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Dispersion of a passive scalar around a
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The motion of Taylor bubbles in capillaries is typical of many engineering and
biological systems, ranging from subsurface flows to small-scale reactors. Although
the hydrodynamics of elongated bubbles has been the object of several studies,
the case where a solute is transported in the surrounding liquid and surface
mass-transfer mechanisms act on the solid wall or the bubble–fluid interface is much
less understood. To fill this gap, we investigate the transport problem around a
confined Taylor bubble to access the competition between advection, diffusion and
surface mass transfer in the different regions of the bubble. With this aim, we
derive a one-dimensional advection–diffusion–mass-transfer equation where the transport
mechanisms are described through an effective velocity, an effective diffusion coefficient
and an effective Sherwood number. Our model generalises the Aris–Taylor dispersion to
the case of a Taylor bubble and clarifies the impact of surface mass transfer in the advection
and diffusion dominated regimes for both the front and rear menisci. The model recovers
the typical Pèclet square relationship of the effective diffusion coefficient, which also
depends on the film thickness. Also, when the Pèclet number balances with the Sherwood
number, there exist conditions that lead to the formation of hot spots of concentration.
We show that the typical shape oscillations of the bubble rear locally enhance superficial
mass transfer. Finally, we study the transport problem in the uniform film region where the
concentration field can be found analytically.
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1. Introduction

The study of mass transfer in confined geometries is extremely important in many
engineering and biological systems. In the context of geological CO2 sequestration, carbon
dioxide is injected into subsurface reservoirs, leading to the formation of elongated bubbles
that can either be trapped, move or interact with the solid matrix (e.g. Rathnaweera, Ranjith
& Perera 2016; Soulaine et al. 2018; Li, Garing & Benson 2020). The presence of CO2 has
the effect of increasing the acidity of the in situ brine, boosting a series of chain reactions
that enhance rock dissolution (Steefel, Molins & Trebotich 2013). This may threaten the
long-term integrity of the storage process due to the formation of leakage pathways for
carbon dioxide.

In medicine, a good understanding of the coupling between the hydrodynamics of
confined bubbles and mass transfer is fundamental for treating air embolism (e.g. Grotberg
1994; Eckmann & Lomivorotov 2003; Suzuki & Eckman 2003; Barak & Yeshayahu 2005;
Li et al. 2021), microcirculation and oxygen transport in blood vessels (e.g. Berg et al.
2020; Vadapalli, Goldman & Popel 2002) and targeted microbubbles for drug delivery
(e.g. Bull 2005). In the context of microfluidics, small-scale reactors, cell cultures and
cooling devices rely on an efficient control of transport processes in microchannels, (e.g.
Ajaev & Homsy 2006; Lynn 2016; Khodaparast et al. 2017). All the aforementioned
applications involve the motion of elongated bubbles (also known as Taylor bubbles)
through capillaries where surface mass-transfer mechanisms take place between the
surrounding liquid, the solid and the bubble interface. Exchanges of mass could be driven
either by chemical reactions or surface phenomena, such as evaporation or dissolution.
Thus, studying how mass transfer is enhanced or retarded due to the presence of a confined
bubble is highly important for a correct interpretation of practical problems.

So far, many researchers have focused primarily on understanding the hydrodynamics
of Taylor bubbles in capillary tubes in regimes where viscous forces and surface tension
dominate over buoyancy and inertia. The seminal work of Bretherton (1961) revealed
that bubble characteristics (i.e. the film thickness, the bubble speed) can be expressed
as a function of the capillary number and that the film profile can be described with
a similarity solution typical of Landau–Levich–Derjaguin–Bretherton problems (see de
Gennes, Brochard-Wyart & Quéré 2003; Stone 2010). The theory is supported by several
experimental measurements (Fairbrother & Stubbs 1935; Taylor 1961; Schwartz, Princen
& Kiss 1986; Aussillous & Quéré 2000) and, in the last decades, it has been extended to
include the effect of viscous forces and weak inertia (Cox 1962; Reinelt & Saffman 1985;
Aussillous & Quéré 2000; Heil 2001; de Ryck 2002; Khodaparast et al. 2015; Magnini
et al. 2017), unsteady flow, (Yu et al. 2018), buoyancy, (Leung et al. 2012; Atasi et al.
2017; Lamstaes & Eggers 2017), bubble viscosity and non-Newtonian effects (Chen 1986;
Hodges, Jensen & Rallinson 2004; Balestra, Zhu & Gallaire 2018; Shukla et al. 2019;
Picchi et al. 2021).

However, the case where a passive scalar (i.e. a solute) is transported in the liquid
surrounding the Taylor bubble is still an object of research. Motivated by the discrepancies
between experiments and Bretherton’s theory, Schwartz et al. (1986), Hirasaki & Lawson
(1985) and Ginley & Radke (1988) accounted for the effect of variation in the surface
tension due to the presence of surface-active contaminants (i.e. the Marangoni effect) in
the uniform film region. Ratulowski & Chang (1990) have shown that the Marangoni effect
can explain the increased film thickness of the experiments; more recent studies (Park
1992; Stebe & Barthés-Biesel 1995; Olgac & Muradoglu 2013; Yu, Khodaparast & Stone
2017) confirm the importance of accessing the transport problem in the surroundings of
the bubble to properly describe solute driven mechanisms.
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Dispersion around a Taylor bubble

Unfortunately, the problem of solute transport by advection and diffusion in confined
geometries is a long standing issue. The seminal works of Taylor (1953) and Aris (1956)
showed that the flow of a passive scalar in a circular pipe enhances axial diffusion.
Although the Aris–Taylor dispersion theory was later extended to cases where the
solute can be also absorbed from the solid walls (e.g. Gupta, Gupta & Taylor 1972;
Sankarasubramanian, Gill & Benjamin 1973; Ng 2006; Mikelić, Devigne & van Duijn
2006), to the best of our knowledge, a comprehensive approach to generalise the transport
problem in the presence of moving Taylor bubbles is still missing in the literature.

Existing studies on the topic are primarily numerical and experimental. Shim et al.
(2014), Michelin, Guérin & Lauga (2018) and Rivero-Rodriguez & Scheid (2019) studied
mass transfer around a series of spherical bubbles. Other works focus on quantifying
mass-transfer fluxes around gaseous Taylor bubbles in horizontal (e.g. Yue et al. 2009;
Shao, Gavriilidis & Angeli 2010; Sobieszuk et al. 2011; Cubaud, Sauzade & Sun 2012;
Ganapathy, Al-Hajri & Ohadi 2013; Ganapathy et al. 2014; Jia & Zhang 2016; Svetlov &
Abiev 2016; Zhu et al. 2017; Silva, Campos & Araújo 2019; Zhou et al. 2020) and vertical
(e.g. Hayashi et al. 2014; Kastens et al. 2015; Hori et al. 2020) microchannels. Despite the
amount of data available, in most of the cases experiments are analysed only in terms of
empirical correlations. More sophisticated theories for modelling transport processes in
complex geometries based on averaging and homogenisation techniques are available in
the field of flow in porous materials (e.g. Brenner & Stewartson 1980; Rubinstein & Mauri
1986; Mauri 1991; Battiato & Tartakovsky 2011; Parmigiani et al. 2011; Picchi & Battiato
2018), but an attempt to adapt those theories to the case of a Taylor bubble has not been
proposed yet.

To fill this gap, the goal of this paper is to study the transport problem around a moving
Taylor bubble in the presence of surface mass transfer and to clarify the competition
between diffusion, advection and superficial mass transfer in the different regions of the
bubble. We account for the transport of a solute in the bulk of the fluid surrounding
the Taylor bubble and surface mass-transfer effects at the wall and at the bubble–fluid
interface. Our goal is to derive a theoretical framework to describe in a rigorous way
the transport problem, including transient effects. The model generalises the Aris–Taylor
dispersion theory to the case of a Taylor bubble and allows for the identification of the
dominant transport regime in the front and rear menisci and in the uniform film region
(i.e. the bubble centre).

