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We show that the Stokes–Darcy system, which governs flows through adjacent porous
and pure-fluid domains in the two-domain approach without forced filtration, can be
recovered from the Helmholtz minimal dissipation principle. While the continuity of
normal velocity across the interface is imposed explicitly for mass conservation, only
the Beavers–Joseph–Saffman–Jones (BJSJ) interface boundary condition is imposed
implicitly, and the balance of the normal-force interface boundary condition appears
naturally in the variational process. This set of interface boundary conditions is
well-accepted in the mathematics community. We show that these interfacial boundary
conditions, at the physically important small-Darcy-number regime, are consistent with
continuity of pressure across the interface condition. The tangential velocity and pressure
are discontinuous in general but the discontinuity is of the order of the square root of the
Darcy number. Hence these interfacial conditions are all approximately consistent in the
physically important small-Darcy-number regime. The leading order dynamics in the pure
fluid zone is governed by the Stokes system with the no-slip no-penetration boundary
condition on the interface between the free zone and porous media at a small Darcy
number. The leading order non-trivial dynamics in porous media is governed by the Darcy
equation with the pressure on the interface prescribed by the pressure of the leading order
Stokes flow in the pure fluid zone. Such a semi-decoupled approach has long been used by
the groundwater community. Our result is the first rigorous work quantifying the error of
this intuitive approach and relating different interfacial conditions.
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1. Introduction

The coupling and interaction of free flow with flows in porous media are ubiquitous.
Well-known examples include flows in karst aquifers, hyporheic zones, air or oil filtration,
proton-exchange membrane (PEM) fuel cells, as well as blood filtration in the human body.
Hence it is important to study the coupled system.

When the flow speed is relatively low (small Reynolds number), the incompressible
Stokes system is an excellent model for flow in the free zone (conduit). Time
dependency could be included if the temporal evolution is important. Darcy’s equation
is a well-accepted model for flow in fluid-saturated porous media. Both systems are
well-understood, see for example the works of Bear (1988), Tritton (1988), Batchelor
(2000) and Temam (2001). The coupling of the two different systems at the interface is
of great importance. We will focus on the less controversial case of no-forced filtration.
However, there are still genuine disagreements among researchers on what are the ‘correct’
interface boundary conditions even in this case. Continuity of the normal velocity and the
pressure are regarded as well-accepted by the fluid dynamics community according to
Le Bars & Worster (2006). Nevertheless, the situation with other interfacial conditions is
less clear. The second paragraph of the paper by Le Bars & Worster (2006) listed a few
competing and sometimes contradicting interfacial conditions such as the Beavers–Joseph
(BJ) or its simplification known as the Beavers–Joseph–Saffman–Jones (BJSJ) interface
condition, the continuity or discontinuity of the tangential velocity and the continuity
or discontinuity of the tangential shear stress among others. See also the works of
Ochoa-Tapia & Whitaker (1995a), Ochoa-Tapia & Whitaker (1995b), Straughan (2008)
and Zampogna & Bottaro (2016). In addition, Eggenweiler & Rybak (2020) and Rybak
et al. (2020) have provided some evidence on the unsuitability of the BJ interface
boundary for filtration problems (It seems that the evidence provided is consistent with
the model error introduced by replacing the Stokes system on a perforated domain with
the Darcy equation, see for example the work of Shen (2020). The error observed between
the microscale model and the macroscale model might be explained in terms of the
model error in the porous media without referring to the interfacial conditions.). On
the other hand, there are three well-established interface boundary conditions within the
mathematics community (Discacciati, Miglio & Quarteroni 2002; Layton, Schieweck &
Yotov 2002) for the no-forced-filtration case: (i) the continuity of the normal velocity
representing the conservation of mass; (ii) the linear balance of forces normal to the
interface; and (iii) the BJSJ interface boundary condition. See the next section for more
info. These interfacial conditions lead to the mathematical notion of ‘well-posedness’
of the coupled Stokes–Darcy system in the sense that for given reasonable data, there
exists one and only one solution, and the solution depends on the data in a continuous
fashion (small change to data leads to small change to the solution). The BJSJ interface
boundary condition is a heuristic simplification of the original BJ interface boundary
condition, which postulates that the tangential component of the normal stress in the free
zone (conduit) at the interface is proportional to the jump in tangential velocity across
the interface (Beavers & Joseph 1967). Beavers and Joseph’s work is empirical, and the
well-posedness, i.e. the existence and uniqueness of solution to the coupled Stokes–Darcy
equations with the BJ condition has not been well-understood. (See the paper by Cao
et al. (2010) for a related result.) It seems that two of the interfacial conditions are widely
used by both the fluid dynamics and the mathematics communities: (i) the continuity of
normal velocity across the interface, and (ii) the BJSJ interface condition. However, the
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Small-Darcy-number behaviour

two communities differ on the other interfacial condition. While the fluid dynamics and
the groundwater studies communities adopt the continuity of pressure, the mathematics
community embraces the balance of the forces normal to the interface, which implies
the discontinuity of the pressure across the interface. Hence, there is a genuine need to
clarify the relationship between different interfacial boundary conditions, even in this
no-forced-filtration case.

Owing to the practical importance of the coupled problem, a lot of effort has been
devoted to the development of accurate and efficient numerical methods for the coupled
Stokes–Darcy system. See for example the papers by Discacciati et al. (2002), Layton
et al. (2002), Discacciati & Quarteroni (2003), Chen et al. (2011), Chen et al. (2013),
Chen et al. (2016) and Ervin et al. (2018), the survey paper by Discacciati & Quarteroni
(2009), the monograph by Wilbrandt (2019), and the references therein for works from
the mathematical side. A natural idea for efficiency is to design decoupled algorithms
so that only one of the subproblems needs to be solved at each time step or iteration. The
convergence and long-time stability of these decoupled schemes usually involve a stringent
time step constraint for physically relevant small permeability (or hydraulic conductivity).
On the other hand, some researchers in the groundwater studies community take a much
simpler direct decomposition approach in the numerical simulation: one first solves the
free flow problem (Stokes equation) with the no-slip boundary condition on the interface
between the free zone (conduit, pure fluid region) and the porous media, followed by
solving Darcy’s equation with the pressure on the interface prescribed by the pressure
of the solution of the Stokes problem on the interface, see for example the papers by
Cardenas & Wilson (2007), Cardenas & Gooseff (2008) and Janssen et al. (2012). The
groundwater research community’s heuristic semi-decoupled approach is certainly very
efficient because it involves the solution of two classical problems at once. A natural
question is whether such a direct decoupling is valid. If not, what is the error.

To answer the two questions mentioned above, i.e. the validity of the groundwater
research community’s heuristic decoupled approach and the relationship between various
interfacial boundary conditions, we first demonstrate that the interfacial conditions
adopted by the mathematics community can be recovered from the classical Helmholtz
minimal dissipation principle as long as appropriate dissipation functions are identified.
We then non-dimensionalize the system and look at the physically important parameter
regimes for possible simplification. The permeability of many common porous media
is small. For example, the permeability of well-sorted sand and gravel is approximately
10−8M2 or smaller (Bear 1988). Hence the Darcy number Da, which is defined as the
ratio of the permeability to the typical length squared, is small for most reasonably sized
domains. Therefore, it is of great physical relevance to study the small-Darcy-number
asymptotic behaviour of the coupled Stokes–Darcy system.

Starting from the system recovered from the Helmholtz minimal dissipation principle,
we discover that at the small-Darcy-number regime the leading order dynamics is
exactly the semi-decoupled dynamics proposed by the groundwater studies community.
We also discover the following relationships between different interfacial boundary
conditions at the small-Darcy-number regime: (i) the continuity of the pressure interface
condition adopted by the fluid dynamics and groundwater studies communities in the
no-forced-filtration case is the leading order behaviour of the balance of forces normal
to the interface condition adopted by the mathematics community, and recovered via the
minimal dissipation principle, see Remark 3.2; (ii) the continuity of tangential velocity
across the interface is the leading order behaviour of the coupled system while the
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tangential velocity is discontinuous across the interface in general, but the discontinuity
is of the order of the square root of the Darcy number, see Remark 3.3; (iii) Saffman’s
approximation is valid in the sense that the tangential velocity of the Darcy flow at the
interface is of the order of the Darcy number, while the tangential velocity of the free flow
is of the order of the square root of the Darcy number, see Remark 3.5.

