THE SIMPLICIAL HELIX AND THE EQUATION $\tan n \theta=n \tan \theta$

BY
H. S. M. COXETER

In Memoriam Robert Smith

Abstract

Buckminster Fuller has coined the name tetrahelix for a column of regular tetrahedra, each sharing two faces with neighbours, one 'below' and one 'above' [A. H. Boerdijk, Philips Research Reports 7 (1952), p. 309]. Such a column could well be employed in architecture, because it is both strong and attractive. The ($n-1$)-dimensional analogue is based on a skew polygon such that every n consecutive vertices belong to a regular simplex. The generalized twist which shifts this polygon one step along itself is found to have the characteristic equation

$$
\begin{aligned}
(\lambda-1)^{2}\left\{(n-1) \lambda^{n-2}+2(n-2) \lambda^{n-3}\right. & +3(n-3) \lambda^{n-4} \\
& +\ldots+(n-2) 2 \lambda+(n-1)\}=0
\end{aligned}
$$

which can be derived from $\tan n \theta=n \tan \theta$ by setting $\lambda=\exp (2 \theta i)$.

1. Summary. A sequence of regular tetrahedra $A_{0} A_{1} A_{2} A_{3}, A_{1} A_{2} A_{3} A_{4}, A_{2} A_{3} A_{4} A_{5}$, \ldots, each having one face in common with the next, forms a kind of twisted pillar which the late Buckminster Fuller called a tetrahelix ([1], 412; [4], 518-524). It can be shifted one step along itself by an isometry whose characteristic equation is $(\lambda-1)^{2}\left(3 \lambda^{2}+4 \lambda+3\right)=0$. This 'twist' is the product of a translation, given by the factor $(\lambda-1)^{2}$, and a rotation through an angle (about $131^{\circ} 49^{\prime}$) whose cosine is $-\frac{2}{3}$. The translation is through a distance $10^{-1 / 2}$ times the edge-length of the tetrahedra (see Boerdijk ([0], p. 309), whose skilful drawing of the tetrahelix was copied by J. D. Bernal and Remy Mosseri).

This is the case $n=4$ of an arrangement in Euclidean $(n-1)$-space, where regular simplexes form a 'simplicial helix', shifted one step along itself by an isometry whose characteristic equation is

$$
(\lambda-1)^{2} \sum_{\nu=1}^{n-1}(n-\nu) \nu \lambda^{\nu-1}=0 .
$$

The factor $(\lambda-1)^{2}$ still indicates a translation. When n is odd there is also a factor $\lambda+1$, indicating a reflection. The 'nontrivial' part of this generalized twist is the

[^0]product of $[n / 2]-1$ commutative rotations whose angles are the values of 2θ that satisfy the surprisingly elegant equation
$$
\tan n \theta=n \tan \theta .
$$

Similar results were obtained independently by Hurley [6].
2. Regular skew polygons. In spherical or Euclidean $(n-1)$-space, a skew polygon $\ldots A_{0} A_{1} A_{2} \ldots$ is said to be regular if its edges $A_{\mu} A_{\mu+1}$ are all congruent and its diagonals $A_{\mu} A_{\mu+\nu}$ are congruent for each $v=2,3, \ldots, n-1$. Since the isometry S which relates the two congruent simplexes $A_{0} A_{1} \ldots A_{n-1}$ and $A_{1} A_{2} \ldots A_{n}$ shifts the polygon one step along itself, the diagonals $A_{\mu} A_{\mu+\nu}$ are congruent also for each $\nu \geq n$. If A_{h} coincides with A_{0}, the polygon is closed (a 'skew h-gon') and we naturally define $A_{h+\nu}$ to be an alternative name for A_{ν}.

