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THE SIMPLICIAL HELIX AND THE EQUATION tan n6 = n tan 0

BY
H. S. M. COXETER

In Memoriam Robert Smith

ABSTRACT. Buckminster Fuller has coined the name tetrahelix for a
column of regular tetrahedra, each sharing two faces with neighbours, one
‘below’ and one ‘above’ [A. H. Boerdijk, Philips Research Reports 7
(1952), p. 309]. Such a column could well be employed in architecture,
because it is both strong and attractive. The (n — 1)-dimensional analogue
is based on a skew polygon such that every n consecutive vertices belong
to a regular simplex. The generalized twist which shifts this polygon one
step along itself is found to have the characteristic equation
N = DH(n = DA"2 4+ 2(n — 2)A"77 + 3(n — 3)\"*

+...+t =220+ (n—-D}=0,

which can be derived from tan n6 = n tan 8 by setting A = exp (20i).

1. Summary. A sequence of regular tetrahedra AjA A A3, A|ArA3A,, AyA3ALAS,
..., each having one face in common with the next, forms a kind of twisted pillar
which the late Buckminster Fuller called a tetrahelix ([1], 412; [4], 518—524). It can
be shifted one step along itself by an isometry whose characteristic equation is
(N = 1*(3N* + 4\ + 3) = 0. This ‘twist’ is the product of a translation, given by the
factor (A — 1)?, and a rotation through an angle (about 131°49’) whose cosine is — 3.
The translation is through a distance 10" times the edge-length of the tetrahedra (see
Boerdijk ([0], p. 309), whose skilful drawing of the tetrahelix was copied by J. D.
Bernal and Remy Mosseri).

This is the case n = 4 of an arrangement in Euclidean (n — 1)-space, where regular
simplexes form a ‘simplicial helix’, shifted one step along itself by an isometry whose
characteristic equation is

n—1
N=1>2 (n—v)»\"'=0.
v=1
The factor (A — 1)? still indicates a translation. When 7 is odd there is also a factor
N + 1, indicating a reflection. The ‘nontrivial’ part of this generalized twist is the
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product of [n/2] — 1 commutative rotations whose angles are the values of 20 that
satisfy the surprisingly elegant equation

tan n® = n tan 0.

Similar results were obtained independently by Hurley [6].

2. Regular skew polygons. In spherical or Euclidean (n — 1)-space, a skew poly-
gon . ..ApA A, . .. is said to be regular if its edges A A, +, are all congruent and its
diagonals A A, ., are congruent for each v = 2,3,...,n — 1. Since the isometry S
which relates the two congruent simplexes A¢A,...A,-, and A|A,. .. A, shifts the
polygon one step along itself, the diagonals A, A, ,, are congruent also for each v = n.
If A, coincides with A,, the polygon is closed (a ‘skew h-gon’) and we naturally define
A, 4+, to be an alternative name for A,.

Let us call the regular skew polygon a simplicial helix if the simplex ApA, ... A,_,
is regular, so that the diagonal A¢A, is congruent to the edge AyA, for all v < n. For
instance, in spherical 3-space (that is, on a 3-sphere in Euclidean 4-space, so that
n = 4), if AyA, = m/5, the simplicial helix is a skew 30-gon: the Petrie polygon of the
regular spherical honeycomb {3, 3, 5} ([3], pp. 7, 29, 52). In this case the vertex A,
coincides with Ay, and AgA, = AjA, = AjAs = /5, AAs = AyAs = /3, AyAg = 27/5,
AA; = AyAs = /2, AyAy = 3T/5, ApAly = AvA = 2m/3, AjA;, = AyA; =
AAy = 4m/5, AyAs = , ApAs-, = ApA,. These distances on the 3-sphere are
2 arc sin (a/27) in the notation of Regular Polytopes ([2], pp. 238, 298, Table V(iii)}.
The ‘5’ in the Schlifli symbol {3, 3, 5} means that each edge is surrounded by 5
tetrahedra, so that the dihedral angle of each tetrahedron is 21w/5. S is a double rotation
through angles £ = /15 and & = 11m/15. These angles were found by setting p =
g = 3, r = 5 in the equation