The rest of the manuscript is organized as follows. In § 2, we present a derivation
of the Stokes–Darcy system together with the ‘natural’ interface boundary conditions
based on the Helmholtz minimal dissipation principle for the no-forced-filtration case. We
then introduce the non-dimensional governing equations together with the boundary and
interface conditions. In § 3, we construct approximate solutions via asymptotic expansion
in the small parameter Darcy number. In particular, we show that the Stokes equation
with the no-slip boundary condition on the interface is the leading order dynamics for
the pure fluid region, and Darcy’s equation with the pressure on the interface prescribed
by the pressure of the Stokes flow governs the leading order behaviour in porous media.
The consistency of various interfacial boundary conditions is discussed. A rigorous
mathematical proof of the formal asymptotic behaviour on a time scale that is relevant
to transport in porous media is included in Appendix A for interested readers.

2. The Stokes–Darcy equations

In this section, we show that the Stokes–Darcy system together with appropriate interface
boundary conditions can be recovered from the Helmholtz minimal dissipation principle
(Batchelor 2000) provided we identify appropriate energy dissipation rates. We then
present a non-dimensionalized version of the coupled system using the typical velocity
and length of the conduit (free zone) and introduce our key small parameter—the Darcy
number—together with the other physical non-dimensional parameters.

The Stokes system, the Darcy equation and the BJ interface boundary condition are used
to motivate the dissipation functions but not in any other manner. Recall that different
systems may enjoy the same energy dissipation rate. Indeed, Fields Medalist Terrence Tao
constructed a system closely related to the three-dimensional Navier–Stokes system with
the same energy dissipation rate. However, the solution to the modified system blows up
in finite time while the same question for the three-dimensional Navier–Stokes equation is
one of the seven open questions for a million-dollar Millennium Prize posed by the Clay
Mathematics Institute (Tao 2015). The rate of energy dissipation may not encapsulate all
important features of the system even in the linear case. For example, the Coriolis force
does not contribute to energy dissipation in general. Therefore, the recovery of the Stokes
system, the Darcy equation and the BJSJ interface condition from the Helmholtz minimal
dissipation principle is meaningful. In addition, the balance of the forces normal to the
interface is nowhere used in the setup of the dissipation function. Hence it is a truly derived
interface condition.

There are a variety of derivations of the Stokes–Darcy system, see for example the paper
by Mikelic & Jäger (2000). In fact, a two-phase version of the Stokes–Darcy system, the
Cahn–Hilliard–Stokes–Darcy system, was derived via Onsager’s extremum principle by
Han, Sun & Wang (2013) without much justification on the dissipation rate functions.
See also the papers by Qian, Wang & Sheng (2006) for a variational derivation of the
moving contact line dynamics, and by Wang (2021) for a more general framework dubbed
‘generalized Onsager’s extremum principle’. The formal derivation presented here can be
made rigorous via saddle point theory. Details will be reported elsewhere.
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Small-Darcy-number behaviour

Stokes

Darcy

Γc

Γm

n

Γ

τ

Figure 1. Domian Ω .

2.1. The Stokes–Darcy system via Helmholtz’s principle
We assume a rectangular domain Ω = [0, L] × [0, H] for simplicity. The domain Ω is split
into two disjoint subdomains Ωc and Ωm by a smooth curved interface Γ , with n denoting
the unit normal of Γ pointing from the conduit Ωc (the pure fluid region) to porous media
Ωm, and τ denoting the unit tangent vector to Γ . See figure 1 for an illustration. The
three-dimensional case can be formulated analogously.

2.1.1. The time-independent case
Helmholtz’s minimal dissipation principle states that for a steady flow in a viscous liquid,
with the speeds of flow on the boundaries of the fluid being given as steady and small,
the Stokes flow is the one that minimizes the kinetic energy dissipation rate among all
incompressible flow configurations (Batchelor 2000). In other words, the fluid is smart.

Preliminary considerations. Because we are assuming small speeds, both velocities are
taken to be incompressible. Hence the normal velocity across the interface Γ between the
conduit and the porous media must be continuous to ensure mass conservation, i.e.

uc · n = um · n, (2.1)

where uc is the velocity in the conduit while um is the Darcy velocity in the porous media.
The rate of energy dissipation functions. To invoke Helmholtz’s principle for the

recovery of the coupled free flow and porous media flow systems, we identify the
rate of kinetic energy dissipation. For the conduit part, the energy dissipation rate is∫
Ωc

2η0|D(uc)|2, where D(uc) = (∇uc + ∇uT
c )/2 is the rate of deformation tensor and

η0 is the (constant) viscosity of the fluid (Batchelor 2000). For the porous media part, the
energy dissipation rate is

∫
Ωm

(η0/κ)|um|2, which can be inferred from the time-dependent
Darcy equation (Le Bars & Worster 2006; Nield & Bejan 2017). Here the permeability κ , a
tensor in general, is taken to be homogeneous and isotropic, and hence can be represented
as a positive constant for the sake of simplicity in our presentation. Our arguments remain
valid in the general case as long as the heterogeneity in space is not too strong. Both the
Stokes equation and the Darcy equation are used to motivate the rate of the kinetic energy
dissipation function. However, their exact forms are not employed here. We reiterate that
the rate of energy dissipation may not carry all the information of the underlying model.

Because there is an interface between the conduit and the porous media, additional
dissipation on the boundary is possible. Indeed, despite the continuity of the normal
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velocities, the tangential velocities may contain a gap across the interface Γ . In their
seminal work (Beavers & Joseph 1967), Beavers and Joseph postulated that the viscous
fluid exerts a force tangential to the interface (along the interface) that is proportional to the
jump in tangential velocity uc · τ − um · τ to impede such a jump. A simple dimensional
consideration suggests that this force takes the form −(α0η0/

√
κ)(uc · τ − um · τ ), where

α0 is a dimensionless number usually determined by experiment. Saffman (1971) observed
that the tangential component of the Darcy velocity at the interface Γ is usually much
smaller than its free flow counterpart, i.e. |uc · τ | � |um · τ |, hence we may ignore um · τ
and approximate the force by −(α0η0/

√
κ)uc · τ . Therefore, the rate of work done on

the interface to dissipate energy is approximately
∫
Γ

(α0η0/
√

κ)|uc · τ |2, where we have
applied Saffman’s simplification a second time.

In summary, the total kinetic energy dissipation rate takes the form:

F(uc, um) =
∫

Ωc

2η0|D(uc)|2 +
∫

Ωm

η0

κ
|um|2 +

∫
Γ

α0η0√
κ

|uc · τ |2. (2.2)

Boundary conditions. A variety of physically relevant boundary conditions are available.
For simplicity, we impose a prescribed fluid velocity on Γc, the boundary of the
conduit that is not shared with the porous media. The normal component is set to zero
corresponding to no-forced filtration unless periodicity is assumed. And we impose a
prescribed zero normal velocity on Γm, the boundary of the porous media not shared with
the conduit unless suitable periodicity is stipulated.

The Lagrangian multipliers for the incompressibility constraints. To deal with the
incompressibility constraints, we introduce two Lagrange multipliers qc, qm for the
incompressibility, and we may formulate Helmholtz’s minimal dissipation principle for
flows in pure fluid adjacent to porous media by minimizing the following functional:

F(uc, qc, um, qm) =
∫

Ωc

2η0|D(uc)|2 −
∫

Ωc

2qc∇ · uc +
∫

Γ

α0η0√
κ

|uc · τ |2

+
∫

Ωm

η0

κ
|um|2 −

∫
Ωm

2qm∇ · um, (2.3)

with the boundary conditions specified above plus the mass conservation constraint um ·
n = uc · n on Γ . This formulation has the advantage that we do not need to deal with the
incompressibility constraint explicitly, but through the Lagrange multipliers implicitly.

