example is the constant
flow past a smooth body, the subject of the famous paradox of d’Alembert (1749, 1768),
where the potential Euler solution is smooth and stationary in time, thus existing globally
without blow-up. Nevertheless, drag does not seem to vanish in the ν → 0 limit, as shown
by laboratory experiments like that of Achenbach (1972) for flow past a sphere and by
numerical simulations such as that of Chatzimanolakis, Weber & Koumoutsakos (2022)
for 2-D flow past a disk of diameter D impulsively accelerated to velocity U. In the latter
case, the initial conditions are exactly u(0) = uφ at t = 0 and, after a short period of a few
mean-free-times when a kinetic description is required, the dynamics is well described
by incompressible Navier–Stokes. In principle, empirical observations like those above
might be explained by instability of the potential Euler solution in a dynamical systems
sense, so that small perturbations, e.g. due to external flow disturbances, molecular
viscosity or even thermal noise, grow exponentially in time. However, excluding for the
moment external and thermal noise, there is an asymptotically exact solution of the 2-D
incompressible Navier–Stokes equation for the case of the impulsively accelerated disk
as ν → 0 (Bar-Lev & Yang 1975) and although its time of validity is expected to be
only ∼ D/U, this nevertheless suffices to show that Eν

ω(0+) → 0, where t = 0+ is the
initial time of validity of the Navier–Stokes description. In that case, the bound (4.48)
expressing weak-strong uniqueness, if valid, would imply that u = limν→0 uν coincides
with uφ identically. Although I have explained this result in the case of the impulsively
accelerated body via the energy balance (4.45), similar arguments apply when the body is
accelerated over a finite time-interval. However, the empirical observations suggest instead
that the limit u is a dissipative weak Euler solution with initial condition u(0) = uφ but
distinct from uφ and co-existing with that smooth, stationary Euler solution.

The latter conclusion can be correct only if all of the sufficient conditions guaranteeing
the weak-strong uniqueness result (4.48) are in fact invalid. The possibility that τw �≡ 0
is not in contradiction with the general empirical observation that 〈τw〉 = 0, since the
long-time average could be zero if the condition τw /= 0 existed only in some early period
of the acceleration. The condition (4.25) on uniform vanishing of wall-normal velocity
must also be violated if weak-strong uniqueness in fact fails. It is worth noting that
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experimental and numerical investigations of wall-bounded turbulence at high-Re have
already observed very extreme events both of skin friction and of wall-normal velocity
(Lenaers et al. 2012; Örlü & Vinuesa 2020). Numerical simulations of turbulent channel
flow show that, while u2

τ = 〈τw〉 decreases slowly with Re, the probability of large, rare
fluctuations of the non-dimensionalised variable τ+

w := τw/u2
τ increase with Re (Lenaers

et al. 2012). The same study shows also very large fluctuations of the wall-normal velocity
v = u · /n in the viscous sublayer and buffer layer, with the probability of large values
of v+ = v/uτ increasing with Re. These large v+ fluctuations seem to be associated
with explosive boundary-layer separation induced by strong near-wall vortices (Doligalski,
Smith & Walker 1994). The events predicted by the breakdown of the condition (4.25),
however, are much more extreme and occur at very different wall distances in the flows
with strong dissipative anomaly, such as flow past a sphere or flow in a hydraulically rough
pipe. In fact, restated in dimensional variables, the maximum value of n · u/U attained
on the interval ν/uτ � h < δ × L must be independent of the choice of δ > 0 and also
independent of Reynolds number for Re sufficiently large. This is a striking prediction of
the breakdown of weak-strong uniqueness.