With this aim, starting from the transport equations (§ 2.2), we derive an upscaled
model for the average concentration by means of two-scale asymptotic expansions
(§ 2.3). Specifically, we derive analytical expressions for the effective velocity, effective
diffusion and effective mass-transfer coefficient in an advection–diffusion–mass-transfer
equation that describes the evolution of the averaged concentration as a function of
space and time (§ 2.4). Our approach (the full derivation is presented in Appendix B)
allows us to determine the theoretical bounds of validity of the model, expressed in
terms of the governing dimensionless numbers. The analysis is complemented by a
classification of the dominant transport regimes depending on the magnitude of the
Pèclet and Sherwood numbers of the problem (§ 2.5). Then, we solve numerically the
advection–diffusion–mass-transfer equation coupled with the bubble profile (Bretherton
1961) to study the transport problem in the bubble front and the bubble rear (§§ 3.1
and 3.2). In a separate section (§ 3.3), we present the analytical solution of the transport
problem in the uniform film region. The results shed light on the mechanisms that control
the transport of a passive scalar around a Taylor bubble in the presence of superficial mass
transfer.
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Figure 1. Sketch of the confined bubble that moves at speed U within a channel of half-width R. The film
regions of length L of the front and rear menisci are depicted. The Taylor bubble is sufficiently long so that a
region of uniform film thickness h∞ exists.

2. Theoretical derivation

2.1. Viscous flow in the film
We consider a Taylor bubble confined in an horizontal planar channel that advances
through an incompressible Newtonian fluid at a steady velocity U, as sketched in figure 1.
The motion is driven by a Poiseuille flow with a constant average velocity far ahead of
the bubble, see figure 1. The bubble is sufficiently long so that a region with uniform film
thickness h∞ exists and h∞/R � 1. In the limit of small capillary number, the slope of
the interface in the film is small dĥ/dx̂ � 1 and the dynamics of ĥ(x̂, t̂) is described by the
lubrication equation (Eggers & Fontelos 2015)

∂ ĥ
∂ t̂

+ σ

3μ

∂

∂ x̂

(
ĥ3 ∂3ĥ

∂ x̂3

)
= 0, (2.1)

where μ and σ are the liquid viscosity and surface tension, respectively. Equation (2.1)
describes the motion in the film region in response to the gradient of the capillary pressure
p̂ = −σ d2ĥ/dx̂2. In a moving reference frame attached to the bubble ĥ(x̂, t̂) = ĥ(x̂ − Ut̂),
the integration of (2.1) yields to the Landau–Levich–Derjaguin–Bretherton similarity
equation (see de Gennes et al. 2003; Stone 2010)

d3η

dx3 = η − 1
η3 , (2.2)

where

x = x̂
h∞(3Ca)−1/3 , η = ĥ

h∞
, Ca = μU

σ
. (2.3a–c)

This is the film equation derived by Bretherton (1961) that describes the transition region
between the film and the caps at either end. At the bubble front, (2.2) can be integrated
numerically starting from the uniform film, which corresponds to the boundary condition
η(−∞) = 1, towards x → ∞ where the solution matches to a spherical cap of radius R. In
the vicinity of the uniform film, the solution has an exponential behaviour, while, for η �
1 a parabolic region with constant dimensionless curvature d2η/dx2 is established. To get
the profile at the bubble rear, (2.2) is integrated in the opposite direction towards x → −∞
starting from the uniform film region. Imposing that the rear curvature far from the uniform
has the same curvature of the front, the typical oscillating profile at the back is obtained.
All the details for the computation of the bubble profile are described in Bretherton (1961).
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Dispersion around a Taylor bubble

2.2. Governing equations for transport
We consider the transport of a scalar of concentration c(x̂, ŷ, t̂) within the film region of
a confined Taylor bubble. The scalar is advected by the velocity field and diffuses with a
constant diffusion coefficient D. In a reference frame attached to the bubble, the governing
equation for the concentration reads

∂ ĉ
∂ t̂

+ [
û − U

] ∂ ĉ
∂ x̂

+ v̂
∂ ĉ
∂ ŷ

= D
∂2ĉ
∂ x̂2 + D

∂2ĉ
∂ ŷ2 , ŷ ∈ [0, ĥ], (2.4)

where û and v̂ are the local velocity in the x and y directions, respectively. According
to Bretherton (1961), the flow in the film region is expressed using a lubrication
approximation with û(x̂, ŷ) and v̂(x̂, ŷ) given in (A1) and (A3), respectively. We assume
that at the bottom wall, ŷ = 0, and the bubble–fluid interface, ŷ = ĥ, the scalar is
transferred with first-order mass-transfer coefficients kw and ki, respectively, as described
by the following boundary conditions:

−D∇ĉ
∣∣
0 · n = kwĉ at ŷ = 0, (2.5)

−D∇ĉ
∣∣
ĥ · n = kiĉ at ŷ = ĥ, (2.6)

where n is the unit vector perpendicular to the boundary pointing out of the fluid domain,
see figure 1. At the wall, the normal unit vector is n = (0, −1) while at the bubble–fluid
interface the unit vector depends on the meniscus profile as

n =
⎛
⎝− ∂ ĥ/∂ x̂√

1 + (∂ ĥ/∂ x̂)2
,

1√
1 + (∂ ĥ/∂ x̂)2

⎞
⎠

T

. (2.7)

Before recasting the transport equation in terms of dimensionless variables, it is worth
identifying the characteristic scales of the problem. The two relevant length scales in the
x̂ and ŷ directions are the characteristic length of the film region, L = h∞(3Ca)−1/3 from
Bretherton (1961), and the uniform film thickness h∞. Based on these, we define the
following scale parameter:

ε = h∞
L

= (3Ca)1/3 � 1. (2.8)

The determination of the relevant time scale is not unique (e.g. Mauri 1991; Auriault
& Adler 1995; Mikelić et al. 2006; Battiato & Tartakovsky 2011; Bourbatache, Millet &
Moyne 2020). Assuming that the characteristic scale for the velocity is the bubble speed
U, we can define the axial advective time τa = L/U. Molecular diffusion introduces two
additional time scales, the axial, τL = L2/D, and the transverse, τh = h2∞/D, diffusion
times. Since we are primarily interested in transport dynamics in a time frame much larger
than the transverse diffusion time and close to the advection time, we choose τa as the
reference scale for the time variable.

The presence of superficial mass transfer introduces additional time scales in the axial,
τLw = L/kw and τLi = L/ki, and the transverse, τhw = h∞/kw and τhi = h∞/ki, directions.
As discussed later, we focus on the most general case when the transversal mass transfer
balances with axial advection.

951 A22-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

82
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.829


D. Picchi and P. Poesio

We make (2.4) dimensionless with

x = x̂
L

, y = ŷ
h∞

, t = t̂
τa

, u = û
U

, v = v̂

εU
, c = ĉ

cref
, (2.9a–f )

where cref is a reference value for the concentration. This procedure yields

∂c
∂t

+ [u − 1]
∂c
∂x

+ v
∂c
∂y

= 1
Pe

∂2c
∂x2 + 1

Peε2
∂2c
∂y2 , y ∈ [0, η]. (2.10)

where u(x, y) and v(x, y) are given in (A7) and (A8), respectively. The Pèclet number Pe
is defined as

Pe = LU
D

= τL

τa
, (2.11)

and can be interpreted as the ratio between advection and diffusion in the axial direction
or, alternatively, between the diffusion and the advection time scales. When the Pèclet
number is small, Pe � 1, the problem is diffusion dominated; when Pe = O(1) diffusion
and advection play similar roles; for Pe � 1 the problem is advection dominated.
The dimensionless boundary conditions at the wall and at the bubble–fluid interface
read

∂c
∂y

= ε2 Shw c, at y = 0, (2.12)

ε2∂η/∂x√
1 + ε2(∂η/∂x)2

∂c
∂x

− 1√
1 + ε2(∂η/∂x)2

∂c
∂y

= ε2 Shi c, at y = η, (2.13)

where

Shw = L2kw

h∞D
= τL

τhw
Shi = L2ki

h∞D
= τL

τhi
, (2.14a,b)

are the Sherwood numbers for the wall and interfacial mass-transfer mechanisms.
Both Sherwood numbers are the ratio between transversal mass transfer and axial
diffusion: for finite Sh, superficial mass transfer competes with advection and diffusion;
for Sh � 1 superficial mass transfer becomes negligible. Under the assumption that
the lubrication approximation for the film, equation (2.2) holds, i.e. ε � 1, (2.13)
simplifies to

− ∂c
∂y

= ε2 Shic, at y = η. (2.15)

In other words, the slope of the bubble–fluid interface is sufficiently small, dĥ/dx̂ � 1,
that the unit vector (2.7) almost aligns with the y axis in figure 1, i.e. n = (0, 1) at the
bubble–fluid interface.