Let us call the regular skew polygon a simplicial helix if the simplex $A_{0} A_{1} \ldots A_{n-1}$ is regular, so that the diagonal $A_{0} A_{v}$ is congruent to the edge $A_{0} A_{1}$ for all $v<n$. For instance, in spherical 3 -space (that is, on a 3 -sphere in Euclidean 4 -space, so that $n=4$), if $A_{0} A_{1}=\pi / 5$, the simplicial helix is a skew 30 -gon: the Petrie polygon of the regular spherical honeycomb $\{3,3,5\}$ ($[3]$, pp. 7, 29, 52). In this case the vertex A_{30} coincides with A_{0}, and $A_{0} A_{1}=A_{0} A_{2}=A_{0} A_{3}=\pi / 5, A_{0} A_{4}=A_{0} A_{5}=\pi / 3, A_{0} A_{6}=2 \pi / 5$, $A_{0} A_{7}=A_{0} A_{8}=\pi / 2, A_{0} A_{9}=3 \pi / 5, A_{0} A_{10}=A_{0} A_{11}=2 \pi / 3, A_{0} A_{12}=A_{0} A_{13}=$ $A_{0} A_{14}=4 \pi / 5, A_{0} A_{15}=\pi, A_{0} A_{30-\nu}=A_{0} A_{v}$. These distances on the 3-sphere are $2 \operatorname{arc} \sin (a / 2 \tau)$ in the notation of Regular Polytopes ([2], pp. 238, 298, Table V(iii)). The ' 5 ' in the Schläfli symbol $\{3,3,5\}$ means that each edge is surrounded by 5 tetrahedra, so that the dihedral angle of each tetrahedron is $2 \pi / 5 . S$ is a double rotation through angles $\xi_{1}=\pi / 15$ and $\xi_{2}=11 \pi / 15$. These angles were found by setting $p=$ $q=3, r=5$ in the equation

$$
\begin{equation*}
X^{4}-\left(c_{p}+c_{q}+c_{r}\right) X^{2}+c_{p} c_{r}=0 \tag{2.1}
\end{equation*}
$$

where

$$
c_{p}=\cos ^{2} \pi / p, c_{q}=\cos ^{2} \pi / q, c_{r}=\cos ^{2} \pi / r
$$

([2], p. 221). The roots of this equation are the values of

$$
X= \pm \cos \frac{1}{2} \xi_{v}
$$

for the Petrie polygon of the regular polytope $\{p, q, r\}$. More generally, for any 'spherical tetrahelix' (with $n=4$) we can use the same equation

$$
\begin{equation*}
X^{4}-\left(\frac{1}{2}+c_{r}\right) X^{2}+\frac{1}{4} c_{r}=0 \tag{2.2}
\end{equation*}
$$

when the dihedral angle is $2 \pi / r$, even if r is irrational.
In the limiting case when $c_{r}=\frac{2}{3}$, so that the equation becomes

$$
\left(X^{2}-1\right)\left(X^{2}-\frac{1}{6}\right)=0,
$$

the first factor yields $\xi_{1}=0$. This shows that the first rotation is reduced to a translation, S is an ordinary twist, and we have the Euclidean tetrahelix described at the beginning of §1.

Each tetrahedron shares two faces with its neighbours. The remaining two faces $\left(A_{v} A_{v+1} A_{v+3}\right.$ and $\left.A_{v} A_{v+2} A_{\nu+3}\right)$ belong to an infinite skew polyhedron consisting of equilateral triangles, six round each vertex. As Fuller remarks, a model can be constructed by copying the above Figure (in which ' A_{v} ' has been abbreviated to ' v ') on a sheet of carboard, and folding it along all the internal edges: gently up along the edges $A_{v} A_{v+1}$, gently down along $A_{v} A_{v+2}$, and sharply down along $A_{v} A_{v+3}$. Finally, the pairs of external edges $A_{0} A_{3}, A_{3} A_{6}, A_{6} A_{9}, \ldots$ have to be glued together.
3. Cartesian coordinates in $\mathbf{3}$ dimensions. For a tetrahelix in Euclidean space, S is, as we have seen, a twist: the product of a translation through distance ξ_{1} and a rotation through angle ξ_{2}. Taking the translation to be along the z-axis, and the circumscribed cylinder to have unit radius, we may give A_{ν} the coordinates

$$
\left(\cos \nu \xi_{2}, \sin \nu \xi_{2}, \nu \xi_{1}\right) \quad(\nu=\ldots-1,0,1,2, \ldots)
$$