There is some serious question, however, whether the high-Re ranges considered are
within the regime of validity of the standard Navier–Stokes description. Using the simple
kinetic theory estimate for kinematic viscosity ν ∼ cs�mfp, where cs is the thermal
velocity/sound speed and �mfp is the mean-free-path length, one can see that the usual
viscous unit of length at the wall δν := ν/uτ (Tennekes & Lumley 1972) can be rewritten
as δν ∼ �mfp/Maτ , where Maτ = uτ /cs is the Mach number based on uτ . In flows with a
strong dissipative anomaly where uτ ∼ U, this estimate becomes δν ∼ �mfp/Ma, which is
only larger than �mfp by a factor of the inverse of the global Mach number Ma = U/cs.
Note that this coincides with the estimate δν/L ∼ 1/Re and thus corresponds to what
in mathematics is called the ‘Kato layer thickness’. This distance is often just several
microns in realistic flows. Furthermore, the value of τ ν

w is strongly fluctuating, as I have
just discussed, and the local fluctuating wall unit δν(x, t) := ν/|τ ν

w(x, t)|1/2 may therefore
take values even a couple of orders of magnitude smaller. Such tiny lengths are dangerously
close to �mfp, where the validity of any hydrodynamic description must break down.
Furthermore, thermal fluctuation effects may be expected to appear at much larger length
scales than �mfp, just as in the bulk flow (§§ 2 and 3.1.3.5). Understanding the ultimate
origin of drag on solid bodies at very high Reynolds numbers may therefore require
an extension of Landau–Lifschitz fluctuating hydrodynamics to fluid–solid interfaces
(Reichelsdorfer 2016).

4.3. Dissipative Euler solutions and zero-viscosity limit
Given the recent vintage of the work applying Onsager’s ‘ideal turbulence’ theory to
wall-bounded flows, there is relatively little mathematical research attempting to construct
corresponding weak Euler solutions. I thus remark only briefly about relevant works.

I have already mentioned the application of convex integration methods by Bardos
et al. (2014) to establish non-uniqueness of globally dissipative weak Euler solutions
in a wall-bounded flow. A more recent, interesting work by Vasseur & Yang (2023)
has applied the convex integration technique of Székelyhidi (2011) for vortex sheets to
the problem of turbulent channel flow, constructing weak Euler solutions u exhibiting
boundary-layer separation, although the initial data u0 are given by the plug flow U = Ux̂,

which is a smooth, stationary, potential Euler solution. These weak solutions thus differ
from plug flow, although the space-L2 norm of the difference at each time is bounded

988 P1-61

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.415


G. Eyink

as ‖u(·, t) − U‖2
L2(Ω)

≤ CHWU3t, where H and W are the half-height and width of the
channel, respectively. Furthermore, Vasseur & Yang (2023) study also Navier–Stokes
solutions uν with stick b.c. in the limit as ν → 0 and with initial data uν

0 converging in L2

to the plug flow U, proving that all weak limits u∗ as ν → 0 satisfy similar upper bounds
as the Euler solutions from convex integration, or ‖u∗(·, t) − U‖2

L2(Ω)
≤ C′HWU3t. As

noted already by Vasseur & Yang (2023), vanishing energy dissipation in the ‘Kato layer’
near the wall would imply that all sequences uν of Navier–Stokes solutions must converge
strongly in L2 to U as ν → 0. In standard terminology of wall-bounded flows, this ‘Kato
layer’ in turbulent channel flow corresponds to the viscous sublayer and buffer layer,
over which volume the energy dissipation rate integrates to u3

τ WL for channel length L
(Tennekes & Lumley 1972). This integrated dissipation tends to zero according to the
standard Prandtl–Kármán theory and then the theorem of Kato (1984) implies that the
inviscid limit in this geometry is just plug flow U, in agreement with expectations in
the fluid mechanics community (Cantwell 2019). The methods of Vasseur & Yang (2023)
should yield more realistic results for bluff-body flows, such as flow past a sphere, with
observable separation and anomalous dissipation.