The derivation. Suppose that (uc, qc, um, qm) is a minimizer of the energy dissipation
rate functional F with the constraint um · n = uc · n on Γ . Let ϕ be a smooth function in
Ωc. Using the fact (uc, qc, um, qm) is a minimizer with the constraint um · n = uc · n on
Γ , we deduce that the function

Φp(s) = F(uc, qc + sϕ, um, qm) (2.4)

must attain its minimum at s = 0. Hence, Φ ′
p(0) = 0, and we obtain:

−
∫

Ωc

2ϕ∇ · uc = 0. (2.5)

The above equation holds for any smooth function ϕ on Ωc. Hence we conclude that ∇ ·
uc = 0 in Ωc. Similarly, ∇ · um = 0 in Ωm. Therefore, we recover the incompressibility.

Next, we consider perturbation in the velocity field. Let vc be a smooth vector field on
Ωc that vanishes on Γc, and vm be a smooth vector field on Ωm satisfying vm · n = 0 on
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Small-Darcy-number behaviour

Γm and vc · n = vm · n on the interface Γ . Then the function

Φv(s) = F(uc + svc, qc, um + svm, qm) (2.6)

attains its minimum at s = 0 because uc + svc and um + svm satisfy the specified
boundary condition and the continuity of normal velocity constraint, and (uc, qc, um, qm)

is a minimizer. Hence, Φ ′
v(0) = 0, which leads to∫

Ωc

(4η0D(uc) : D(vc) − 2qc∇ · vc) +
∫

Γ

α0η0√
κ

2(uc · τ )(vc · τ )

+
∫

Ωm

(η0

κ
2um · vm − 2qm∇ · vm

)
= 0. (2.7)

Because D(uc) is a symmetric matrix, it follows that D(uc) : D(vc) = D(uc) : ∇vc.
After performing integration by parts on the first and last terms on the left-hand side,
we deduce

0 =
∫

Ωc

2(−2η0∇ · D(uc) + ∇qc) · vc

+
∫

Γ

(
4η0vc · D(uc)n + α0η0√

κ
2(uc · τ )(vc · τ )

)
+

∫
Γ

2(qmvm · n − qcvc · n)

+
∫

Ωm

2(
η0

κ
um + ∇qm) · vm

=
∫

Ωc

2(−2η0∇ · D(uc) + ∇qc) · vc +
∫

Γ

2(2η0n · D(uc)n − qc + qm)vc · n

+
∫

Γ

2(2η0τ · D(uc)n + α0η0√
κ

uc · τ )(vc · τ ) +
∫

Ωm

2
(η0

κ
um + ∇qm

)
· vm, (2.8)

where we have used the continuity of the normal velocity constraint vc · n = vm · n on the
interface Γ in deducing the second term in the last equation.

Setting vm = 0 and choosing vc with vc = 0 on Γ , we deduce∫
Ωc

(−2η0∇ · D(uc) + ∇qc) · vc = 0, (2.9)

which yields the Stokes equations

− 2η0∇ · D(uc) + ∇qc = 0 in Ωc, (2.10)

with the Lagrangian multiplier qc for the incompressibility in the conduit serving the role
of the pressure in the conduit.

Next, we set vc = 0, and we deduce the Darcy equation

η0

κ
um + ∇qm = 0, (2.11)

with the Lagrangian multiplier qm for the incompressibility of the fluid in porous media
serving the role of the pressure in porous media.
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Hence we are left with

0 =
∫

Γ

2(2η0n · D(uc)n − qc + qm)vc · n

+
∫

Γ

2
(

2η0τ · D(uc)n + α0η0√
κ

uc · τ

)
(vc · τ ). (2.12)

Choosing vc so that vc · n = 0 on Γ , we deduce∫
Γ

(
2η0τ · D(uc)n + α0η0√

κ
(uc · τ )

)
vc · τ = 0. (2.13)

Because vc · τ is arbitrary, from the equation above, we recover the BJSJ interface
boundary condition:

τ · T(uc, qc)n + α0η0√
κ

uc · τ = 0. (2.14)

On the other hand, choosing vc so that vc · τ = 0 on Γ , we deduce∫
Γ

(2η0n · D(uc)n − qc + qm)vc · n = 0. (2.15)

This implies the balance of forces normal to the interface because vc · n can be an arbitrary
function,

n · T(uc, qc)n = −qm. (2.16)

Summary. To summarize, we have derived the following Euler–Lagrange equations
satisfied by the minimizer,

−2η0∇ · D(uc) + ∇qc = 0, ∇ · uc = 0, in Ωc, (2.17)
η0

κ
um + ∇qm = 0, ∇ · um = 0, in Ωm, (2.18)

−τ · T(uc, qc)n = α0η0√
κ

τ · uc, on Γ, (2.19)

−n · T(uc, qc)n = qm, on Γ, (2.20)

uc · n = um · n, on Γ. (2.21)

Notice that as the last interfacial boundary condition, the continuity of normal velocity
is imposed to ensure mass conservation. We observe that this Euler–Lagrange equation
is exactly the classical Stokes–Darcy system with the BJSJ interface boundary condition
(2.19) and the balance of the forces normal to the interface boundary condition (2.20), as
proposed by Quarteroni and collaborators (Discacciati & Quarteroni 2009). The Lagrange
multipliers for the incompressibility happen to be the pressures (hence the mathematical
saying that ‘the pressure is the Lagrangian multiplier for the incompressibility’).
Therefore, we will replace qc, qm by pc, pm, respectively. Both the BJSJ interface boundary
condition and the balance of the force normal to the interface Γ appear in the process of
this variational manipulation.

Remark 2.1. The presentation above indicates that the BJSJ interface boundary condition
is fully consistent with the Helmholtz minimal dissipation principle. This is in accordance
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with the known fact that BJSJ leads to a well-posed Stokes–Darcy system with
unique solution and continuous dependence on data. In contrast, there is no known
direct consistency argument between the original BJ interface boundary condition and
Helmholtz’s minimal dissipation principle. There is no known well-posedness result for
the steady Stokes–Darcy system with the original BJ interface boundary condition in
general either. All these suggests the BJSJ interfacial boundary condition is more natural
from the energetic consideration, and more convenient from the mathematics perspective.

2.1.2. Variational derivation of the case with a source
If there is a source term or external forcing f c such as the gravitational force or a pressure
gradient in the conduit, we could include an additional term related to the work done by
the external forcing and arrive at the following generalized Helmholtz principle:

Ff (uc, pc, um, pm) =
∫

Ωc

2η0|D(uc)|2 −
∫

Ωc

2pc∇ · uc +
∫

Γ

α0η0√
κ

|uc · τ |2

+
∫

Ωm

η0

κ
|um|2 −

∫
Ωm

2pm∇ · um − 2
∫

Ωc

f c · uc, (2.22)

subject to the mass conservation constraint um · n = uc · n on Γ .
The same argument as in the previous subsection leads to the corresponding

Euler–Lagrange equations for this case:

−2η0∇ · D(uc) + ∇pc = f c, ∇ · uc = 0, in Ωc, (2.23)
η0

κ
um + ∇pm = 0, ∇ · um = 0, in Ωm, (2.24)

together with the same interface coupling conditions (2.19)–(2.21). This is exactly the
well-known time-independent (steady-state) Stokes–Darcy system with a source term
in the conduit together with the BJSJ interface boundary condition and the balance of
normal-force interface boundary condition (Discacciati et al. 2002; Layton et al. 2002;
Discacciati & Quarteroni 2009; Wilbrandt 2019).