2.3. Two-scale asymptotic expansion of the transport equation
The goal of this work is to obtain a one-dimensional approximation of the transport
equation in the film region. We seek to account for advection, diffusion and superficial
mass-transfer mechanisms through an effective velocity, effective diffusion and effective
mass-transfer coefficient in an advection–diffusion–mass-transfer equation. To do so, we

951 A22-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

82
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.829


Dispersion around a Taylor bubble

proceed using a two-scale asymptotic expansion (Hornung 1997; Bensoussan, Lions &
Papanicolaou 2011; Boutin, Auriault & Geindreau 2010):

(i) The starting point is the local description of the transport problem in dimensionless
form, see (2.10), (2.12) and (2.15), where we define the scale parameter ε =
(3Ca)1/3 � 1, see (2.8). Specifically, the proposed asymptotic expansion holds in
the limit of small capillary numbers, Ca � 1, as constrained by Bretherton’s theory.

(ii) The governing dimensionless numbers are evaluated with respect to the scale
parameter – or the capillary number – as

Pe = ε−α, Shw = εβ, Shi = εγ , (2.16a–c)

where the exponents α, β and γ characterise the system behaviour.
(iii) The concentration field c(x, y, t) is expanded in (2.10), (2.12) and (2.15) as a

perturbation series in the scale parameter as follows:

c = c0(x, y, t) + εc1(x, y, t) + ε2c2(x, y, t) + . . . . (2.17)

(iv) Then, after collecting the terms with the same order, the successive boundary-value
problems are solved to obtain the effective description of the transport problem in
terms of the film-averaged concentration

〈c〉 = 1
η

∫ η

0
c(x, y, t) dy, (2.18)

plus higher-order corrections. Specifically, the zeroth-order term in (2.17) is
independent on y and, therefore, c0(x, t) = 〈c〉(x, t).

(v) The last step is checking if the aforementioned procedure yields the desired result
(the existence of an effective description in terms of the average concentration) or
conditions where the coupling between scales prevents the existence of an equivalent
effective description. The parameter space where this result holds is rigorously
determined and the applicability conditions of the model can be mapped in terms
of Pe, Shw and Shi.

The full derivation is provided in Appendix B, distinguishing between three main
transport regimes: advection dominated, competition between advection and diffusion and
diffusion dominated. The final result of this procedure is given in the next section.

2.4. The one-dimensional advection–diffusion–mass-transfer equation
The advection–diffusion–mass-transfer equation describing the transport of the averaged
concentration in the film region of a Taylor bubble is given by

∂〈c〉
∂t

+ (u
 − 1)
∂〈c〉
∂x

+ Sh


Pe
〈c〉 = D


Pe
∂2〈c〉
∂x2 , (2.19)

where u
, Sh
 and D
 are the effective velocity, the effective Sherwood number and the
effective diffusion coefficient, respectively, defined as

u
 = η − 1
3η

− ε2Pe
(73η − 8)(η − 1)

3780η

dη

dx
− ε2Shi

14η(η − 1) + (73η + 47) dη/dx
360η

+ ε2Shw
16η(η − 1) + (47η + 13) dη/dx

360η
, (2.20)
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Sh
 = Shw + Shi

η
+ ε2

3

(
Shw Shi − Sh2

w − Sh2
i

)

− ε2Pe
Shi(7η − 18) + Shw(7 − 3η)

120η

dη

dx
, (2.21)

D
 = 1 + ε2Pe2 2(η − 1)2

945
. (2.22)

The effective coefficients of (2.19) incorporate the impact of shear flow in the film and
the changes in the bubble shape. Specifically, the shear flow spreads the concentration
distribution in the axial direction, enhancing the axial diffusion coefficient D
 at
sufficiently large Péclet numbers. At the same time, changes in the curvature of the bubble
along the axial direction affect the pressure gradient (that drives the flow), and both u
 and
Sh
.

The effective advection accounts for the contribution of three mechanisms: the velocity
in the axial direction (the first term in (2.20)), the coupled effect of bubble shape and
the velocity field in both the axial and transverse directions (the second term in (2.20)),
superficial mass-transfer mechanisms at the boundaries (the last two terms in (2.20)).

The presence of surface mass transfer translates to a source term in (2.19) whose
intensity is controlled by the effective Sherwood number. The source term acts to diminish
the averaged concentration (Sh
 is always positive) as a consequence of how the boundary
conditions (2.12) and (2.15) are formulated, i.e. assuming outflow fluxes at the boundaries.
By inspection of (2.21), we can see that the effective mass transfer accounts for the
contribution of the bubble shape (the first term in (2.21)) and the coupled effect of local
advection and changes in the bubble shape (the last term in (2.21)).

The evolution of the effective coefficients in different regions of the bubble and their
physical origins will be discussed § 3. In Appendix C, we will show that only the leading
term in (2.20) and (2.21) contributes to the overall u
 and Sh
 in both the front and the rear
menisci.

Concerning the applicability of the effective equation, (2.19) holds only if the following
conditions are met:

(i) ε � 1;
(ii) Pe � O(ε−2);

(iii) Shw � O(ε−2) and Shi � O(ε−2);
(iv) Shi/Pe � O(ε−1) and Shw/Pe � O(ε−1).

Condition (i) ensures the x − y scale separation holds, i.e. the film region is much longer
compared with thickness of the uniform film. Conditions (ii) and (iii) provide the upper
bounds to the Pèclet and the Sherwood numbers, identifying the parameter space for which
it is possible to derive an effective transport equation for the averaged concentration.
Condition (iv) ensures that mass-transfer mechanisms do not prevail over advection.

2.5. Identification of transport regimes
In this section we clarify the competition between advection, diffusion and mass transfer
in the film surrounding a Taylor bubble, defining different transport regimes for (2.19).
To do so, we summarise the regimes in a phase diagram based on the magnitude of the
Pèclet and Sherwood numbers, see figure 2. The coloured regions of figure 2 refer to
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Applicability region

Coupled scales

V

V

ε–2

ε–2

ε–1

ε–1

ε2

ε2

ε

ε

1

1

VI

IV

III

II

Pe

Sh
w

, S
h i

I

Figure 2. Phase diagrams of transport regimes in the Pe–Shw or Pe–Shi planes. Coloured areas correspond to
regimes where the effective transport equation for the film-averaged concentration can be formally written by
means of two-scale expansions. We identify the following transport regimes: I, effective advection, effective
diffusion and effective mass transfer; II, effective advection and effective diffusion; III, effective advection,
molecular diffusion and effective mass transfer; IV, effective advection and molecular diffusion; V, molecular
diffusion and effective mass transfer; VI, molecular diffusion only.

physical conditions where the transport equation for the film-averaged concentration can
be formally written by means of two-scale expansions. Outside the coloured regions the
scales are coupled. In the phase diagram, the roles of the Sherwood number at the wall,
Shw, and the interface, Shi, are equivalent since they appear with the same functional
dependence in (2.20) and (2.21).