Then

$$
\begin{aligned}
A_{\mu} A_{\mu+\nu}{ }^{2}=A_{0} A_{\nu}{ }^{2} & =\left(1-\cos \nu \xi_{2}\right)^{2}+\sin ^{2} \nu \xi_{2}+\left(\nu \xi_{1}\right)^{2} \\
& =2-2 \cos \nu \xi_{2}+\nu^{2} \xi_{1}{ }^{2} .
\end{aligned}
$$

Since the edges $A_{0} A_{v}$ all have the same length, for $v=1,2,3$, we find

$$
2-2 \cos \xi_{2}+\xi_{1}{ }^{2}=2-2 \cos 2 \xi_{2}+4 \xi_{1}{ }^{2}=2-2 \cos 3 \xi_{2}+9 \xi_{1}{ }^{2}
$$

so

$$
3\left(\cos 3 \xi_{2}-\cos \xi_{2}\right)=12 \xi_{1}^{2}=8\left(\cos 2 \xi_{2}-\cos \xi_{2}\right)
$$

or, in terms of $x=\cos \xi_{2}$,

$$
\begin{gathered}
3\left(4 x^{3}-3 x-x\right)=8\left(2 x^{2}-1-x\right), \\
3 x^{3}-4 x^{2}-x+2=0, \\
(x-1)^{2}(3 x+2)=0 .
\end{gathered}
$$

Discarding the superfluous root $x=1$, we deduce that the angle of rotation ξ_{2} is given by

$$
\cos \xi_{2}=-\frac{2}{3}, \quad \xi_{2} \approx 131^{\circ} 49^{\prime}
$$

and the translation-distance, given by

$$
3 \xi_{1}^{2}=2\left(2 x^{2}-x-1\right)=10 / 9
$$

is $\xi_{1}=(10 / 27)^{1 / 2}$. Also the edge-length 2ϕ is given by

$$
(2 \phi)^{2}=A_{0} A_{1}^{2}=2-2 \cos \xi_{2}+\xi_{1}^{2}=100 / 27
$$

Thus the ratio of translation distance to edge-length is

$$
\begin{equation*}
\xi_{1} / 2 \phi=\sqrt{10} / 10=1 / \sqrt{10} . \tag{3.1}
\end{equation*}
$$

The corresponding ratio in spherical 3 -space can be found by solving the equation 2.2 and observing that the edge-length 2ϕ of the spherical honeycomb $\{3,3, r\}$ is given by the continued fraction

$$
\sin ^{2} \phi=1-c_{p} / 1-c_{q} / 1-c_{r}
$$

([3], p. 35), where $c_{p}=c_{q}=\cos ^{2} \pi / 3=\frac{1}{4}$ and $c_{r}=\cos ^{2} \pi / r$; thus

$$
\sin ^{2} \phi=1-\frac{1}{4} / 1-\frac{1}{4} / 1-c_{r}=\left(2-3 c_{r}\right) /\left(3-4 c_{r}\right) .
$$

Since $\cos ^{2} \frac{1}{2} \xi_{1}$ is the greater root of 2.2 , regarded as a quadratic equation in X^{2}, we have

$$
\begin{aligned}
\sin ^{2} \frac{1}{2} \xi_{1} & =1-\frac{1}{2}\left(\frac{1}{2}+c_{r}+\sqrt{\frac{1}{4}+c_{r}^{2}}\right) \\
& =\frac{1}{4}\left(3-2 c_{r}-\sqrt{1+4 c_{r}^{2}}\right) \\
& =\left(2-3 c_{r}\right) /\left(3-2 c_{r}+\sqrt{1+4 c_{r}^{2}}\right) .
\end{aligned}
$$

Thus

$$
\sin ^{2} \frac{1}{2} \xi_{1} / \sin ^{2} \phi=\left(3-4 c_{r}\right) /\left(3-2 c_{r}+\sqrt{1+4 c_{r}^{2}}\right)
$$