The existing mathematical results already suggest that Eulerian spontaneous
stochasticity as discussed in § 3.2.2 should appear at very high Reynolds numbers also
in wall-bounded turbulence. In particular, the non-uniqueness seen in convex integration
constructions such as that of Vasseur & Yang (2023) suggests that such stochasticity
should be a general feature of separating turbulent boundary layers at high Reynolds
numbers. The limits on predictability of turbulent wall-bounded flows due to spontaneous
stochasticity will exacerbate the difficulties in data assimilation already arising due to
ordinary chaos (Mons, Du & Zaki 2021; Zaki & Wang 2021). Lagrangian spontaneous
stochasticity should also appear in wall-bounded flows (Drivas & Eyink 2017b) and
this will have implications for turbulent vorticity dynamics via stochastic Lagrangian
representations (Constantin & Iyer 2011; Eyink, Gupta & Zaki 2020a,b; Wang, Eyink &
Zaki 2022). In particular, Lagrangian spontaneous stochasticity should allow an alternative
formulation of vorticity creation and flux from the boundary surface in the inviscid limit,
alternative to the Eulerian description of turbulent vortex dynamics that was sketched in
§ 4.2.5.

5. Prospects

The ideas proposed by Onsager (1949) on an ‘ideal turbulence’ at very high Re have been
the inspiration for extensive work by many researchers over the past three decades. I have
attempted to provide an overview of the great progress on this problem, emphasising
intuitive ideas rather than rigorous mathematical details or exhaustive references to the
literature. I address finally here the key question: what is the promise for future advances?

5.1. How do we check if it is true?
The works of the past decades have confirmed the remarkable insights of Onsager (1949)
on the mathematical description of Navier–Stokes solutions in the limit of high Reynolds
numbers by weak Euler solutions exhibiting dissipative anomalies. As a matter of pure
mathematics, several conjectures of Onsager (1949) are now established by rigorous proofs
based on ideas with unexpected connections to other areas of mathematics and others
are partially demonstrated or reduced to empirically testable propositions. This does not,
of course, mean that Onsager’s theory is a correct description of physical reality, even
apart from the remaining mathematical gaps. For one thing, the basic assumptions of
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the theory could be invalid. Onsager (1949) began his deliberations by assuming that the
incompressible Navier–Stokes model (2.4) is valid for the turbulent flows at Re � 1, but
even a more realistic model such as the Landau–Lifschitz equations (2.5) might break
down locally during extreme turbulent events (Bandak et al. 2022). Furthermore, the
‘ultimate regime’ posited by the theory for the limit log Re � 1 might not be attained
in many practical circumstances and the observations on anomalous dissipation and drag
could possibly have more mundane explanations.

The only way to really test the physical validity of the Onsager (1949) theory is by
careful laboratory experiments at high Reynolds numbers and, to a lesser extent, by
numerical simulations. Some very basic predictions of the theory still remain unverified,
such as the deterministic, local 4/5th law (Duchon & Robert 2000; Eyink 2003), which
are probably within the range of the current highest-resolution Navier–Stokes simulations.
However, numerical simulations, while very useful for their ability to access quantities
that are difficult to measure by experiment, obviously incorporate too many theoretical
assumptions and biases to provide definitive scientific tests. I hope that one of the
consequences of this essay may be a renewed interest in the experimental study of
fluid turbulence at extremely high Reynolds numbers. It goes without saying that any
experimental study must involve solid walls and obstacles (such as the wire mesh or grid
in a wind tunnel). In fact, in my opinion, experimental investigations of turbulence have
been too strongly influenced by the bias of many leading theoreticians for ‘simple’ or
‘building block’ flows. Homogeneous and isotropic turbulence is one such flow that has
obviously been in the past accorded a ‘building block’ status, but to a lesser extent also
the ‘canonical wall-bounded flows’ – plane-parallel channel flow, smooth pipe flow and
flat-plate boundary layer – have been accorded such a status. It is far from clear based on
the considerations presented in this essay, however, that any of the previous ‘simple’ flows
are a good starting point for understanding more realistic turbulence. For example, in all
of the ‘canonical wall-bounded flows’, form drag from pressure forces vanishes identically
and instead drag arises entirely from skin friction, whereas in most turbulent flows with
walls, the drag at high Reynolds numbers gets a non-negligible contribution from form
drag, even in flows past streamlined bodies designed to minimise form drag. There are thus
legitimate reasons to believe that the ‘canonical flows’ are not the best stepping-stones to
understand wall-bounded turbulence in general.