When the Pèclet number is large (Pe = O(ε−1)) and at least one of the two Sherwood
numbers is of the order of O(ε−1), the transport is driven by the competition between
effective advection, effective diffusion and effective mass transfer as

Regime I:
∂〈c〉
∂t

+ (u
 − 1)
∂〈c〉
∂x

+ ε Sh

I 〈c〉 = ε D


I
∂2〈c〉
∂x2 , (2.23)

with D

I ∼ 1 + 2(η − 1)2

945
, Sh


I ∼ 1
εη

, u
 ∼ η − 1
3η

, (2.24)

where we have used the approximations given in Appendix C. Near the uniform film
where η = O(1), shear and shape induced diffusion is negligible since the fluid is nearly at
rest. Therefore, the effective diffusion coefficient reduces to molecular diffusion, D


I ≈ 1.
Far from the uniform film, instead, shear-flow and shape induced diffusion plays a role
augmenting D


I . The effective mass-transfer coefficient Sh

I plays a role only in the

proximity of the uniform film where the surface available to mass transfer is high compared
with the amount of fluid. If η � 1, Sh


I becomes negligible. For smaller Sherwood
numbers, Shi � O(ε−1) and Shw � O(ε−1), the source term in (2.23) can be dropped;
we refer to this case as regime II.
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When the Pèclet number is finite (Pe = O(1)) and at least one of the Sherwood numbers
is of the order of O(1), effective advection competes with effective mass transfer and
molecular diffusion leading to

Regime III:
∂〈c〉
∂t

+ (u
 − 1)
∂〈c〉
∂x

+ Sh

III〈c〉 = D


III
∂2〈c〉
∂x2 , (2.25)

with D

III ≈ 1, Sh


III ∼ 1
η
. (2.26)

In this regime, shear and shape induced diffusion becomes negligible. In case the
Sherwood numbers are smaller, the mass-transfer term in (2.25) can be dropped (regime
IV).

When the Pèclet number is small (Pe = O(ε)) and at least one of the Sherwood numbers
is of the order of O(ε), transport is purely driven by molecular diffusion and advection
plays a negligible role. Specifically,

Regime V: Pe
∂〈c〉
∂t

+ Sh

V〈c〉 = D


V
∂2〈c〉
∂x2 , with D


V = 1, (2.27)

where the mass-transfer term can be dropped when Shw and Shi assumes smaller values
(regime VI), see figure 2.

2.6. Numerical solution
The general solution of (2.19) can be found numerically for the front and rear menisci if
the film profile and the boundary and initial conditions for the averaged concentration are
provided.

The film profile, η(x), is obtained solving (2.2) for the rear and the front menisci
separately, as discussed in § 2.1, using the differential equation solver ode45 of Matlab.
The code used in this work for this purpose has been developed in a previous publication
(Picchi et al. 2021), where all the details concerning the boundary conditions are
discussed.

The concentration field 〈c〉(x, t) is obtained solving (2.19) using the solver pdepe of
Matlab. A different set of initial and boundary conditions is considered and will be
discussed in the following sections. The front and the rear menisci are treated separately
and, since the effective coefficients depend on the local film thickness η(x), we developed
a Matlab function that provides the film thickness at a specific location to evaluate the
coefficients of (2.19).

3. Results and discussion

3.1. The concentration field in the front meniscus
In this section, we investigate how the solute is transported within the film region in the
bubble front. Figure 3(a) shows the typical profile of the front meniscus (black line): close
to the uniform film region the interface grows slowly (exponential region with η ∼ exp(x))
while, for η � 1, the profile follows a parabolic trend (η ∼ 0.321x2 as in Bretherton 1961).
The following analysis assumes that the scale parameter is sufficiently small so that the
concentration field can be expanded as in (2.17), i.e. ε = 0.01.

Diffusion is controlled by the effective diffusion coefficient D
 defined in (2.22). In the
uniform film region, η = 1, the fluid is at rest and only molecular diffusion plays a role,
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Figure 3. (a) Contours of the magnitude of the velocity,
√

u(x, y)2 + v(x, y)2 and flow streamlines with respect
to a fixed reference frame in the bubble front; (b) effect of Pèclet number on the effective diffusion coefficient,
D
, in the front meniscus; right, profile of the front meniscus; ε = 0.01.

D
 = 1. In the front meniscus, instead, the shear flow tends to spread the scalar along
the axial direction (see the streamlines in figure 3a) enhancing the effective diffusion at
sufficiently large Péclet numbers. This effect is the combination of the local axial velocity
field and changes in bubble shape, as shown in figure 3(b). For the sake of physical
interpretation, we can recast (2.22) in terms of the Pèclet number of the film, Pef ,

D
 = 1 + Pe2
f

2
945

where Pef = U(ĥ − h∞)

D
, (3.1)

recovering the same scaling law of the Aris–Taylor dispersion coefficient. In other words,
the effective diffusion coefficient follows a Pèclet square behaviour.

The effective velocity given in (2.20) is negligible only in the uniform film region. As
the magnitude of the velocity becomes relevant, see figure 3(a), the averaged concentration
experiences additional advection, as plotted in figure 4. The major contribution comes
from the axial velocity which follows a (η − 1)/3η behaviour and reaches the limiting
value of u
 → 1/3. The effective velocity slightly diminishes as an effect of Pe and Shi
when η is high; the evolution of u
 with respect to Shw is not shown for the sake of brevity.
Interestingly, the contribution of the wall and interfacial Sherwood numbers, Shw and Shi,
appear with opposite sign in (2.20). This can be explained with differences in the local
velocity between the channel wall (where the velocity is zero due to the no-slip condition)
and the bubble–fluid interface (where the velocity is non-zero according to the free-surface
boundary condition).

The effective Sherwood number, (2.21), is maximum in the uniform film region. There,
since the fluid is at rest, the solute cannot escape the film and, therefore, it is rapidly
consumed from the boundaries. Outside of the uniform film region, Sh
 decays as η−1

since the non-zero velocity causes the scalar to escape the surface, see figure 4(c). Note
that the second and the third terms in (2.21) make only small contributions to the overall
Sh
, meaning that the effective mass transfer is mostly driven by the proximity to the
boundaries (i.e. the bubble shape) via the variable η.

In order to identify which mechanism dominates, we construct the following
representative test case. We solve (2.19) imposing a concentration front 〈c〉(x0, t) = 1
at x � x0 and initialising 〈c〉(x, 0) = 0 in the entire domain. Since the location of the
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Figure 4. Effective velocity in the front meniscus. (a) Left, effect of Pe; right, profile of the front meniscus.
(b) Left, effect of mass transfer at the bubble–fluid interface; right, profile of the front meniscus. (c) Left, effect
of the Sherwood number at the wall; right, profile of the front meniscus. The evolution of Shi is not shown
since there is no discernible difference from Sh
. In all cases ε = 0.01.

concentration front is purely arbitrary, we chose to place it at x0 = 20. This choice ensures
that the concentration front is sufficiently far from the transition between the exponential
region (where η ≈ 1) and the parabolic region. In this way, we inject the solute into a
region where the dimensionless curvature is constant. This set-up mimics the case where
the bubble advances through a ‘dirty’ (i.e. sharp discontinuity in the concentration field)
channel. Specifically, we show the transient dynamics of the most general case, regime I
defined in § 2.5, and the transitions to regimes II, III and IV.

Figure 5 shows the time evolution of the average of the concentration along the front
meniscus for a regime where advection dominates over diffusion and superficial mass
transfer balances with advection. Specifically, we refer to a case where Pe = 100, Shw =
100 and Shi = 0 (regime I). At t = 1, see figure 5(a), the concentration front is sharp,
while at later times, the front gets more and more diffuse. Interestingly, as the front gets
closer to the uniform film region, the concentration rapidly decreases since the effective
Sherwood number Sh
 in (2.19) becomes dominant, see figure 4(c); the movie of this case
is available as supplementary Movie 1 available at https://doi.org/10.1017/jfm.2022.829.
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Figure 5. Time evolution of the average of the concentration, 〈c〉(x, t), in the bubble front for Pe = 100,
Shw = 100, Shi = 0 and ε = 0.01. Note that the quantity plotted is a one-dimensional approximation of a
two-dimensional field. See online supplementary Movie 1 for a simulation of this case.

To get a more quantitative picture, we present the breakthrough curves in figure 6(e): the
solute is entirely consumed even before reaching the uniform region. In this regime, even
though the bubble advances through a ‘dirty’ channel, we expect the uniform film region
to be ‘clean’ from the solute at later times.