The Euclidean case arises when c_{r} tends to $\frac{2}{3}$, so that both ξ_{1} and ϕ tend to zero and

$$
\lim \left(\xi_{1} / 2 \phi\right)^{2}=\lim \left(\sin ^{2} \frac{1}{2} \xi_{1} / \sin ^{2} \phi\right)=\frac{1}{3} / \frac{10}{3}=\frac{1}{10},
$$

in agreement with 3.1.
Although the regular honeycomb $\{3,3,5.104 \ldots\}$ exists only in a statistical sense ([1], p. 411), there is no need to be surprised about the success of this procedure. In fact, the background for the basic equation 2.1 depends only on the dihedral angles $\pi / p, \pi / q, \pi / r$ of the characteristic orthoscheme for $\{p, q, r\}$.
4. The case $\boldsymbol{n}=5$. Similarly, a simplicial helix in spherical 4-space, composed of 4 -simplexes of dihedral angle $2 \pi / s$, can be investigated by setting $p=q=r=3$ in the analogue of 2.1 for the 5 -dimensional polytope $\{p, q, r, s\}$, namely

$$
\begin{equation*}
X^{4}-\left(c_{p}+c_{q}+c_{r}+c_{s}\right) X^{2}+\left(c_{p} c_{r}+c_{p} c_{s}+c_{q} c_{s}\right)=0 \tag{4.1}
\end{equation*}
$$

([2], pp. 135, 220). Since $\cos ^{2} \frac{1}{2} \xi_{1}$ is the greater root of this equation

$$
X^{4}-\left(\frac{3}{4}+c_{s}\right) X^{2}+\frac{1}{2}\left(\frac{1}{8}+c_{s}\right)=0
$$

regarded as a quadratic in X^{2}, the amount of the 'spherical translation' ξ_{1} is given by

$$
\begin{aligned}
\sin ^{2} \frac{1}{2} \xi_{1} & =1-\frac{1}{2}\left(\frac{3}{4}+c_{s}+\frac{1}{4} \sqrt{5-8 c_{s}+16 c_{s}^{2}}\right) \\
& =\frac{1}{8}\left(5-4 c_{s}-\sqrt{5-8 c_{s}+16 c_{s}^{2}}\right) \\
& =\left(5-8 c_{s}\right) / 2\left(5-4 c_{s}+\sqrt{5-8 c_{s}+16 c_{s}^{2}}\right) .
\end{aligned}
$$

On the other hand, the edge-length 2ϕ of the spherical honeycomb $\{3,3,3, s\}$ is given by

$$
\begin{aligned}
\sin ^{2} \phi & =1-c_{p} / 1-c_{q} / 1-c_{r} / 1-c_{s} \\
& =1-\frac{1}{4} / 1-\frac{1}{4} / 1-\frac{1}{4} / 1-c_{s} \\
& =1-\frac{1}{4} / \frac{2-3 c_{s}}{3-4 c_{s}}=\frac{5-8 c_{s}}{4\left(2-3 c_{s}\right)}
\end{aligned}
$$

Thus

$$
\sin ^{2} \frac{1}{2} \xi_{1} / \sin ^{2} \phi=2\left(2-3 c_{s}\right) /\left(5-4 c_{s}+\sqrt{5-8 c_{s}+16 c_{s}^{2}}\right) .
$$

The simplicial helix in Euclidean 4-space arises when both ξ_{1} and ϕ tend to zero, that is, when c_{s} tends to $\frac{5}{8}$. Thus the ratio of the amount of translation to the edge-length of the simplexes is the square root of

$$
\lim \left(\xi_{1} / 2 \phi\right)^{2}=\lim \left(\sin ^{2} \frac{1}{2} \xi_{1} / \sin ^{2} \phi\right)=\frac{1}{4} / 5=1 / 20:
$$

the ratio itself (analogous to $\frac{1}{2}$ when $n=3$ and $1 / \sqrt{10}$ when $n=4$) is now $1 / 2 \sqrt{5}$. Hurley [6] finds the general expression to be