2.1.3. The time-dependent case
The time-dependent Stokes–Darcy system with BJSJ interface can be recovered
analogously by using the gradient flow idea. The Darcy velocity um (or the pressure in
porous media pm) can be viewed as a function of the velocity uc and the pressure pc in
the conduit. Indeed, we could use (2.20) to solve Darcy’s equation together with other
appropriate boundary conditions once uc and pc are given. In other words, the Darcy
velocity is slaved by the Stokes velocity. Hence, we may formulate the objective functional
as a functional of the variables in the conduit only and apply the gradient flow framework
to come up with the following time-dependent Stokes–Darcy system:

ρ0
∂uc

∂t
− ∇ · T(uc, pc) = f c, ∇ · uc = 0, in Ωc, (2.25)

η0

κ
um + ∇pm = 0, ∇ · um = 0, in Ωm, (2.26)

together with the same interface coupling conditions (2.19)–(2.21).
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W. Lyu and X. Wang

This is exactly the well-known time-dependent (unsteady-state) Stokes–Darcy system
with a source term in the conduit together with the BJSJ interface boundary condition
(Discacciati et al. 2002; Discacciati & Quarteroni 2009; Wilbrandt 2019).

Notice that the solution to this system is not unique. Indeed, if (uc, pc, um, pm) is
a solution, (uc, pc + C, um, pm + C) is also a solution for any constant C. To ensure
uniqueness of solution, we impose ∫

Ωm

pm = 0. (2.27)

This is equivalent to choosing a proper reference frame for the pressure.

2.2. Non-dimensional form
We now derive the non-dimensionalized form of the Stokes–Darcy system using the
typical units associated with the free flow.

We use the typical length L, velocity U0 and pressure difference δP of the free flow in the
conduit (pure fluid region) and we introduce the following scalings to non-dimensionalize
the Stokes–Darcy system (2.25) and (2.26):

uc = ũcU0, pc = p̃cδP, x = x̃L, t = t̃
L

U0
,

f c = f̃ F0, um = ũmU0, pm = p̃mδP.

⎫⎪⎬
⎪⎭ (2.28a–g)

This leads to

∂t̃ũc − 2
Re

∇̃ · D̃(̃uc) + Eu∇̃p̃c = Gr
Re2 f̃ , in Ωc,

∇̃ · ũc = 0, in Ωc,

⎫⎬
⎭ (2.29)

and
1

Da · Re
ũm = −Eu∇̃p̃m, in Ωm,

∇̃ · ũm = 0, in Ωm,

⎫⎬
⎭ (2.30)

where we have introduced the following four dimensionless parameters:

Da = κ

L2 , Re = ρ0U0L
η0

, Gr = ρ0F0L3

η2
0

, Eu = δP

ρ0U2
0
, (2.31a–d)

which are the Darcy number, the Reynolds number, the generalized Grashof number and
the Euler number, respectively. See the book by Foias et al. (2001) for more on the
generalized Grashof number.

On the interface Γ , we have

ũc · n = ũm · n,

τ · 2D̃(̃uc)n = − α0√
Da

ũc · τ ,

n · 2
Re

D̃(̃uc)n − Eu p̃c = −Eu p̃m.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.32)

For applications such as flows in karst aquifer and hyporheic flows, the Reynolds
number, Euler number and generalized Grashoff number are usually modest while the
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Small-Darcy-number behaviour

Darcy number is very small, of the order of 10−6 or smaller (Bear 1988; Nield & Bejan
2017). For instance, for the laboratory set-up described in § 2.1 of the paper by Janssen
et al. (2012), the permeability κ = 1.5 × 10−11 m2, while the depth of the porous media
is 9 cm, the width of the sand bed is 28 cm and the length of the sand bed is 1.5
m. Hence the Darcy number, which is defined as the ratio of the permeability to the
typical length squared, is approximately 6.67 × 10−12. On the other hand, in the so-called
‘low-discharge’ case studied in their work, the mean horizontal free flow velocity is
0.07 m s−1 and the Reynolds number is estimated at 1300, which is of the order of
103. We also infer from figure 7 of the paper by Janssen et al. (2012) that the mean
horizontal velocity in the porous media is approximately 2 cm hr−1 ≡ 5.56 × 10−6 m
s−1. Darcy’s law implies that the horizontal pressure gradient in the porous media is
approximately 3.71 × 102 kg m−2 s−2. Hence the horizontal pressure drop in the porous
media is approximately 5.56 × 102 kg m−1 s−2. The horizontal pressure drop in the
free flow is roughly the same by the approximate continuity of the pressure across the
interface. Consequently, the Euler number is roughly 113.47. Therefore, the product of
the Reynolds number and the Darcy number is of the order of 10−9 while the Euler
number is of the order of 102. Hence, it is reasonable to assume the smallness of Re Da
while holding the other parameters constant. The generalized Grashoff number can be
taken to be zero because the only body force in this case is the gravitational force
which bears no direct impact on the horizontal fluid motion, even in this turbulent case.
For a laminar flow example, we follow the laboratory set-up presented in § 3 of the
paper by Faulkner et al. (2009). The conductivity of the porous media is estimated as
6.19 × 10−2 cm s−1. This implies that the permeability is approximately 6.34 × 10−11.
Using the length of the channel as the typical length, which is 47.8 cm, we deduce that the
Darcy number is roughly 2.77 × 10−10. The measured outflow rate in the conduit/channel
is approximately 2.70 ml s−1 = 2.7 × 10−6 m3 s−1. Hence the horizontal velocity in the
conduit is estimated to be 6.75 × 10−3 m s−1. As a result, the corresponding Reynolds
number is approximately1.34 × 102. Figure 6(a) in their work indicates that the head loss
over a distance of 15 cm is approximately 0.08 cm. Therefore, the corresponding Euler
number is approximately 1.72 × 102. The generalized Grashoff number can be set to zero
again because the only body force is the gravitational force which has no direct impact
on horizontal flows. The product of the Reynolds and Darcy number is approximately
3.71 × 10−8 which is approximately five orders of magnitude smaller than the reciprocal
of the Euler number. Therefore, it is reasonable for us to consider the small-Darcy-number
regime while holding the other parameters fixed.

Denoting˜̃p = Eu p̃, ˜̃f = (Gr/Re2)̃f , letting α = α0
√

Re, ε2 = Da Re, and dropping the
tildes, one obtains the following non-dimensional Stokes–Darcy system:

∂tuc − ∇ · T(uc, pc) = f , ∇ · uc = 0, in Ωc, (2.33)

um = −ε2∇pm, ∇ · um = 0, in Ωm, (2.34)

uc · n = um · n, on Γ, (2.35)

τ · T(uc, pc)n = −α

ε
uc · τ , on Γ, (2.36)

n · T(uc, pc)n = −pm, on Γ, (2.37)
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together with the initial condition:

uc|t=0 = u0, in Ωc. (2.38)

Here uc is the non-dimensional velocity in the conduit, pc is the product of the Euler
number and the non-dimensional pressure of free flow, T(uc, pc) = (2/Re)D(uc) − pcI,
D(uc) = (∇uc + ∇uT

c )/2, f and u0 are the given non-dimensional external force and
initial data, ε2 = Da Re is a small parameter, um is the non-dimensional Darcy velocity
and pm is the product of the Euler number and the non-dimensional pressure of the fluid
in the porous media.

The Darcy equation (2.34) can be reformulated in terms of the pressure (or the hydraulic
head) as a Laplace equation after taking the divergence of (2.34)1,

Δpm = 0 in Ωm,

∫
Ωm

pm = 0. (2.39a,b)

We point out that different non-dimensionalizations are available, see for example the
papers by Chen & Chen (1988) and Straughan (2001) among others.

3. Asymptotic expansion and approximate solutions

With the small parameter ε2 = Da Re in hand, we employ expansion in ε to obtain
approximations with various orders of accuracy. The leading order is of particular
importance because it coincides with the groundwater research community’s heuristic
semi-decoupled approach. The mathematical proof of the validity of the approximations
will be furnished in Appendix A. A formal asymptotic expansion for the related Navier–
Stokes–Darcy–Boussinesq system was carried out by one of the authors with collaborators
using a different non-dimensionalization methodology (McCurdy, Moore & Wang 2019).

We formally assume the following expansion:

uj = u(0)
j + εu(1)

j + ε2u(2)
j + · · · , (3.1)

pj = p(0)
j + εp(1)

j + ε2p(2)
j + · · · , (3.2)

with the index j = c or m.
Substituting this expression into the Stokes equations (2.33), the pressure formulation

of the Darcy equation (2.39a,b) and the interface boundary conditions (2.35)–(2.37), we
deduce the following.