When the surface mass transfer is reduced to Shw/Pe = 0.1, the decay of the passive
scalar in the film region is less intense and, at later times, the front propagates inside the
uniform film region, see figure 6(c). In case Shw = 0 (regime II), the front propagates
almost rigidly except for the effect of weak diffusion, see figure 6(a).

When diffusion and advection compete for Pe = 1 (regimes III–IV), the breakthrough
curves assume a different shape, see figure 6(b,d, f ). At early times, the front is rapidly
diffused independently of the magnitude of the Sherwood number and an increase of Shw
results in a more intense decay in the film region. Also for this regime, when Pe ∼ Shw
the solute is consumed even before reaching the uniform film. Note that we only show the
impact of the wall mass-transfer mechanism, but analogous results are obtained for mass
transfer at the bubble–fluid interface imposing Shi /= 0.

The effect of the Pèclet and Sherwood numbers is summarised in figure 7, where we
show the breakthrough curves at the steady state, 〈c〉(x, t → ∞). Each steady state curve
represents the envelope of the transient behaviour described in figure 6. As expected,
when Shw = 0, the mass-transfer mechanism does not play any role and, therefore,
the steady state is the trivial solution 〈c〉 = 1. As Shw increases, instead, the solute is
quickly consumed: the location where 〈c〉 ≈ 0 shifts closer to the concentration source,
see figure 7(a). The Pèclet number affects the steady state behaviour by shifting the
breakthrough curve in the direction of the uniform film (i.e. enhancing the effect of
advection), see figure 7(b).

Another aspect of interest for applications is the formation of hot spots in the
concentration field, which may determine localised mass-transfer fluxes. To see this, we
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Figure 6. Breakthrough curves for the averaged concentration in the front meniscus as a function of Pe and
Shw; in all the cases ε = 0.01. On the left of each panel the averaged concentration at different times is plotted,
on the right the front meniscus. Cases (a,c,e) are dominated by advection; in (b,d, f ) diffusion compete with
advection.
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〈c〉(x, t), for (a) regime I and (b) regime III. See online supplementary Movies 2 and 3 for simulations of
these cases.

initialise the simulations imposing a concentration field 〈c〉(x, 0) = 1 in the entire fluid
domain and 〈c〉(x0, t) = 0 at the right boundary of the domain.

Figure 8(a) shows a significant case where the formation of a hot spot can be
observed in the advection dominated regime (Pe = Shw = 100). At early times, t = 0.2,
the concentration starts decaying in the fluid domain due to surface mass transfer according
to the magnitude of Sh
, see figure 4(c). The solute is quickly consumed in the uniform
film region (where Sh
 is maximum) while it is mainly advected into the parabolic region
of the front meniscus (where u
 is maximum and Sh
 ≈ 0). Since the effective velocity
vanishes in the uniform film, an accumulation of solute forms. Finally, at later times, the
hot spot is consumed by the surface mass transfer.

The hot spot is the result of the transition between the parabolic region, where the
effective velocity dominates, and the uniform film, where the effective mass transfer
dominates over the advection coefficient. The formation of the hot spot is observed only
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Figure 9. (a) Contours of the magnitude of the velocity,
√

u(x, y)2 + v(x, y)2 and flow streamlines with respect
to a fixed reference frame in the bubble rear. (b) Effective diffusion coefficient as function of Pe in the rear
meniscus; the scale parameter is set to ε = 0.01.

when the Pèclet number balances with the Sherwood number, i.e. Pe ∼ Shw, otherwise one
of the two mechanisms prevails. A similar behaviour occurs for Pe = Shw = 1, as shown
in figure 8(b) and in supplementary Movies 2 and 3.

3.2. The concentration field in the rear meniscus
In this section, we investigate how the solute is transported in the rear of the bubble.
Differently from the front, the meniscus shows the typical oscillations and, therefore, the
effective coefficients in (2.19) are non-monotonic with respect to x.

The effective diffusion coefficient D
, is marginally influenced by the oscillations and
the enhancement due to shear flow is significant only far from the uniform film, see
figure 9(b). Specifically, the shape oscillations induce changes in the sign of the driving
force (when η < 1 then dp/dx > 0 while η > 1 gives dp/dx < 0) and regions of backflow
appear. This leads to the formation of recirculating vortices in the bubble rear (see the
streamlines in figure 9a) and the effective velocity changes sign in correspondence of such
oscillations. The evolution of u
 is presented in figure 10 where we can observe that the
effect of Pe and Shi on the effective velocity is negligible.

The presence of the recirculating vortices drives the evolution of the effective Sherwood
number. Differently from the bubble front, where Sh
 is maximal in the uniform film
region, in the rear, mass transfer is locally enhanced in proximity to the minimum of
the bubble profile, see figure 10(c). There, a recirculating vortex forms and tends to
squeeze out the liquid from the narrow film (see the streamlines in figure 9a). The scalar is
concentrated in a narrow gap in proximity to the boundaries, enhancing the mass-transfer
mechanism. This effect is more pronounced as Shw (or Shi) increases.

The fact that shape oscillations enhance mass transfer at the bubble–fluid interface is a
known phenomenon for the case of unconfined bubbles (Beek & Kramers 1962; Angelo,
Lightfoot & Howard 1966) and this seems to be confirmed for the case of Taylor bubbles.
Hayashi et al. (2014) demonstrated that fluctuations of the bubble surface area at the
bubble rear account for the main contribution to the oscillation of the effective Sherwood
number. The authors arrived at this conclusion after an analysis of the velocity and the
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Figure 10. Effective velocity in the rear meniscus as a function of Pe, (a) and Shi, (b). (c) Effective
mass-transport coefficient in the rear meniscus as a function of Shw; the evolution of Shi is not shown since
there is no discernible difference in plotting Sh
. In all cases the scale parameter is set to ε = 0.01.

concentration fields around a Taylor bubble rising in a microchannel. Our theoretical
results support this evidence.

Figure 11 shows the time evolution of the averaged concentration in the bubble rear for
the advection dominated regime with Pe = 100, Shw = 10 and Shi = 0. The case has been
constructed solving (2.19) with initial concentration 〈c〉(x, 0) = 0 in the entire domain
and 〈c〉(0, t) = 1 at the right boundary of the domain. The concentration front is sharp at
t = 1, see figure 11(a), and it gets more and more diffuse at later times, see figure 11(d).
As the front moves away from the uniform film region, the concentration progressively
decays as an effect of the surface mass-transfer mechanism; the breakthrough curves for
this case are presented in figure 12(c). The movie of this case is available as supplementary
Movie 5.

When the surface mass-transfer mechanism is augmented to Shw = Pe = 100, the decay
of the solute is more intense and the concentration front cannot escape the film region,
figure 12(e). On the other hand, if mass transfer is turned off, Shw = 0, the front advances
towards the bubble rear almost undisturbed, figure 12(a).
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Figure 11. Time evolution of the average of the concentration, 〈c〉(x, t), for Pe = 100, Shw = 10, Shi = 0 and
ε = 0.01. Note that the quantity plotted is a one-dimensional approximation of a two-dimensional field. See
online supplementary Movie 5 for a simulation of this case.

When diffusion and advection compete for Pe = 1, the front is rapidly diffused and, as
Shw increases, the concentration decay in the film region becomes more intense. The effect
of the Sherwood number is presented in figure 12(b,d, f ). In this regime, when Pe ∼ Shw,
the solute is consumed before exiting the uniform film region, figure 12( f ).

3.3. The concentration field in the uniform film
In this section, we study the mechanisms that govern the transport problem in the
uniform film region, i.e. where η = 1 and dη/dx = 0 in figure 1. In this region, the
fluid is at rest since the curvature is infinite and consequently dp/dx = 0, see (A6). The
advection–diffusion–mass-transfer equation (2.19) reduces to

∂〈c〉
∂t

− ∂〈c〉
∂x

+
Sh


f

Pe
〈c〉 = 1

Pe
∂2〈c〉
∂x2 , (3.2)

where

Sh

f = Shw + Shi + ε2

3
(Shw Shi − Sh2

w − Sh2
i ). (3.3)

Differently from the general case, the effective velocity is identically zero, u

f = 0, and the

effective diffusion coefficient is equal to unity, D

f = 1. The concentration distribution is

controlled by the competition between diffusion and superficial mass transfer, while the
advection term in (3.2) is there only because we consider a reference frame attached to
the bubble. In the film, the effective Sherwood number Sh


f does not depend on the bubble
geometry and, therefore, it is representative of the total mass transfer.