$$
\binom{n+1}{3}^{-1 / 2}
$$

5. The simplicial helix in spherical ($n-1$)-space. For the extension to higher spaces we shall find it convenient to use the Chebyshev polynomial $U_{n-1}(X)=$ $\sin n \theta / \sin \theta$, where $X=\cos \theta$, and to express this polynomial as a determinant having $n-1$ rows:

$$
\frac{\sin n \theta}{\sin \theta}=\left|\begin{array}{cccccc}
2 X & 1 & 0 & \ldots & 0 & 0 \\
1 & 2 X & 1 & \ldots & 0 & 0 \\
& \ldots & & \ldots & & \\
0 & 0 & 0 & \ldots & 2 X & 1 \\
0 & 0 & 0 & \ldots & 1 & 2 X
\end{array}\right|=2^{n-1}\left|\begin{array}{cccccc}
X & \frac{1}{2} & 0 & \ldots & 0 & 0 \\
\frac{1}{2} & X & \frac{1}{2} & \ldots & 0 & 0 \\
& \ldots & & \ldots & & \\
0 & 0 & 0 & \ldots & X & \frac{1}{2} \\
0 & 0 & 0 & \ldots & \frac{1}{2} & X
\end{array}\right| .
$$

In fact, the analogue of 2.1 and 4.1 for the Petrie polygon of the general regular polytope $\{p, q, \ldots, v, w\}([2], \mathrm{p} .220)$ is

$$
\left|\begin{array}{cccccccc}
X & \sqrt{c_{p}} & 0 & 0 & \cdots & 0 & 0 & 0 \\
\sqrt{c_{p}} & X & \sqrt{c_{q}} & 0 & \cdots & 0 & 0 & 0 \\
0 & \sqrt{c_{q}} & X & \sqrt{c_{r}} & \cdots & 0 & 0 & 0 \\
& \cdots & & & \cdots & & \cdots & \\
0 & 0 & 0 & 0 & \cdots & \sqrt{c_{v}} & X & \sqrt{c_{w}} \\
0 & 0 & 0 & 0 & \cdots & 0 & \sqrt{c_{w}} & X
\end{array}\right|=0 .
$$

The angles $\xi_{\nu}\left(v=1,2, \ldots,\left[\frac{1}{2} n\right]\right)$ of the component rotations of S are the values of 2θ for which

$$
X=\cos \theta .
$$

To investigate the simplicial helix formed by regular simplexes with dihedral angle $2 \pi / w$ in spherical $(n-1)$-space, we set $p=q=\ldots=v=3$, so that the equation for X becomes

$$
\begin{aligned}
0 & =2^{n-1}\left|\begin{array}{cccccccc}
X & \frac{1}{2} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\frac{1}{2} & X & \frac{1}{2} & 0 & \ldots & 0 & 0 & 0 \\
0 & \frac{1}{2} & X & \frac{1}{2} & \ldots & 0 & 0 & 0 \\
& \ldots & & \ldots & & \ldots & \\
0 & 0 & 0 & 0 & \ldots & \frac{1}{2} & X & \sqrt{c_{w}} \\
0 & 0 & 0 & 0 & \ldots & 0 & \sqrt{c_{w}} & X
\end{array}\right| \\
& =X \frac{\sin n \theta}{\sin \theta}-2 c_{w} \frac{\sin (n-1) \theta}{\sin \theta}=\frac{\cos \theta \sin n \theta-2 c_{w} \sin (n-1) \theta}{\sin \theta} .
\end{aligned}
$$

This multiplied by $\sin \theta$ is

$$
\begin{aligned}
& \cos \theta \sin n \theta-2 \cos ^{2} \frac{\pi}{w}(\cos \theta \sin n \theta-\sin \theta \cos n \theta) \\
& \quad=-\cos \frac{2 \pi}{w} \cos \theta \sin n \theta+\left(1+\cos \frac{2 \pi}{w}\right) \sin \theta \cos n \theta \\
& \quad=-\cos \theta \cos n \theta\left\{\cos \frac{2 \pi}{w} \tan n \theta-\left(1+\cos \frac{2 \pi}{w}\right) \tan \theta\right\} .
\end{aligned}
$$