2.1 X*=(c, t e, + )X + ¢, =0

where ¢, = cos’m/p, ¢, = cos’w/q, ¢, = cos’m/r
([2], p. 221). The roots of this equation are the values of

— 1
X = xcos 3§,

for the Petrie polygon of the regular polytope {p,q,r}. More generally, for any
‘spherical tetrahelix” (with n = 4) we can use the same equation

(2.2) X' =G+ )X +4¢,=0

when the dihedral angle is 27/ r, even if r is irrational.
In the limiting case when ¢, = 3, so that the equation becomes

X = DHX* =9 =0,

the first factor yields & = 0. This shows that the first rotation is reduced to a translation,
S is an ordinary twist, and we have the Euclidean tetrahelix described at the beginning
of §1.
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Each tetrahedron shares two faces with its neighbours. The remaining two faces
(AA,; A,;; and A,A,,,A, ;) belong to an infinite skew polyhedron consisting of
equilateral triangles, six round each vertex. As Fuller remarks, a model can be con-
structed by copying the above Figure (in which ‘A, has been abbreviated to ‘v’) on a
sheet of carboard, and folding it along all the internal edges: gently up along the edges
AA, ., gently down along A A, ,,, and sharply down along A,A, , ;. Finally, the pairs
of external edges ApA;, AsAq, AsAy, . .. have to be glued together.

3. Cartesian coordinates in 3 dimensions. For a tetrahelix in Euclidean space,
S is, as we have seen, a twist: the product of a translation through distance £, and a
rotation through angle &,. Taking the translation to be along the z-axis, and the circum-
scribed cylinder to have unit radius, we may give A, the coordinates

(cos v&,, sin v, vE)) wv=...-1,012,..).
Then
A A, = AA = (1 = cos vEy) + sin® vE, + (vE)
=2 — 2 cos v& + VL
Since the edges AyA, all have the same length, for v = 1, 2, 3, we find
2—2cosk + £2=2—2cos 2§ + 4E7 =2 — 2 cos 3E + 97
O
3(cos 3§, — cos &) = 12§72 = 8(cos 2§ — cos &)
or, in terms of x = cos &,
3(4x* — 3x —x) = 8(2x* — 1 — x),
3x' —4x?—x+2=0,
(x = 1)*Gx +2) = 0.

Discarding the superfluous root x = 1, we deduce that the angle of rotation &, is given
by

cos &, = —3, & =~ 131°49',

and the translation-distance, given by
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382 =202x* —x — 1) = 10/9,
is & = (10/27)". Also the edge-length 2¢ is given by
(2d)’ = AA> =2 — 2 cos & + &7 = 100/27.
Thus the ratio of translation distance to edge-length is
3.1) &/2¢ = V10/10 = 1/V10.

The corresponding ratio in spherical 3-space can be found by solving the equation
2.2 and observing that the edge-length 2¢ of the spherical honeycomb {3, 3, r} is given
by the continued fraction

sinfd =1 ~-¢,/1 —¢,/1 — ¢,

([3), p. 35), where ¢, = ¢, = cos’n/3 =} and ¢, = cos’nw/r; thus
sinfp=1—13/1—-13/1—¢, =2 —3¢)/3 — 4c,).
Since cos’3 &, is the greater root of 2.2, regarded as a quadratic equation in X2, we have
— 3G+ e+ Vit e?)
13 = 2¢, — V1 + 4¢,%
2= 3¢)/3 — 2¢, + V1 + 4¢,%).

. 1
sin? 3§,

Thus
sin? 3 & /sin*d = (3 — 4¢,)/(3 — 2¢, + V1 + 4¢2).
The Euclidean case arises when ¢, tends to %, so that both &, and ¢ tend to zero and
lim (&,/2¢)* = lim (sin’ 3§ /sin’p) = 3/% = 5.

in agreement with 3.1.