(i) Leading order O(1): Matching the O(ε0) terms yields

∂tu(0)
c − ∇ · T(u(0)

c , p(0)
c ) = f , in Ωc,

∇ · u(0)
c = 0, in Ωc,

u(0)
c = 0, on Γ,

u(0)
c |t=0 = u0, in Ωc.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3)
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Small-Darcy-number behaviour

and
Δp(0)

m = 0, in Ωm,

p(0)
m = −n · T(u(0)

c , p(0)
c )n = p(0)

c , on Γ,∫
Ωm

p(0)
m = 0,

u(0)
m = 0, in Ωm,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

where we have used the fact that u(0)
c = 0 on Γ , i.e. (3.3)3, to deduce the last equality

in (3.4)2. Indeed, thanks to the Galilean invariance of the system, a generic point on
the interface can be taken as the origin and the tangent plane (line) is horizontal at
this point without loss of generality. It is easy to check that n · D(u(0)

c )n is equal to
the partial derivative of the vertical velocity w with respective to the vertical variable
z. By incompressibility, it is equal to the negative of the sum of the partial derivative
of u with respect to x and the partial derivative of v with respect to y, where u and v

are the first two (horizontal) components of the velocity while x, y are the horizontal
coordinates. The fact that u and v are zero on the interface and that the x-axis and
y-axis are tangential to the interface at the origin implies that the x and y partial
derivatives of u and v must be zero at the origin. Hence n · D(u(0)

c )n = 0, which
completes the proof of the continuity of pressure as the leading order behaviour at
small Darcy numbers.

Remark 3.1. An important observation is that the leading order dynamics is exactly
the semi-decoupled approach advocated by some researchers from the groundwater
studies community (Cardenas & Wilson 2007; Cardenas & Gooseff 2008; Janssen
et al. 2012). The solution procedure is: (step 1) solve the free flow (Stokes) problem
as if the porous media is not there at all, and hence no-slip on the interface Γ ; (step 2)
solve the Darcy equation with the pressure on the interface given by the pressure of
the free flow (Stokes) flow in the conduit. The free flow pressure p(0)

c is completely
determined when we enforce the average zero constraint (3.4)3 for the pressure in
porous media.

Remark 3.2. Another interesting observation is that the continuity of the pressure
(3.4)2 as well as the continuity of tangential velocities (3.3)3, (3.4)4 are the leading
order behaviours at small Darcy numbers of the coupled system recovered via the
Helmholtz minimal dissipation principle.

(ii) First-order equations O(ε): Matching the O(ε) terms yields, for Stokes system,

∂tu(1)
c − ∇ · T(u(1)

c , p(1)
c ) = 0, in Ωc,

∇ · u(1)
c = 0, in Ωc,

u(1)
c · n = 0, on Γ,

u(1)
c · τ = − 1

α
τ · T(u(0)

c , p(0)
c )n, on Γ,

u(1)
c |t=0 = 0, in Ωc.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)
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For the Darcy equation,

Δp(1)
m = 0, in Ωm,

p(1)
m = −n · T(u(1)

c , p(1)
c )n, on Γ,∫

Ωm

p(1)
m = 0,

u(1)
m = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

Remark 3.3. Notice that the tangential component of the stress associated with
the leading order Darcy flow is non-trivial in general, i.e. τ · T(u(0)

c , p(0)
c )n = τ ·

D(u(0)
c )n /= 0. This implies, according to (3.5)4, u(1)

c · τ /= 0. This further implies,
together with (3.3)3, that uc · τ = O(

√
Da) on Γ . We also notice that u(1)

m = 0
according to (3.6)4. Hence the tangential velocities are discontinuous in general but
the discontinuity is of the order of ε = √

Da although they are continuous at the
leading order. Similarly, we usually have n · D(u(1)

c )n /= 0. Consequently, p(1)
m /= p(1)

c
in general. Hence, the pressure is usually discontinuous but the discontinuity is of
the order of ε ≈ √

Da. Therefore, the seemingly contradicting interfacial conditions,
such as the continuity and discontinuity of tangential velocity as outlined in the
second paragraph of the paper by Le Bars & Worster (2006), the continuity of the
pressure adopted by the groundwater studies community and the balance of normal
forces to the interface, can be reconciled at the small-Darcy-number regime as an
approximation of the ‘intrinsic’ interfacial boundary conditions recovered from the
Helmholtz minimal dissipation principle.

Same as above, we solve for (u(1)
c , p(1)

c ) from (3.5) first, then solve for p(1)
m from (3.6)

with the help of the (u(1)
c , p(1)

c ) value on boundary Γ . The value of the pressure p(1)
c

should be adjusted so that the mean zero constraint on the pressure in porous media
is satisfied.

(iii) Matching the O(ε2) terms, we deduce from the Stokes equations,

∂tu(2)
c − ∇ · T(u(2)

c , p(2)
c ) = 0, in Ωc,

∇ · u(2)
c = 0, in Ωc,

u(2)
c · n = −∇p(0)

m · n, on Γ,

u(2)
c · τ = − 1

α
τ · T(u(1)

c , p(1)
c )n, on Γ,

u(2)
c |t=0 = 0, in Ωc.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

and from the Darcy equation,

Δp(2)
m = 0, in Ωm,

p(2)
m = −n · T(u(2)

c , p(2)
c )n, on Γ,∫

Ωm

p(2)
m = 0,

u(2)
m = −∇p(0)

m , in Ωm.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)
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Small-Darcy-number behaviour

Recall that p(0)
m is obtained from the leading order expansion (3.3). One can solve

(3.7) first, and then (3.8) by adjusting the averaged value of the pressure p(2)
c so that

the mean zero constraint on the pressure in porous media is fulfilled.

Remark 3.4. We observe that this formal expansion implies that the Darcy velocity
is of the order of ε2 = Da Re because u(0)

m ≡ u(1)
m ≡ 0 while p(0)

m is non-trivial
in general. Hence the transportation in porous media occurs over a time scale
proportional to 1/Da Re = 1/ε2, which is very long for small Darcy numbers and
moderate Reynolds numbers as in the examples presented in § 2.1.1. Therefore,
approximations, numerical schemes included, must be valid over this long-time scale
to capture the transport behaviour.

Remark 3.5. Another observation is that the asymptotic expansion is consistent with
Saffman’s heuristic simplification assumption (Saffman 1971). Indeed, because the
Darcy velocity is of the order of ε2 = Da Re according to the previous remark,
and because the tangential velocity of the free flow at the interface is of the
order of ε according to Remark 3.3, we see that |um · τ | � |uc · τ | on Γ at the
small-Darcy-number regime.

(iv) In general, for any k ≥ 2 matching the O(εk) terms yields, from the Stokes equations,

∂tu(k)
c − ∇ · T(u(k)

c , p(k)
c ) = 0, in Ωc,

∇ · u(k)
c = 0, in Ωc,

u(k)
c · n = −∇p(k−2)

m · n, on Γ,

u(k)
c · τ = − 1

α
τ · T(u(k−1)

c , p(k−1)
c )n, on Γ,

u(k)
c |t=0 = 0, in Ωc,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

and from the Darcy equation,

Δp(k)
m = 0, in Ωm,

p(k)
m = −n · T(u(k)

c , p(k)
c )n, on Γ,∫

Ωm

p(k)
m = 0,

u(k)
m = −∇p(k−2)

m .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

We can now define approximate solutions of arbitrary order k:

uapp,k
j = u(0)

j + εu(1)
j + ε2u(2)

j + · · · + εku(k)
j ,

papp,k
j = p(0)

j + εp(1)
j + ε2p(2)

j + · · · + εkp(k)
j ,

⎫⎬
⎭ (3.11)

with j = c or m.

Remark 3.6. Heuristically, the error in approximating u by uapp,k is of the order of
εk+1. The semi-decoupled approach proposed by the groundwater research community
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corresponds to k = 0. Hence the error is of the order of ε = √
Da

√
Re formally. Higher

order approximation with smaller error can be achieved by including more terms in the
expansion at the expense of solving a few more Stokes equations and Darcy equations.
Alternatively, iterations can be used to reduce the error as well (Li et al. 2020).