If I could be granted as a wish one new experiment, I would probably choose it to
be an update of the experiment of Achenbach (1972), at much higher Reynolds numbers
and taking advantage of modern capabilities for measuring surface pressure, skin friction
and near-surface flow characteristics. Even better would be an experimental study of the
transient regime of acceleration of the sphere from rest, at a sequence of ever higher
Reynolds numbers. It could be somewhat simpler to investigate the flow past a normal
disk since, as illustrated in figure 2(b), there is no drag crisis and the drag coefficient
appears to be nearly constant over four orders of Reynolds number (Roos & Willmarth
1971). A proper such study along these lines should vary also the external turbulence level,
to determine its potential effect on all observations. Such a study could possibly detect the
extreme events in the skin friction and the near-surface normal velocity that are predicted
by breakdown of weak-strong uniqueness, under the assumption of a non-vanishing drag
at asymptotically infinite Reynolds numbers (§ 4.2.6). It is unclear what would be the exact
nature of such events but they are plausibly associated with strong eruptions of fluid away
from the surface. Otherwise, the experiments could verify the uniform vanishing condition
(4.25) or more directly the local vanishing of skin friction. In that case, one might hope to
verify the consequence (4.28) on continuity of pressure at the wall. Or perhaps we would
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observe that drag eventually tends to zero after all! Either way, we would have more clarity
about the mechanism by which drag appears and how it persists.

However, any good experimentalist who reads this essay can doubtless think of their
own tests that can be made of the predictions at very high Reynolds numbers. Such active
and thriving experimental work is vital not only for Onsager’s theory, but for any theory
of wall-bounded turbulence in the very-high-Reynolds-number regime.

5.2. Why does it matter?
If the ‘ideal turbulence’ theory deals only with the presumed ultimate regime of
near-infinite Reynolds numbers, then one might wonder how much it matters. Transition
to turbulence and intermediate ranges of Reynolds numbers certainly have their own
importance and not everything can be understood from a high-Reynolds-number theory.
My own response to this important question has several parts.

Ultimately, my basic interest is understanding the physics of how turbulence works and
making sense of the diverse array of experimental observations. If there is indeed such an
asymptotic high-Re regime governed by weak Euler solutions, then describing this state
has a fundamental importance for the understanding of turbulence. Not only would this
infinite-Reynolds-number ‘fixed point’ account for the high-Reynolds asymptotics, but
also it can be a suitable starting point for finite-Reynolds corrections, as discussed in
§ 3.1.3.3, bridging the range of intermediate Reynolds numbers. As we saw there also,
many of the arguments that have been developed are quite robust and do not depend upon
the existence of a ‘strong anomaly’, with merely a ‘weak anomaly’ sufficing.

Another reason for the importance of the ‘ideal turbulence’ theory is that there is already
a large amount of discussion of the infinite-Reynolds-number limit in the fluid mechanics
literature. Much of this work is based on less rigorous mathematics (e.g. Cantwell 2019;
van Kuik 2022), or employs formal asymptotics whose time-range of validity is severely
restricted by the underlying ansatz of smooth (and stable) boundary layers (see as examples
Bar-Lev & Yang (1975) or the theory of Prandtl (1905), as recently reviewed by Nguyen
van yen et al. 2018). The Onsager theory can help to put this other body of work on better
mathematical footing and, in some cases, to emend and correct it.