The main advantage in studying the transport problem in the uniform film region is that
(3.2) admits analytical solutions. In fact, the desired solution can be constructed from the
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Figure 12. Breakthrough curves for the averaged concentration in the rear meniscus as a function of Pe and
Shw; in all the cases ε = 0.01. On the left of each panel the averaged concentration at different times is plotted,
on the right the rear meniscus. Cases (a,c,e) are dominated by advection; in (b,d, f ) advection competes with
diffusion.
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Figure 13. (a) Evolution of the averaged concentration in response to a pulse of height equal to unity, centred
at x = 0. (b) Decay of the total mass as a function of time and the ratio Sh


f /Pe.

following Green function (i.e. the solution to a point-source initial condition centred at
x = 0):

G(x, t) =
exp

(
−

Sh

f

Pe
t

)
√

4πt/Pe
exp

(
−(x − t)2

4t/Pe

)
. (3.4)

Since the Green function is general and it is applicable to different sets of initial and
boundary conditions, we focus on the study of a simplified case. We solve (3.2) initialising
the concentration film with a pulse of height equal to unity, centred at x = 0, in a regime
where advection dominates over diffusion, Pe = 100, and competes with superficial mass
transfer, Sh


f = 100. The solution is a Gaussian function that diffuses and decays in time
while being advected along x, as shown in figure 13(a). Interestingly, the total mass, i.e.

∫ ∞

−∞
G(x, t) dx = exp

(
−

Sh

f

Pe
t

)
, (3.5)

exponentially decays, controlled by the competition between Sh

f and Pe. Specifically,

when Sh

f /Pe → 0, axial diffusion has an effect only on the concentration maximum, but

the total mass remains constant. When Sh

f /Pe is finite, instead, the total mass diminishes,

as shown in figure 13(b) and the residence time of the solute in the uniform film gets
progressively shorter (it scales as Pe/Shf ).

The analytical solution of the transport problem in the uniform film can be employed in
the construction of mechanistic or more sophisticated models where knowing the spatial
and time evolution of the concentration field is of interest.

4. Conclusions

In this paper, we studied the transport of a passive scalar around a confined Taylor
bubble in the presence of surface mass transfer. We derived a one-dimensional
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advection–diffusion–mass-transfer equation that applies to the front and rear menisci of
the bubble. Specifically, advection, diffusion and superficial mass-transfer mechanisms
are described through an effective velocity, effective diffusion and effective mass-transfer
coefficients, expressed analytically as a function of the Pèclet and Sherwood numbers, and
the film thickness. Our analysis helped in quantifying the contributions that shear flow in
the film, changes in the meniscus shape and the presence of mass transfer at the domain
boundaries make to the effective coefficients.

Concerning the bubble front, shear flow in the film acts to smear out the concentration
distribution in the axial direction, enhancing the effective diffusion coefficient at
sufficiently large Pèclet number. Interestingly, the diffusion coefficient scales with the
square of the film Pèclet number, recovering the same scaling law typical of the of
Aris–Taylor dispersion. Superficial mass transfer is maximum in the uniform film region,
where the fluid is at rest and the solute is rapidly consumed. Also, there exist regimes
where the solute is entirely consumed even before reaching the uniform film region and,
when the Pèclet number balances with the Sherwood number, there exists the condition
that leads to the formation of hot spots of concentration around the nose of the bubble.

The analysis of the transport problem in the bubble rear reveals that the mass
transfer is locally enhanced in correspondence with the typical meniscus oscillations.
There, the presence of recirculating vortices enhances the solute availability for
superficial mass transfer. The analysis of the uniform film region is facilitated since
the analytical solution can be obtained starting from Green functions of the presented
advection–diffusion–mass-transfer equation.

Despite the fact that the motivation of our work is oriented to microfluidics applications
that involve solute transport and mass transfer, its ramifications are relevant also in
scenarios where the presence of a solute affects the surface tension (i.e. Marangoni
effect) or even drives the flow (i.e. diffusioosmosis). In fact, cases where the gradient
in the concentration of colloidal particles spontaneously drives the flow are typical of
emerging fields, such as micro-filtration and bio-medical engineering: an understanding
of those coupling mechanisms in the surroundings of elongated bubbles could be of
help for the design of such applications. Thanks to the similar mathematical structure,
the results obtained may also offer a new interpretation of heat transfer in the proximity
of the Taylor bubble. More generally, several practical problems that involve thin films
share a lot of similarities from a fluid mechanics perspectives (Stone 2010), and,
therefore, the proposed model may serve as a starting step to generalise the well-known
Landau–Levich–Derjaguin–Bretherton problem in the presence of an active scalar.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.829.
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Appendix A. Velocity profiles in the film region

According to Bretherton (1961), the flow in the film region is expressed using a lubrication
approximation. Specifically, the velocity in the axial direction is a free-surface velocity
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profile given by

û(x̂, ŷ) = dp̂
dx̂

(ŷ2 − 2ĥŷ)
2μ

. (A1)

The velocity in the transverse direction can be obtained starting from the continuity
equation

∂ û
∂ x̂

+ ∂v̂

∂ ŷ
= 0, (A2)

and integrating over the film

v̂(x̂, ŷ) = −
∫ ŷ

0

∂ û
∂ x̂

dŷ = − 1
2μ

[
d2p̂
dx̂2

(
ŷ3

3
− ĥŷ2

)
− dp̂

dx̂
dĥ
dx̂

ŷ2

]
. (A3)

Introducing the definitions of the dimensionless variables defined in (2.3a–c), (2.9a–f )
and using σε2/h as the scale for the pressure, the dimensionless velocity profiles in the x
and y directions read

u(x, y) = 1
2

dp
dx

( y2 − 2ηy), (A4)

v(x, y) = −1
2

[
d2p

dx2

(
y3

3
− ηy2

)
− y2 dη

dx
dp
dx

]
. (A5)

Expressing the pressure gradient as a function of η using (2.2)

dp
dx

= −d3η

dx3 = −η − 1
η3 , (A6)

we obtain

u(x, y) = −η − 1
2η3 ( y2 − 2ηy), (A7)

v(x, y) = 3 − 2η

2η4

(
y3

3
− ηy2

)
dη

dx
− y2 η − 1

2η3
dη

dx
. (A8)

Appendix B. Derivation of the transport equation by means of two-scale expansion

In the following sections the derivation of the effective equation for the average
concentration is carried out separately for each regime, identified by the magnitude of
the Pèclet number.