Remark 3.7. The terms in the expansion could be made as smooth as we need as long as
the initial data, the external forcing term and the interface are smooth enough and certain
compatibility conditions are satisfied (Temam 1982). The terms would remain bounded in
time provided that the external forcing term remains bounded in time in an appropriate
fashion. The smoothness of the data, their compatibility and boundedness in time have
been assumed throughout this manuscript.

4. Conclusion

We have recovered the Stokes–Darcy system via Helmholtz’s minimal dissipation
principle with appropriate dissipation functions for the no-forced-filtration case. The
Stokes equation, the Darcy equation and the Beavers–Joseph interface boundary condition
are used in motivating the dissipation functions, but not elsewhere in the derivation
process. It turns out that the balance of the forces normal to the interface boundary
condition emerge as ‘intrinsic’ in the sense that they appear naturally out of the minimal
dissipation set-up. We also recover the celebrated Beavers–Joseph–Saffman(–Jones)
interface boundary condition. The system is non-dimensionalized using the typical
scales associated with the conduit (free flow zone, pure fluid zone). We performed an
asymptotic expansion of the non-dimensional system with respect to the physically small
parameter Darcy number. The leading order expansion recovers the solution offered by the
groundwater studies community, i.e. solving the Stokes problem with no-slip boundary
condition on the interface, and then the Darcy equation with the pressure on the interface
prescribed by the pressure of the flow in the conduit (free flow). We also discover
that the continuity of pressure and the continuity of the tangential velocities interfacial
conditions are all consistent with the leading order behaviour of the Stokes–Darcy system
at small Darcy numbers. The leading order Darcy velocity is of the order of the Darcy
number. Hence transport in porous media occurs on a time scale of the order of the
reciprocal of the Darcy number. Saffman’s assumption is also recovered in the formal
asymptotic expansion. A rigorous mathematical proof of the formal expansion valid over
the physically important transportation time scale is furnished in Appendix A.

There are several directions that may merit future attention. The first is the
nonlinear case with the Stokes equation replaced by the Navier–Stokes equation. A
formal asymptotic expansion for the related Navier–Stokes–Darcy–Boussinesq system
was carried out by one of the authors with collaborators albeit using a different
non-dimensionalization methodology in the paper by McCurdy et al. (2019). See also
the papers of Chen & Chen (1988) and Straughan (2001). However, no rigorous
result is available so far. The second is the case with the original interface
boundary condition proposed byBeavers & Joseph (1967) instead of the simplified
Beavers–Joseph–Saffman–Jones interface boundary condition. The difficulty is partly
associated with the well-posedness issue of the coupled system with the Beavers–Joseph
interface boundary condition. A careful analysis should be able to establish the BJSJ as a
good approximation of the BJ interface boundary condition. This would provide additional
rigorous mathematical foundation for Saffman’s argument (Saffman 1971). In the case
of forced filtration, the BJ interface boundary condition may not be appropriate and
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Small-Darcy-number behaviour

hence the investigation of a suitable interface boundary condition is even more interesting
(Eggenweiler & Rybak 2020; Rybak et al. 2020). The third is the development of accurate
and efficient numerical methods that are valid over a long time (with an error estimate
that is uniform for the time interval proportional to the reciprocal of the Darcy number for
instance). The natural decoupling furnished by the asymptotic expansion should aid with
the development of decoupled schemes that use the solver for the subproblems only and
avoid the stringent time step restriction associated with those long-time accurate numerical
schemes developed earlier, see for example the paper by Chen et al. (2016).
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Appendix A. Error of the approximations

The purpose of this appendix is to provide a mathematical proof for the validity of the
approximate solutions (3.11). In other words, we quantify the error in using the first k
terms of the formal asymptotic expansion. We are particularly interested in obtaining
error bounds that are valid on a time interval comparable to the time scale needed for
contaminant transport in the porous media, i.e. over a time period that is proportional to
the reciprocal of the Darcy number. Pointwise estimates on the pressure in porous media
are important because the pressure or hydraulic head is much easier to measure than the
Darcy velocity.

For the sake of completeness and simplicity in the rigorous quantification of the
approximation errors, we prescribe periodicity in the horizontal direction(s). On the top
boundary Γc (the top of Ωc) and the bottom boundary Γm (bottom of Ωm), we impose
no-slip and no-penetration conditions respectively, i.e.

uc = 0, on Γc, um · n = ∂x2pm = 0, on Γm. (A1a,b)

The results here remain valid with suitable alternative boundary conditions.
More specifically, we are able to derive the following rigorous results:

THEOREM A.1. Assume that the initial velocity in the free flow zone (conduit) is
divergence free and sufficiently smooth, and satisfies certain compatibility conditions
with the smooth bounded external source term. Denote uc, um, pc, pm as the velocity
and pressure in the conduit Ωc and porous media Ωm, respectively, for the
non-dimensionalized system. Then there exist approximate velocity and pressure fields
uapp,2

c , uapp,2
m , papp,2

c , papp,1
m , defined in (3.11), constructed explicitly via solving three

Stokes problems in the conduit and two Darcy problems in porous media, so that the
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following relationship holds.

sup
0≤t≤T

∫
Ωc

|uc − uapp,2
c |2(x, t) dx ≤ C Da3,

∫ T

0

∫
Ωc

|∇uc − ∇uapp,2
c |2(x, t) dx dt ≤ C Da3T,

∫ T

0

∫
Ωc

|um − uapp,2
m |2(x, t) dx dt ≤ C Da3T,

∫ T

0
sup

x∈Ωm

|pm − papp,1
m |4(x, t) dt ≤ C Da4T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

where C is a generic constant independent of Da or the final time T. In particular, we have

sup
0≤t≤T

∫
Ωc

|uc − u(0)
c |2(x, t) dx ≤ C Da,

∫ T

0

∫
Ωm

|um − Da Reu(2)
m |2(x, t) dx dt ≤ C Da3T,

∫ T

0
sup

x∈Ωm

|pm − p(0)
m |4(x, t) dt ≤ C Da2T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)

where (u(0)
c , p(0)

c ), defined in (3.3), is the solution to the Stokes equation with the originally
prescribed initial velocity and source term and with the no-slip condition on the interface
between the conduit and porous media; and (u(2)

m , p(0)
m ), defined in (3.4) and (3.8), are the

leading order non-trivial velocity and pressure of the Darcy flow in porous media with the
pressure on the interface given by the pressure p(0)

c of the Stokes flow.

Remark. The supremum (sup) appearing in (A2) and (A3) should be replaced by
essential supremum (ess sup), but we still use sup for convenience.

Remark. The right-hand side of all the estimates above remain small for the
transportation time scale of T ≈ 1/Da. This implies that the groundwater studies
community’s heuristic semi-decoupled approach is valid for transport in porous media
with the error quantified as above.

We first proceed with a preliminary error estimate of the 0th order. This error estimate
will be improved later.

A.1. O(1) approximation
Multiplying (2.34)1 by um, integrating over Ωm and using the divergence free property, we
have ∫

Ωm

|um|2 = −ε2
∫

Ωm

∇pm · um = ε2
∫

Γ

pmum · n ds = ε2
∫

Γ

pmuc · n ds, (A4)

where we have performed integration by parts, using um = 0 on Γm and (2.35) in the last
equality.
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Small-Darcy-number behaviour

Let (v
(0)
c , π

(0)
c ) := (uc − u(0)

c , pc − p(0)
c ). The Stokes equations and the equations

satisfied by the approximations lead to

∂tv
(0)
c − ∇ · T(v(0)

c , π(0)
c ) = 0, ∇ · v(0)

c = 0, in Ωc,

v(0)
c = uc, on Γ,

v(0)
c |t=0 = 0, in Ωc.