In particular, the LES modelling community discusses frequently the
infinite-Reynolds-number limit, as mentioned already in § 3.1.1. One segment of that
community espouses the method of implicit LES which proposes to calculate turbulent
flows at very high Reynolds numbers via numerical discretisations of dissipative weak
solutions of the Euler equations (Hoffman & Johnson 2010; Grinstein, Margolin & Rider
2011; Kronbichler & Persson 2021) and in fact the ideas of Onsager (1949) are often
cited explicitly in this context (e.g. see Hoffman et al. 2015; Fehn et al. 2022). The
work on implicit LES is very interesting as a kind of ‘computational experiment’, but
the method still lacks a complete mathematical and physical foundation. For example,
in the presence of solid walls, it is not yet clear from mathematical theory what are the
appropriate boundary conditions for either velocity or for pressure. The open question
regarding the pressure boundary was already mentioned in § 4.2.3. As for velocity, natural
boundary conditions for smooth Euler solutions are vanishing wall-normal velocity, the
so-called ‘no-penetration condition’. However, we have seen that a sufficiently strong form
of that condition for weak Euler solutions, (4.25), implies weak-strong uniqueness and
thus no limiting drag at infinite Reynolds number. Another issue in implicit LES which
calls for serious attention by mathematicians is convergence. So far as I know, none of the
various numerical schemes that have been proposed to compute dissipative Euler solutions
have been proved to converge under grid refinement. An alternative point of view is that
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Onsager’s theory connects best to LES through the notion of ‘coarse-grained solutions’
as in (3.5) or (3.8), which may be interpreted as ‘effective field theories’ with running
parameters depending upon the scale �. In that case, convergence is not a relevant issue, as
discussed already in § 3.1.3, and it is better to focus on getting answers independent of the
arbitrary resolution scale �. Methods from theoretical physics may be useful here, e.g. see
Goldenfeld, McKane & Hou (1998). LES is an area that intersects strongly with Onsager’s
theory and provides fertile ground for interaction between modellers, mathematicians and
physicists.

More broadly, the concept of ‘ideal turbulence’ has importance beyond fluid turbulence
proper, as it gives an example of an ‘effective field theory’ in physics (Schwenk &
Polonyi 2012; Liu & Glorioso 2018), but of a novel type which corresponds to an ideal
Hamiltonian system for which naïvely conserved quantities are vitiated by anomalies.
There is evidence to support such an ‘ideal turbulence’ description also for systems
beyond just high-Reynolds incompressible fluids, e.g. nearly collisionless plasma kinetics
is plausibly described by dissipative weak solutions of the ideal Vlasov equation (Eyink
2015, 2018a; Bardos et al. 2020). Thus, Onsager’s theory helps to deepen the connections
between fluid mechanics and other areas of physics.

5.3. Last words
I leave this essay hopefully having explained what Onsager’s ‘ideal turbulence’ theory is
all about, which mathematical results are now established and which conjectures are still
open, and how observations so far confirm the theory. As in any living area of science,
this review may soon be outdated, either by new theoretical breakthroughs or by novel
observations that call for revision of the theory. After working on the subject for more than
thirty years, I am still fascinated by the high-Reynolds-number limit of turbulence and I
am looking forward to seeing further progress in the next couple of decades, possibly by
readers of this essay!
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FALKOVICH, G., GAWȨDZKI, K. & VERGASSOLA, M. 2001 Particles and fields in fluid turbulence. Rev. Mod.

Phys. 73 (4), 913–975.
FARACO, D., LINDBERG, S. & SZÉKELYHIDI, L. 2022 Rigorous results on conserved and dissipated

quantities in ideal MHD turbulence. Geophys. Astrophys. Fluid Dyn. 116 (4), 237–260.
FEHN, N., KRONBICHLER, M., MUNCH, P. & WALL, W.A. 2022 Numerical evidence of anomalous energy

dissipation in incompressible Euler flows: towards grid-converged results for the inviscid Taylor–Green
problem. J. Fluid Mech. 932, A40.
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