Thus our equation is equivalent to

$$
\begin{equation*}
\tan n \theta=(1+\sec 2 \pi / w) \tan \theta \tag{5.1}
\end{equation*}
$$

When $w=3$, we are considering the Petrie polygon of the regular simplex α_{n}, and the equation is $\tan n \theta=-\tan \theta$ or $n \theta=\nu \pi-\theta$. So

$$
\xi_{v}=2 \theta=2 v \pi /(n+1) ; \quad v=1,2, \ldots,[(n+1) / 2] .
$$

When $w=4$, we are considering the Petrie polygon of the cross polytope (or 'octahedron analogue') β_{n}, and the equation is $\tan n \theta=\infty$ or $n \theta=(2 v-1) \pi / 2$. So

$$
\xi_{v}=2 \theta=(2 v-1) \pi / n ; \quad v=1,2, \ldots,[(n+1) / 2] .
$$

6. The simplicial helix in Euclidean $(n-1)$-space. By regarding Euclidean space as a limiting case of spherical space, we can obtain the appropriate value of $2 \pi / w$ by making θ tend to 0 in 5.1:

$$
n=1+\sec 2 \pi / w, \quad 2 \pi / w=\operatorname{arcsec}(n-1)
$$

in agreement with the known dihedral angle $\pi-2 \psi=\operatorname{arc} \sec n$ for the regular simplex α_{n} in Euclidean n-space ([2], p. 295). The equation for θ is now simply

$$
\begin{equation*}
\tan n \theta=n \tan \theta . \tag{6.1}
\end{equation*}
$$

Setting $\lambda=e^{\xi i}=e^{2 \theta i}$, so that

$$
\tan \theta=\frac{\lambda^{1 / 2}-\lambda^{-1 / 2}}{i\left(\lambda^{1 / 2}+\lambda^{-1 / 2}\right)}=\frac{\lambda-1}{i(\lambda+1)}
$$

we obtain the characteristic equation for the 'twist' S in the form

$$
\frac{\lambda^{n}-1}{\lambda^{n}+1}=n \frac{\lambda-1}{\lambda+1}
$$

or

$$
(n-1)\left(\lambda^{n+1}-1\right)-(n+1)\left(\lambda^{n}-\lambda\right)=0
$$

or

$$
\begin{aligned}
(\lambda-1)\left\{(n - 1) \left(\lambda^{n}\right.\right. & +\ldots+\lambda+1) \\
& \left.-(n+1)\left(\lambda^{n-1}+\ldots+\lambda^{2}+\lambda\right)\right\}=0
\end{aligned}
$$

or

$$
(\lambda-1)\left\{(n-1) \lambda^{n}-2\left(\lambda^{n-1}+\ldots+\lambda^{2}+\lambda\right)+(n-1)\right\}=0
$$

or

$$
(\lambda-1)^{2} \sum_{v=0}^{n-1}(2 v-n+1) \lambda^{\nu}=0
$$

or

$$
(\lambda-1)^{3} \sum_{\nu=1}^{n-1}(n-\nu) \nu \lambda^{\nu-1}=0 .
$$

Since S is an isometry in Euclidean ($n-1$)-space, the characteristic equation should have degree n. In fact, the third factor $\lambda-1$ has no geometric significance, and we should more properly write

$$
\begin{equation*}
(\lambda-1)^{2} \sum_{\nu=1}^{n-1}(n-\nu) \nu \lambda^{\nu-1}=0 . \tag{6.2}
\end{equation*}
$$

When n is odd, there is also a factor $\lambda+1$ (because S then has a reflection as one
of its components), and the characteristic equation becomes

$$
\begin{equation*}
(\lambda-1)^{2}(\lambda+1) \sum_{\nu=1}^{n-2}\left[\frac{n-v}{2}\right]\left[\frac{\nu+1}{2}\right] \lambda^{\nu-1}=0 . \tag{6.3}
\end{equation*}
$$

For instance, when $n=3$ we have simply $(\lambda-1)^{2}(\lambda+1)=0$, and S is a glide-reflection.