⎫⎪⎪⎬
⎪⎪⎭ (A5)

Multiplying (A5)1 by v
(0)
c and integrating over Ωc, we deduce

d
dt

∫
Ωc

1
2
|v(0)

c |2 =
∫

Ωc

∇ · T(v(0)
c , π(0)

c ) · v(0)
c

= − 2
Re

∫
Ωc

|D(v(0)
c )|2 +

∫
Γ

v(0)
c · T(v(0)

c , π(0)
c )n ds

= − 2
Re

∫
Ωc

|D(v(0)
c )|2 +

∫
Γ

uc · T(uc − u(0)
c , pc − p(0)

c )n ds, (A6)

where we have used uc = u(0)
c = 0 on Γc and v

(0)
c = uc on Γ because u(0)

c = 0 on Γ .
Thanks to the interfacial conditions (2.36), (2.37) and (A4), and v = (v · τ )τ + (v · n)n

on the boundary Γ , we obtain∫
Γ

uc · T(uc, pc)n ds = −α

ε

∫
Γ

|uc · τ |2 −
∫

Γ

pmuc · n ds

= −α

ε

∫
Γ

|uc · τ |2 − 1
ε2

∫
Ωm

|um|2. (A7)

Similarly, using the interfacial boundary conditions for the approximate solutions, we
deduce

−
∫

Γ

uc · T(u(0)
c , p(0)

c )n ds = α

∫
Γ

(u(1)
c · τ )(uc · τ ) +

∫
Γ

p(0)
m uc · n ds. (A8)

By the Cauchy–Schwarz inequality (Foias et al. 2001),∫
Γ

α(u(1)
c · τ )(uc · τ ) ≤ α

2ε

∫
Γ

|uc · τ |2 + εα

2

∫
Γ

|u(1)
c · τ |2 ≤ α

2ε

∫
Γ

|uc · τ |2 + Cε,

(A9)
and ∫

Γ

p(0)
m uc · n ds =

∫
Γ

p(0)
m um · n ds, = −

∫
Ωm

um · ∇p(0)
m

≤ 1
2ε2

∫
Ωm

|um|2 + ε2

2

∫
Ωm

|∇p(0)
m |2

≤ 1
2ε2

∫
Ωm

|um|2 + Cε2, (A10)

where C is a generic constant independent of ε or t.
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Combining the above estimates, we have

d
dt

∫
Ωc

1
2
|v(0)

c |2 + 2
Re

∫
Ωc

|D(v(0)
c )|2 + α

2ε

∫
Γ

|uc · τ |2 +
∫

Ωm

|um|2
2ε2 ≤ Cε. (A11)

Ignoring the last two terms on the left-hand side and using Korn’s inequality (Quarteroni
& Valli 1999), we have

d
dt

∫
Ωc

1
2
|v(0)

c |2 + C
∫

Ωc

|v(0)
c |2 ≤ Cε. (A12)

Gronwall’s inequality (Foias et al. 2001) leads to

sup
0≤t≤T

∫
Ωc

|v(0)
c (x, t)|2 dx ≤ Cε. (A13)

Then integrating (A11) from 0 to t for any 0 ≤ t ≤ T yields

1
2

∫
Ωc

|v(0)
c (x, t)|2 dx + 2

Re

∫ t

0

∫
Ωc

|D(v(0)
c )(x, τ )|2 dx dτ

+ α

2ε

∫ t

0

∫
Γ

|uc · τ |2 ds dτ + 1
2ε2

∫ t

0

∫
Ωm

|um(x, τ )|2 dx dτ ≤ Cεt, (A14)

which gives

sup
0≤t≤T

∫
Ωc

|v(0)
c (x, t)|2 dx ≤ Cε,

∫ T

0

∫
Ωc

|∇v(0)
c (x, t)|2 dx dt ≤ CεT,

∫ T

0

∫
Ωm

|um(x, t)|2 dx dt ≤ Cε3T,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A15)

notice that we used Korn’s inequality (Quarteroni & Valli 1999) in (A15)2.

A.2. The O(ε) approximation

Recall that u(1)
m = 0. Let (v

(1)
c , π

(1)
c ) := (uc − u(0)

c − εu(1)
c , pc − p(0)

c − εp(1)
c ), which

satisfies Stokes equations

∂tv
(1)
c − ∇ · T(v(1)

c , π(1)
c ) = 0, ∇ · v(1)

c = 0, in Ωc,

v(1)
c = uc − εu(1)

c , on Γ,

v(1)
c |t=0 = 0, in Ωc.

⎫⎪⎪⎬
⎪⎪⎭ (A16)

Standard energy estimate similar to the order 1 case yields

d
dt

∫
Ωc

1
2
|v(1)

c |2 + 2
Re

∫
Ωc

|D(v(1)
c )|2 =

∫
Γ

v(1)
c · T(v(1)

c , π(1)
c )n ds. (A17)
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Small-Darcy-number behaviour

Notice that (2.36), (2.37) and (3.3)–(3.7) imply∫
Γ

v(1)
c · T(v(1)

c , π(1)
c )n ds = −α

ε

∫
Γ

(v(1)
c · τ )(uc · τ − εu(1)

c · τ − ε2u(2)
c · τ )

−
∫

Γ

( pm − p(0)
m − εp(1)

m )v(1)
c · n ds. (A18)

Because u(1)
c · n = 0 and v

(1)
c · n = uc · n = um · n on Γ , we obtain after integration by

parts

−
∫

Γ

( pm − p(0)
m − εp(1)

m )um · n ds =
∫

Ωm

um · ∇( pm − p(0)
m − εp(1)

m ). (A19)

Then using (A4), we deduce∫
Γ

v(1)
c · T(v(1)

c , π(1)
c )n ds = −α

ε

∫
Γ

(v(1)
c · τ )(v(1)

c · τ − ε2u(2)
c · τ )

− 1
ε2

∫
Ωm

|um|2 −
∫

Ωm

um · ∇( p(0)
m + εp(1)

m ). (A20)

Applying the Cauchy–Schwarz inequality (Foias et al. 2001), the right-hand side of
(A20) is bounded by

−α

ε

∫
Γ

|v(1)
c · τ |2 + α

2ε

∫
Γ

|v(1)
c · τ |2 + ε3α

2

∫
Γ

|u(2)
c · τ |2

− 1
ε2

∫
Ωm

|um|2 + 1
2ε2

∫
Ωm

|um|2 + ε2

2

∫
Ωm

|∇( p(0)
m + εp(1)

m )|2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A21)

Combining the above estimates, we have

d
dt

∫
Ωc

1
2
|v(1)

c |2 + 2
Re

∫
Ωc

|D(v(1)
c )|2 + α

2ε

∫
Γ

|v(1)
c · τ |2 +

∫
Ωm

|um|2
2ε2 ≤ Cε2. (A22)

Integrating from 0 to t for any 0 ≤ t ≤ T yields

1
2

∫
Ωc

|v(1)
c (x, t)|2 dx + 2

Re

∫ t

0

∫
Ωc

|D(v(1)
c )(x, s)|2 dx ds

+ α

2ε

∫ t

0

∫
Γ

|v(1)
c · τ |2 dl dt + 1

2ε2

∫ t

0

∫
Ωm

|um(x, s)|2 dx ds ≤ Cε2t, (A23)

which gives

sup
0≤t≤T

∫
Ωc

|v(1)
c (x, t)|2 dx ≤ Cε2T,

∫ T

0

∫
Ωc

|∇v(1)
c (x, t)|2 dx dt ≤ Cε2T,

∫ T

0

∫
Ωm

|um(x, t)|2 dx dt ≤ Cε4T.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A24)
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A.3. The O(εk) approximation, k ≥ 2
Let

v
(k)
j := uj − u(0)

j − · · · − εku(k)
j , π

(k)
j := pj − p(0)

j − · · · − εkp(k)
j , j = c or m.

(A25a,b)
The pair (v

(k)
c , π

(k)
c ) satisfies Stokes equations

∂tv
(k)
c − ∇ · T(v(k)

c , π(k)
c ) = 0, ∇ · v(k)

c = 0, in Ωc,

v(k)
c = uc − εu(1)

c − · · · − εku(k)
c , on Γ,

v(k)
c |t=0 = 0, in Ωc.