B.1. Advection dominated regime, Pe = O(ε−1)

In regimes where Pe = O(ε−1) or α = 1, replacing the expanded variables (2.17) and the
dimensionless numbers (2.16a–c) in the equation for the concentration, (2.10), we obtain

− εα−2 ∂2c0

∂y2 + ε0
[
∂c0

∂t
+ (u(x, y) − 1)

∂c0

∂x
+v(x, y)

∂c0

∂y
− εα−1 ∂2c1

∂y2

]

+ ε

[
∂c1

∂t
+ (u(x, y) − 1)

∂c1

∂x
+v(x, y)

∂c1

∂y
− εα−1 ∂2c0

∂x2 − εα−1 ∂2c2

∂y2

]
+ . . . = 0,

(B1)
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where u(x, y) and v(x, y) are given in (A7) and (A8), respectively. Similarly, the expanded
boundary conditions, (2.12) and (2.15), yield

∂c0

∂y
+ ε

∂c1

∂y
+ ε2 ∂c2

∂y
= ε2+βc0 + ε3+βc1 + ε4+βc2 + O(ε2) at y = 0, (B2)

−∂c0

∂y
− ε

∂c1

∂y
− ε2 ∂c2

∂y
= ε2+γ c0 + ε3+γ c1 + ε4+γ c2 + O(ε2) at y = η. (B3)

Collecting the terms at the leading order O(ε−1), we get

−∂2c0

∂y2 = 0 y ∈ [0, η],

∂c0

∂y
= 0 at y = 0,

∂c0

∂y
= 0 at y = η.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B4)

The homogeneity of the equation and the boundary conditions in (B4) ensure that the
boundary-value problem admits a trivial solution (i.e. that c0 is independent of y), and,
therefore, c0 is the average concentration defined in (2.18), c0(x, t) = 〈c〉(x, t). This is true
as long as α < 2, β > −2 and γ > −2, namely, Pe � O(ε−2) and Shw � O(ε−2) and
Shi � O(ε−2). At the next order, O(1), we obtain the following boundary-value problem:

−∂2c1

∂y2 = −ε1−α ∂c0

∂t
− ε1−α

[
−η − 1

2η3

(
y2 − 2ηy

)− 1
]

∂c0

∂x
+ v(x, y)

∂c0

∂y
,

∂c1

∂y
= ε1+βc0 at y = 0,

−∂c1

∂y
= ε1+γ c0 at y = η.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B5)

Since c0 is independent of y, the last term on the right-hand side of (B5) vanishes,
i.e. ∂c0/∂y = 0. A necessary condition for the existence of the solution is that the
integration of (B5) between y = 0 and y = η with the use of its boundary conditions is
identically zero. This condition is known in the literature as the compatibility condition
or Fredholm alternative (see e.g. Rubinstein & Mauri 1986; Auriault 2002; Mikelić et al.
2006). Unfortunately, for the problem considered, the initial and boundary data for c0 are
incompatible and, therefore, this procedure leads to a discontinuous solution. This issue
can be solved by integrating (B5) between y = 0 and y = η with the addition of a smaller
correction, of the order of ε,

∂c0

∂t
−
(

−η − 1
3η

+ 1
)

∂c0

∂x
+ c0ε

α

η

(
εβ + εγ

) = O(ε). (B6)

A similar procedure has been employed in Mikelić et al. (2006) and Rubinstein & Mauri
(1986). By inspection of (B6) we get an additional constraint on the Pèclet and the
Sherwood numbers, i.e. α + β > −1 and α + γ > −1 ( Shw/Pe � O(ε−1) and Shi/Pe �
O(ε−1)).

951 A22-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

82
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.829


D. Picchi and P. Poesio

Substituting (B6) into (B5), we obtain a boundary-value problem for the computation of
c1(x, y, t)

−∂2c1

∂y2 = εα−1 η − 1
2η3

(
y2 − 2ηy + 2

3
η2
)

∂c0

∂x
+ ε

c0

η

(
εβ + εγ

)
,

∂c1

∂y
= ε1+βc0 at y = 0,

−∂c1

∂y
= ε1+γ c0 at y = η,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B7)

whose integration leads to

c1(x, y, t) = −ε1−α η − 1
2η3

(
y4

12
− ηy3

3
+ η2y2

3

)
∂c0

∂x
+ ε

[
εβ

(
y − y2

2η

)
− εγ y2

2η

]
c0

+ C0(x, t), (B8)

where C0(x, t) is an arbitrary function. To determine C0(x, t), we impose that c1 has zero
average, namely

∫ η

0 c1 dy = 0, giving

C0(x, t) = ε1−α (η − 1)η

45
∂c0

∂x
− εη

(
εβ

3
− εγ

6

)
c0. (B9)

Combining (B8) and (B9) we get the final expression for c1(x, y, t)

c1 = −ε1−α (η − 1)

2η3

(
y4

12
− ηy3

3
+ η2y2

3
− 2η4

45

)
∂c0

∂x

+ ε

[
εβ

(
y − y2

2η
− η

3

)
+ εγ

(
η

6
− y2

2η

)]
c0. (B10)

Then, we collect the terms of order O(ε) in (B1), including the additional terms resulting
from (B6), and we obtain a boundary-value problem for c2(x, y, t)

−∂2c2

∂y2 = −ε1−α (u(x, y) − 1)
∂c1

∂x
+ ∂2c0

∂x2 − ε1−α ∂c1

∂t
− ε1−αv(x, y)

∂c1

∂y

−ε−α

[
∂c0

∂t
−
(

−η − 1
3η

+ 1
)

∂c0

∂x
+ εα c0

η

(
εβ + εγ

)]
,

∂c2

∂y
= ε1+βc1 at y = 0,

−∂c2

∂y
= ε1+γ c1 at y = η.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B11)
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Dispersion around a Taylor bubble

Integrating (B11) between y = 0 and y = η with the use of (A7) and (A8) we get

− ∂c2

∂y

∣∣∣∣
y=η

+ ∂c2

∂y

∣∣∣∣
y=0

= −ε1−α

∫ η

0

[
−η − 1

2η3 ( y2 − 2ηy) − 1
]

∂c1

∂x
dy +

∫ η

0

∂2c0

∂x2 dy

− ε1−α

∫ η

0

∂c1

∂t
dy − ε1−α

∫ η

0

1
2

[
3 − 2η

η4
dη

dx

(
y3

3
− ηy2

)
− y2 η − 1

η3
dη

dx

]
∂c1

∂y
dy

− ε−α

∫ η

0

[
∂c0

∂t
−
(

−η − 1
3η

+ 1
)

∂c0

∂x
+ εα c0

η

(
εβ + εγ

)]
dy. (B12)

The integrals in (B12) are carried out recalling that c0(x, t) is independent of y, using the
full expression of c1(x, y, t) given in (B10), and the relation∫ η(x)

0

∂c1

∂t
dy = ∂

∂t

∫ η(x)

0
c1 dy = 0, (B13)

since η(x) does not depend upon time and c1(x, y, t) has zero average. Using the boundary
conditions from (B11) to replace the left-hand side of (B12), we get the following
conservation equation for the leading-order c0 (or the averaged concentration):

∂c0

∂t
+
[
η − 1

3η
− ε2−α (73η − 8)(η − 1)

3780η

dη

dx
− ε2+γ 14η(η − 1) + (73η + 47) dη/dx

360η

+ ε2+β 16η(η − 1) + (47η + 13) dη/dx
360η

− 1
]

∂c0

∂x

+
[
εα εβ + εγ

η
+ ε2+α

3
(εβ+γ − ε2β − ε2γ )

−
(

ε2+γ (7η − 18) + ε2+β(7 − 3η)

120η

)
dη

dx

]
c0

= εα

[
1 + ε2−2α 2(η − 1)2

945

]
∂2c0

∂x2 . (B14)

Advection, superficial mass transfer and diffusion are accounted for through effective
coefficients. In this regime, transverse advection affects both the effective advection and
the effective mass-transfer terms, while the effective diffusion is driven by the flow in
the axial direction only. Equation (B14) represents the generalisation of the Aris–Taylor
dispersion to the film region of a Taylor bubble.

Note that the effective equation (B14) converges to the results obtained by Mikelić
et al. (2006) when (i) advection balances with interfacial mass transfer at the wall
O(Pe) = O(Shw) = O(ε−1) (or β + α = 0 with α = 1); (ii) mass transfer at the interface
is negligible; (iii) the interface is flat like in the case of a straight channel (η = 1) and we
use back (A6) to restore the dp/dx term; (iv) we look at the problem in a fixed reference
frame. Also, if both mass-transfer mechanisms are turned off, we recover the classical
Aris–Taylor dispersion equation (Taylor 1953; Aris 1956).

For the sake of completeness, the second-order correction c2 can be determined by
solving (B11) and choosing that

∫ η

0 c2 dy = 0. We do not report here the final expression
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since we are primarily interested in the evolution of the averaged concentration. As
is shown in Appendix D, the first-order correction is negligible within the region of
applicability of the model.