Although the regular honeycomb {3,3,5.104 ...} exists only in a statistical sense
([1], p. 411), there is no need to be surprised about the success of this procedure. In
fact, the background for the basic equation 2.1 depends only on the dihedral angles
w/p, w/q, w/r of the characteristic orthoscheme for {p, q, r}.

4. The case n = 5. Similarly, a simplicial helix in spherical 4-space, composed of
4-simplexes of dihedral angle 2/, can be investigated by setting p = ¢ = r = 3 in
the analogue of 2.1 for the 5-dimensional polytope {p, ¢, r, s}, namely

4.1 X' = (¢, *cg+ ¢+ )X+ (c,e + cpes + ) = 0

([2], pp- 135, 220). Since cos® ; £, is the greater root of this equation
X' =Gt )X 3G+ ) =0,

regarded as a quadratic in X?, the amount of the ‘spherical translation’ £, is given by
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sin?3 & =1 —-3CG + ¢, +1V5 — 8¢, + 16¢7?)
=55 —4¢, — V5 = 8¢, + 16¢/)

=(5—8¢)/2(5 —4c, + V5 — 8¢, + 16¢.).

On the other hand, the edge-length 2¢ of the spherical honeycomb {3, 3, 3, s} is given

1985]

by
sinfg =1 —-1¢,/1 —¢,/1 —¢, /1 — ¢
SRR
1 /2 — 3¢ 5 — 8¢
T4/ 34 42 - 30y
Thus

sin?1 &, /sin?d = 2(2 — 3¢,)/(5 — 4¢, + V5 — 8¢, + 16¢%).

The simplicial helix in Euclidean 4-space arises when both &, and ¢ tend to zero, that
is, when ¢, tends to % Thus the ratio of the amount of translation to the edge-length of

the simplexes is the square root of

lim (§,/2¢)* = lim(sin*} &, /sin’d) = /5 = 1/20:
the ratio itself (analogous to 3 when n = 3 and 1/V 10 when n = 4) is now 1/2 V5.
Hurley [6] finds the general expression to be

<n + 1)*'/2
3 .
5. The simplicial helix in spherical (= — 1)-space. For the extension to higher

spaces we shall find it convenient to use the Chebyshev polynomial U,_(X) =
sin n® /sin 6, where X = cos 0, and to express this polynomial as a determinant having

n — 1 rows:
2X 1 0 X 100 0
1 2X 1 I X 3 0
sin n® _ R
Sn® =2
2X 1 0 0 X 3
12X 0 0 0 ... 35 X

In fact, the analogue of 2.1 and 4.1 for the Petrie polygon of the general regular
polytope {p,q, ...,v,w} ([2], p. 220) is
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X Ve 0 0 0
Ve, X Ve 0 0
0 Ve, X Ve o
0 0 0 0 ... Ve X Ve,
0 0 0 0 o0 Ve, X
The angles &, (v = 1,2, ..., [5n]) of the component rotations of S are the values of

20 for which
X = cos 0.

To investigate the simplicial helix formed by regular simplexes with dihedral angle
2w/ w in spherical (n — 1)-space, we set p = ¢ = ... = v = 3, so that the equation
for X becomes

X 1 0 0
5 X 30
0 i X 3 0
0 — 2n*l
0 ! X Ve,
0 0 Ve, X
sin n0 sin (n — 1)0  cos 0 sin n® — 2¢, sin (n — 1)0
~ 7 sin 9 ¥ sin® sin 0 '

This multiplied by sin 8 is

cos 0 sin n® — 2 cos? % (cos 0 sin n® — sin 6 cos n0)
2 . 2 .
= — cos-v—:T—cos() sin n9 + (1 + cos%) sin 0 cos n0

= — cos 6 cos n(){cos%rr tan n® — (l + cos %rr) tan 9}.

Thus our equation is equivalent to
5.1 tan n® = (1 + sec 2w /w) tan 6.