⎫⎪⎪⎬
⎪⎪⎭ (A26)

Multiplying the equation by v
(k)
c , and integrating over the domain and by parts, we have

d
dt

∫
Ωc

1
2
|v(k)

c (t)|2 + 2
Re

∫
Ωc

|D(v(k)
c )|2 =

∫
Γ

v(k)
c · T(v(k)

c , π(k)
c )n ds. (A27)

Taking advantages of (2.36), (2.37) and (3.3)–(3.9), we have

∫
Γ

v(k)
c · T(v(k)

c , π(k)
c )n ds

=
∫

Γ

v(k)
c · T(uc, pc)n ds −

∫
Γ

v(k)
c · T(u(0)

c , p(0)
c )n ds

−
∫

Γ

v(k)
c · T(εu(1)

c , εp(1)
c )n ds − · · · −

∫
Γ

v(k)
c · T(εku(k)

c , εkp(k)
c )n ds

= −α

ε

∫
Γ

(v(k)
c · τ )(uc · τ ) −

∫
Γ

pmv(k)
c · n ds

+ α

∫
Γ

(v(k)
c · τ )(u(1)

c · τ ) +
∫

Γ

p(0)
m v(k)

c · n ds

+ · · · + α

∫
Γ

(v(k)
c · τ )(εku(k+1)

c · τ ) +
∫

Γ

εkp(k)
m v(k)

c · n ds,

=:
k∑

j=0

(Mj + Nj). (A28)

By the definition of v
(k)
c , we observe

M0 + · · · + Mk−1 = −α

ε

∫
Γ

|v(k)
c · τ |2. (A29)

By the Cauchy–Schwarz inequality (Foias et al. 2001), we deduce

Mk ≤ α

2ε

∫
Γ

|v(k)
c · τ |2 + ε2k+1α

2

∫
Γ

|u(k+1)
c · τ |2. (A30)
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Small-Darcy-number behaviour

Because v
(k)
c · n = (uc − ε2u(2)

c − · · · − εku(k)
c ) · n = (um − ε2u(2)

m − · · · − εku(k)
m ) · n,

after integration by parts we have

N0 + · · · + Nk−2 = −
∫

Γ

(um − ε2u(2)
m − · · · − εku(k)

m ) · n( pm − p(0)
m − · · · − εk−2p(k−2)

m )

=
∫

Ωm

(um − ε2u(2)
m − · · · − εku(k)

m ) · ∇( pm − p(0)
m − · · · − εk−2p(k−2)

m )

= − 1
ε2

∫
Ωm

|um − ε2u(2)
m − · · · − εku(k)

m |2. (A31)

For the last two terms in the N series, thanks to the Cauchy–Schwarz inequality, we have

Nk−1 + Nk = −
∫

Ωm

(um − ε2u(2)
m − · · · − εku(k)

m ) · ∇(εk−1p(k−1)
m + εkp(k)

m ),

≤ 1
2ε2

∫
Ωm

|um − ε2u(2)
m − · · · − εku(k)

m |2 + ε2k

2

∫
Ωm

|∇(p(k−1)
m + εp(k)

m )|2. (A32)

Collecting the above estimates we deduce

k∑
j=0

(Mj + Nj) ≤ − α

2ε

∫
Γ

|v(k)
c · τ |2 − 1

2ε2

∫
Ωm

|um − ε2u(2)
m − · · · − εku(k)

m |2

+ ε2k+1α

2

∫
Γ

|u(k+1)
c · τ |2 + ε2k

2

∫
Ωm

|∇( p(k−1)
m + εp(k)

m )|2

≤ − α

2ε

∫
Γ

|v(k)
c · τ |2 − 1

2ε2

∫
Ωm

|um − ε2u(2)
m − · · · − εku(k)

m |2 + Cε2k,

(A33)

where we have used the boundedness of the approximations p(k)
m , u(k)

c for different values
of k.

Inserting the previous estimate back to the first estimate of this section, we obtain

d
dt

∫
Ωc

1
2
|v(k)

c |2 + 2
Re

∫
Ωc

|D(v(k)
c )|2 + α

2ε

∫
Γ

|v(k)
c · τ |2 + 1

2ε2

∫
Ωm

|v(k)
m |2 ≤ Cε2k.

(A34)
Ignoring the porous media and interfacial term, using Korn’s inequality (Quarteroni &
Valli 1999), we obtain

d
dt

∫
Ωc

1
2
|v(k)

c |2 + C
∫

Ωc

|v(k)
c |2 ≤ Cε2k. (A35)

A simple application of the Gronwall inequality (Foias et al. 2001) implies

sup
0≤t≤Tε

∫
Ωc

|(uc − u(0)
c − · · · − εku(k)

c )(x, t)|2 dx ≤ Cε2k. (A36)
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Integrating (A34) from 0 to t for any 0 ≤ t ≤ Tε yields

1
2

∫
Ωc

|v(k)
c (x, t)|2 dx + 2

Re

∫ t

0

∫
Ωc

|D(v(k)
c )(x, s)|2 dx ds + α

2ε

∫ t

0

∫
Γ

|v(k)
c · τ |2 dl dt

+ 1
2ε2

∫ t

0

∫
Ωm

|v(k)
m (x, s)|2 dx ds ≤ Cε2kt. (A37)

Hence we have, for k ≥ 2,

sup
0≤t≤T

∫
Ωc

|v(k)
c (x, t)|2 dx ≤ Cε2k,

∫ T

0

∫
Ωc

|∇v(k)
c (x, t)|2 dx dt ≤ Cε2kT,

∫ T

0

∫
Ωm

|(v(k)
m )(x, t)|2 dx dt ≤ Cε2k+2T.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A38)

Notice that the same estimate is valid with k replaced by k + 1, we deduce, by the
triangular inequality:

|uc − · · · − εku(k)
c | ≤ |uc − · · · − εk+1u(k+1)

c | + εk+1|u(k+1)
c |, (A39)

and hence

sup
0≤t≤T

∫
Ωc

|(uc − u(0)
c − · · · − εku(k)

c )(x, t)|2 dx ≤ Cε2k+2,

∫ T

0

∫
Ωc

|∇(uc − u(0)
c − · · · − εku(k)

c )(x, t)|2 dx dt ≤ Cε2k+2T,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A40)

which improves (A38)12. The velocity part of Theorem A.1 follows when we set k = 2 in
(A40).

A.4. Pointwise estimate of the porous media pressure pm

Because our primary goal is the validity of the 0th order expansion, it is sufficient to focus
on papp,1

m .
We learn from (2.34), (2.35), (3.3), (3.5) that π

(1)
m = pm − p(0)

m − εp(1)
m satisfies the

following Laplace equation with Neumann boundary condition:

−Δπ(1)
m = 0, in Ωm,

∫
Ωm

π(1)
m = 0,

∂π
(1)
m

∂n
= − 1

ε2 v(3)
c · n, on Γ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A41)

Elliptic estimates (Mikhailov 1978) of system (A41) together with the Poincare–
Wirttinger inequality (Foias et al. 2001; Evans 2010) and trace theorem (Temam 2001;
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Small-Darcy-number behaviour

Evans 2010) yields ∫
Ωm

|∇∇π(1)
m |2 ≤ C

ε4

∫
Ωc

|∇v(3)
c |2,

∫
Ωm

|∇π(1)
m |2 ≤ C

ε4

∫
Ωc

|v(3)
c |2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A42)

Hence we have ∫ T

0

∫
Ωm

|∇∇π(1)
m (x, t)|2 dx dt ≤ Cε4T,

sup
0≤t≤T

∫
Ωm

|∇π(1)
m (x, t)|2 dx ≤ Cε4,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A43)

where we have used (A40).
By Agmon’s inequality (Foias et al. 2001), we obtain

sup
x∈Ωm

|π(1)
m (x, t)|4 ≤ C

∫
Ωm

|∇∇π(1)
m (x, t)|2

∫
Ωm

|∇π(1)
m (x, t)|2. (A44)

Integrating from 0 to T , and using (A43), we deduce the pressure part of Theorem A.1.
The validity of the 0th order expansion then follows from triangle inequality and the
boundedness of p(1)

m in space and in time.
The proof of Theorem A.1 is now complete.
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