When $n=4,6.2$ becomes

$$
(\lambda-1)^{2}\left(3 \lambda^{2}+4 \lambda+3\right)=0 .
$$

and the angle of the twist is ξ where $\cos \xi=\frac{1}{2}\left(\lambda+\lambda^{-1}\right)=-\frac{2}{3}$, so that $\xi=2 \mu+\frac{1}{2} \pi \approx 131^{\circ} 49^{\prime}\left([1]\right.$, p. 412), remarkably close to the value $11 \pi / 15=132^{\circ}$ which occurs in the Petrie polygon for the 600 -cell $\{3,3,5\}$ ([2], p. 221).

When $n=5,6.3$ becomes

$$
(\lambda-1)^{2}(\lambda+1)\left(2 \lambda^{2}+\lambda+2\right)=0
$$

and S is a 'gliding twist' whose angle ξ is given by $\cos \xi=-\frac{1}{4}$, so that $\xi=$ $\pi-2 \eta \approx 104^{\circ} 29^{\prime}$.

The coefficients in the non-trivial part of 6.3 , with $n=3,5,7, \ldots$, form an amusing variant of Pascal's triangle of binomial coefficients:

						1						
					2	1	2					
				3	2	4	2	3				
			4	3	6	4	6	3	4			
		5	4	8	6	9	6	8	4	5		
	6	5	10	8	12	9	12	8	10	5	6	
7	6	12	10	15	12	16	12	15	10	12	6	7

7. The equation for $\boldsymbol{t}=\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$. Since

$$
\tan n \theta=\sum_{\nu=0}^{[(n-1) / 2]}(-1)^{\nu}\binom{n}{2 \nu+1} \tan ^{2 \nu+1} \theta / \sum_{\nu=0}^{[n / 2]}(-1)^{\nu}\binom{n}{2 v} \tan ^{2 \nu} \theta
$$

([5], p. 53) and

$$
n\binom{n}{2 v}-\binom{n}{2 v+1}=2 v\binom{n+1}{2 v+1}=2 v\binom{n+1}{n-2 v}
$$

we can express 6.1 as an equation for $t=\tan \theta$:

$$
t^{3} \sum_{v=1}^{[n / 2]}(-1)^{v} v\binom{n+1}{n-2 v} t^{2 v-2}=0
$$

For instance, when $n=6$, the non-zero roots are given by

$$
-\binom{7}{4}+2\binom{7}{2} t^{2}-3\binom{7}{0} t^{4}=0 \text { or } 3 t^{4}-42 t^{2}+35=0
$$

Thus $t^{2}=7 \pm 4 \sqrt{7 / 3}$ and

$$
\begin{aligned}
\cos 2 \theta=\left(1-t^{2}\right) /\left(1+t^{2}\right) & =(-4 \pm \sqrt{21}) / 10 \\
& \approx 0.06 \text { or }-0.86
\end{aligned}
$$

References

0. A. H. Boerdijk, Some remarks concerning close-packing of equal spheres, Philips Research Reports 7 (1952), pp. 303-313.
1. H. S. M. Coxeter, Introduction to Geometry (2nd ed.), Wiley, New York, 1969.
2. ——, Regular Polytopes (3rd ed.), Dover, New York, 1973.
3. - Regular Complex Polytopes, Cambridge University Press, 1974.
4. R. Buckminster Fuller, Synergetics, Macmillan, New York, 1975.
5. E. W. Hobson, A Treatise on Plane Trigonometry (6th ed.), Cambridge University Press, 1925.
6. A. C. Hurley, Some helical structures generated by reflexions, Australian J. Physics, 38 (1985), 299-310.

University of Toronto
Toronto, Ontario
Canada M5S 1A1

[^0]: Received by the editors July 6, 1984 and, in revised form, August 13, 1984.
 AMS Subject Classification (1980): Primary S1N20, S1M20; Secondary 10A32.
 Key words: Chebyshev polynomial, Petrie polygon, Simplex, Tetrahelix, Cross polytope, Regular polytope, Spherical space, Twist.
 © Canadian Mathematical Society 1984.