When w = 3, we are considering the Petrie polygon of the regular simplex a,,, and
the equation is tannf = —tan§ or n® = vw — 6. So

£, =20 =2vm/(n+ 1) v=12,...,[(n + 1)/2].
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When w = 4, we are considering the Petrie polygon of the cross polytope (or
‘octahedron analogue’) B,, and the equation is tan n® = < or n6 = 2v — 1)w/2. So

£, =20=Qv - Dmn/n v=12,...,[(n + 1)/2].

6. The simplicial helix in Euclidean (n — 1)-space. By regarding Euclidean space
as a limiting case of spherical space, we can obtain the appropriate value of 21/ w by
making 0 tend to 0 in 5.1:

n=1+ sec2w/w, 2w/w = arcsec(n— 1),

in agreement with the known dihedral angle  — 2¢ = arc sec n for the regular simplex
a, in Euclidean n-space ([2], p. 295). The equation for 6 is now simply

6.1) tan n® = n tan 0.

Setting A = e = ¢ 50 that

)\1/2 _ )\—1/2 )\ _ 1
I+ N2 i+ 1)
we obtain the characteristic equation for the ‘twist’ S in the form

N B
I R

tan 0 =

or
m=DA""' =D =+ DA =N =0
or
AN=D{n—=DA\"+...+N+1
—(n+ DN+ L+ N+HN=0
or
A=D{n—=DN =20""+ ...+ N+N+(n-1=0
or
n—1
AN=12>2 Qu=—n+1DN =0
v=0
or

n—1

A=17 2 (n—v)»A""' =0.

Since § is an isometry in Euclidean (n — 1)-space, the characteristic equation should
have degree n. In fact, the third factor A — 1 has no geometric significance, and we
should more properly write

n—1
6.2) A =122 (n— v\ =0.

When » is odd, there is also a factor A\ + 1 (because S then has a reflection as one
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of its components), and the characteristic equation becomes

(6.3) = 1PN+ 1) 2? [" ; "] [”—%—l]w—' = 0.

For instance, when n = 3 we have simply (A\ — 1))\ + 1) = 0, and S is a
glide-reflection.
When n = 4, 6.2 becomes

(N — 1XGN2 + 4\ + 3) = 0.

and the angle of the twist is £ where cos £ = (A + A™') = —3, so that
£ =2u + 1w = 131°49’ ([1], p. 412), remarkably close to the value 11m7/15 = 132°
which occurs in the Petrie polygon for the 600-cell {3, 3, 5} ([2], p. 221).

When n = 5, 6.3 becomes

AN=—1D’)A+ DR+ X +2)=0

and S is a ‘gliding twist' whose angle & is given by cos £ = —§, so that £ =
w — 2m = 104°29'.
The coefficients in the non-trivial part of 6.3, withn = 3,5,7, . .., form an amusing

variant of Pascal’s triangle of binomial coefficients:

1
2 1 2
3 2 4 2 3
4 3 6 4 6 3 4
5 4 8 6 9 6 8 4 5
6 5 10 8 12 9 12 8 10 5 6
7 6 12 10 15 12 16 12 15 10 12 6 7

7. The equation for ¢+ = tan 0. Since

[(n=1)/2] n [n/2] n
tannd = 2, (—1)”( ) tanz"“f)/ > (—1)”( ) tan2’ 9
v=0 2v+1 v=0 2v

(5], p. 53) and

n n n+1 n+1

10 R Y e S B

2v 2v + 1 2v + 1 n—2v

we can express 6.1 as an equation for ¢ = tan 6:

(n/2] n+1
£ 2 (-1 v( )t“-z =0.
v=1

n—2v

For instance, when n = 6, the non-zero roots are given by

7 7 7
—( >+2< )12—3( )t4=0 or 3t*— 4212+ 35 =0.
4 2 0
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Thus t> = 7 + 4V7/3 and
cos 20 = (1 — t3)/( + t*) = (-4 = V21)/10
0.06 or —0.86.

U
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