B.2. Competition between advection and diffusion, Pe = O(1)

In regimes where advection competes with diffusion for Pe = O(1) or α = 0, the expanded
equation yields

− εα−2 ∂2c0

∂y2 − εα−1 ∂2c1

∂y2 + ∂c0

∂t
+ (u(x, y) − 1)

∂c0

∂x
+v(x, y)

∂c0

∂y
− εα ∂2c2

∂y2

− εα ∂2c0

∂x2 + . . . = 0. (B15)

Collecting the terms at the leading orders, O(ε−2) and O(ε−1), in (B15) and (B2) we get
following boundary-value problems:

−∂2c0

∂y2 = 0 y ∈ [0, η],

∂c0

∂y
= 0 at y = 0,

∂c0

∂y
= 0 at y = η,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

−∂2c1

∂y2 = 0 y ∈ [0, η],

∂c1

∂y
= 0 at y = 0,

∂c1

∂y
= 0 at y = η,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B16a,b)

that ensure that both c0(x, t) and c1(x, t) are independent of y. This is true as long as β � 0
and γ � 0. At the next order, O(1), we obtain

−∂2c2

∂y2 = −ε−α

[
∂c0

∂t
+ (u(x, y) − 1)

∂c0

∂x
+v(x, y)

∂c0

∂y

]
+ ∂2c0

∂x2 ,

∂c2

∂y
= ε1+βc0 at y = 0,

−∂c2

∂y
= ε1+γ c0 at y = η.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B17)

Integrating (B17) between y = 0 and y = η we obtain

− ∂c2

∂y

∣∣∣∣
y=η

+ ∂c2

∂y

∣∣∣∣
y=0

= −ε−α

[∫ η

0

∂c0

∂t
dy +

∫ η

0
(u(x, y) − 1)

∂c0

∂x
dy

+
∫ η

0
v(x, y)

∂c0

∂y
dy
]

+
∫ η

0

∂2c0

∂x2 dy. (B18)

Using the boundary conditions to replace the left-hand side of (B18), the full expression
of u(x, y) given in (A7) and recalling that c0(x, t) is independent of y, we get the following
conservation equation for the averaged concentration:

∂c0

∂t
+
(

η − 1
3η

− 1
)

∂c0

∂x
+ εα εβ + εγ

η
c0 = εα ∂2c0

∂x2 . (B19)

In this regime, the contribution of the transverse advection vanishes since ∂c0/∂y = 0 in
(B18) and the diffusive term is limited to molecular diffusion only.
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Dispersion around a Taylor bubble

By inspection of (B14) and (B19) we can observe that the solution obtained previously
for the advection dominated regime embeds the solution obtained in this section for
regimes where advection and diffusion compete. Specifically, when α = 1, several terms
in (B14) become small and (B14) reduces to (B19).

B.3. Diffusion dominated regime, Pe = O(ε) or smaller
When the Pèclet number is small, Pe = O(ε) or smaller, diffusion dominates over
advection and the relevant time scale is the diffusive time scale instead of the advective
one used in (2.9a–f ). In this case, the same procedure described in previous sections can
be applied, provided that the time variable in (2.10) is rescaled as follows:

∂c
∂t

→ εα ∂c
∂td

, (B20)

where td = t̂/τd is the dimensionless diffusion time. Plugging the rescaled time variable
into (2.10), after doing the expansions, we get the following cascade of equations:

− εα−2 ∂2c0

∂y2 − εα−1 ∂2c1

∂y2 + εα

(
∂c0

∂td
− ∂2c2

∂y2 − ∂2c0

∂x2

)
+ . . . = 0, (B21)

coupled with the boundary conditions (B2). It is straightforward to show that this
procedure leads to the following diffusion–mass-transfer equation:

∂c0

∂td
+ εβ + εγ

η
c0 = ∂2c0

∂x2 , (B22)

provided that α � −1, α + β = 0 and α + γ = 0. In this regime, the effect of advection
(in both directions) is negligible. If we switch back to the advective time, (B22) is identical
to (B19) once we drop the advective term

∂c0

∂t
+ εα εβ + εγ

η
c0 = εα ∂2c0

∂x2 . (B23)

Therefore, the effective advection–diffusion–mass-transfer equation (B14) embeds all
three regimes considered.

Appendix C. Further analysis of the effective velocity and the effective Sherwood
number

In this section, we study the relative importance of the different terms appearing in the
effective velocity (2.20) and the effective Sherwood number (2.21). If we define

I1 = η − 1
3η

, I2 = −ε2Pe
(73η − 8)(η − 1)

3780η

dη

dx
,

I3 = ε2
[

Shi
14η(η − 1) + (73η + 47) dη/dx

360η
− Shw

16η(η − 1) + (47η + 13) dη/dx
360η

]
,

M1 = Shw + Shi

η
, M2 = ε2

3
(Shw Shi − Sh2

w − Sh2
i ),

M3 = −ε2Pe
Shi(7η − 18) + Shw(7 − 3η)

120η

dη

dx
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C1)
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Figure 14. Relative importance of the different terms appearing in u
, (2.20), and Sh
, (2.21), for regime I,
i.e. Pe = Shw = Shi = ε−1 and ε = 0.01. (a) Bubble front; (b) bubble rear.

we can compute the relative importance of the different terms with respect to the dominant
one, i.e. I2/I1 and I3/I1 for u
, and M2/M1 and M3/M1 for Sh
, respectively. We plot
such ratios referring to the most general case where Pe = Shw = Shi = O(ε−1) (regime I)
in figure 14(a). Clearly, the terms I2 and I3 (which represent the contribution of transverse
velocity and superficial mass transfer to the overall effective advection) are negligible
compared with I1 (which represents the contribution of axial velocity only). This is true
also in the bubble rear; the spikes in figure 14(b) originate from division by zero when
η = 1, but, at such points, u
 ≈ 0. Similarly, the terms M2 and M3 are much smaller
with respect to M1 in both the front and rear menisci.

From the practical point of view, in the region of validity of the model (see § 2.4), we
can approximate the effective coefficients as

u
 ≈ η − 1
3η

Sh
 ≈ Shw + Shi

η
. (C2a,b)

Appendix D. First-order corrections of the concentration field

In § 3.1 we focused on the time evolution of the averaged concentration, that is, in the
asymptotic expansion (2.17), the zeroth-order term. For the sake of completeness, we study
the concentration field including corrections up to the first order, i.e. c(x, y, t) = c0(x, t) +
εc1(x, y, t). Once c0(x, t) is known by solving (2.19), the first-order term εc1(x, y, t) can
be computed directly from (B10).

To prove that, within the region of applicability of the model (see figure 2) the first-order
correction is small, we analyse the order of magnitude of the correction, estimated as

O(εc1) = O(ε2Pe η2)
∂c0

∂x
+ O(ε2(Shw + Shi)η)c0. (D1)

The axial derivative term in (D1) is controlled by the competition between the Pèclet
number and the bubble shape, while the second term vanishes only when surface mass
transfer is absent or negligible. When Pe is equal to or smaller than O(ε−1), the axial
derivative term does not exceed O(εη2). Similarly, when Shw or Shi is smaller than or
equal to O(ε−1), the second term does not exceed O(εη). Therefore, for all the regimes
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Figure 15. Time evolution of the first-order correction term εc1(x, y, t) in the expansion (2.17) for regime I,
i.e. Pe = 100, Shw = 100, Shi = 0 and ε = 0.01. See also online supplementary Movie 4 for a simulation of
this case.

classified in § 2.5, it is reasonable to neglect high-order terms and to look only at the
evolution of the averaged concentration.

Figure 15 shows the time evolution of εc1(x, y, t) for the same case depicted in figure 5
corresponding to regime I in figure 2. At early times, the correction is around 10 % only
in the proximity of the concentration front, but it becomes negligible when the front has
been diffused. As expected, the axial derivative of c0 contributes only in proximity to sharp
variations of the concentration field.

The scenario changes dramatically when the model is brought closer to or out of its
validity range. If Pe = O(ε−2), the axial derivative term becomes at least of order one; the
same happens for the second term if the Sherwood numbers are of order ε−2. Although the
model is not strictly applicable under such conditions, using the model closer to or outside
of its theoretical limits would require consideration of higher-order corrections instead of
the zeroth-order dynamics only.
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