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Abstract. Among the 50 discovered extrasolar planets orbiting main-
sequence solar type stars only three are confirmed to be in a binary star
system. However, the majority of stars seem to form in binary or even
multiple stellar systems. Standard planet formation scenarios consider
the creation of planets or planetary systems only for isolated solitary stars.
The presence of a companion creates tidal torques on the protoplanetary
disk, which may influence the formation process of planets in disks. In
this contribution the consequences of the companion's perturbation on
the formation scenario of planets is briefly discussed.

1. Planets in Binary Stars

Among the known 50 extrasolar planets around main sequence stars three (16
Cyg B, 55 Cnc, T Boo) are definitely known to be in binary systems with rel-
atively wide orbital separations (see Table 1). Additionally, in one system (GI
86) there is evidence for a drift in the ,-velocity (M. Mayor, personal commu-
nication) possibly indicating a stellar companion with a distance which may be
as close as 10AU. If confirmed this very short distance would imply strong con-
sequences for the planetary formation and stability process. It has been argued

Table 1. The properties of known planets in binary stars

Parameter 16Cyg B 55 Cnc T Boo Gl86
Binary d (AU) 700 1150 240 > 10
M sini (MJ) 1.5 0.84 3.87 4

Planet a (AU) 1.72 0.11 0.046 0.11
Planet e 0.63 0.05 0.02 0.04

that the high eccentricity e == 0.63 of 16 Cyg B may be caused by the presence
of the companion star on an inclined orbit through the Kozai mechanism. How-
ever, as the ratio of distance d of the secondary over the semi-major axis a of
the planets falls into the range

~ == 400 - 10000
a
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the companion has very little influence on the eccentricity of the planet. The
eccentricity of planets can also easily be excited through gravitational interac-
tion of multiple bodies, one of which gets ejected or is scattered into the sun
(Weidenschilling & Marzari, 1996) leaving behind just a single planet. Even
though the observations are still sparse the mere existence of extrasolar planets
in binary stars demonstrates that formation of planets in multiple systems is
not prohibited a priori.

2. Influence of Companions on Disks

Planets are believed to have formed within a protoplanetary disk by successive
growth processes. Thus, to estimate the influence of a secondary star on the
formation process we have to investigate what effect the additional star has on
the dynamics of the disk. Let us first consider the case of a disk surrounding
one star (circumprimary disk) which is orbited by another, secondary star. The
presence of a companion excites tidal waves in the disk which, for a star on a
circular orbit, are stationary in a frame corotating with the binary period. This
spiral waves carries angular momentum and energy (see ego Lin & Papaloizou
1993). As the star orbits the disk beyond the outer disk radius its Keplerian
velocity is smaller than that of the disk and the angular momentum carried by
the spiral wave is negative respect to the disk material. Dissipation of the wave,
for example through shock waves, will slow down the matter in the disk and
lead to an inward drift of the material. This in turn truncates the outer edge of
the disk.

In case of a binary star within a circumbinary disk, the torques created by
the binary lead to angular momentum transfer from the binary's orbit to the
disk, and eventually to an inward truncation or clearing of the inner disk (gap
formation) .

The location of this (inner and outer) truncation radius is determined by
the balance of viscous (gap-closing) and gravitational (gap-opening) torques.
In linear theory the gravitational potential is expanded into a Fourier series
and for each component the effect on the disk is determined. For the general
case of a companion on an eccentric orbit this analysis has been performed for
circumprimary and circumbinary disks by Artymowicz & Lubow (1994).

Their main results are displayed in Fig. 1. The label J.L == 0.3 refers to the
reduced mass J.L == M2/(M1 + M 2 ) . In case of the circumprimary disk a larger
viscosity (lower Reynolds number) leads to a larger truncation radius rt while
for a circumbinary disk it reduces the truncation radius. For typical values
of protostellar disks Re ~ 105 , and for typical binary parameter (see above,
q == 0.5, e == 0.5) we obtain for the circumprimary disk Tt/a == 0.17 and for the
circumbinary disk ri]« == 3.0.

3. On the Formation of Planets in Tidally Perturbed Disks

In this final section we consider the restrictions the presence of a secondary
companion has on the efficiency of planet formation. The secondary acts as a
perturber for the disk and alters directly the environment in which planets form.
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Figure 1. The truncation radius of the disk in units of the semi-major
axis of the binary for a mass ratio q == M2/M1 , and an eccentricity
e == 0.5. Different values of the viscosity are labelled by the logarithm
of the Reynolds number in the disk. Adapted from Artymowicz &
Lubow (1994).
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3.1. Planetesimal Disk

The influence a secondary has on the growth process from planetesimals to plan-
etary embryos is primarily through an increase of the relative motion between
particles in a disk. This is caused by an excitation of eccentricity of the par-
ticle orbits by the disturbing star. An increased relative velocity yields more
destructive collisions and may hinder the growth process considerably. This
whole process was studied in detail by Heppenheimer (1978) and Whitmire et
al. (1998).

They considered a planetesimal disk at runaway phase where collisions and
subsequent merging between different particles lead to a rapid growth. The
collisions are only non-destructive if the relative velocities Urel are smaller than
a critical value Ucrit == 100m/s. They integrated a 4-body system consisting
of 2 stars and 2 planetesimals for different physical parameters, varying the
semi-major axis of the binary stars, their eccentricities, mass ratios, and the
initial separation. By analyzing if Urel was exceeding Ucrit, they deduced a
critical semi-major axis below which the disturbing companion does not allow
for sticking (growing) collisions.

The result implies that for a one-solar mass star the minimum distance
to an orbiting companion, such that planetesimals at 1AU can grow to larger
bodies, must always be larger than 16 AU. The critical semi-major axis scales
only weakly, acrit ex ((i/AU)O.8, with distance from the star.

3.2. The Case of L 1551

Another path of studying the formation of planets in binary stars was taken
by A. Nelson (2000), who studied the interaction of two binary stars each of
which is surrounded by its own circumstellar disk. The physical motivation is
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based on the radio (VLA) observations of the system L1551 (Rodriguez et al.
1998), which consists of a binary system of two half solar mass stars separated
by 50AU.

This system is modelled numerically by solving the full hydrodynamic equa-
tions for the two disks using the method of Smoothed Particle Hydrodynamics
(SPH) using 60,000 particles for each disk, where the continuum equations are
modelled by an ensemble of interaction particles.

The model includes the self-gravity of the disks, an ideal equation of state,
dissipative heating and radiative cooling.

During the evolution the initially axisymmetric disks (with respect to their
central stars) are strongly perturbed at the time of periapse. Spiral waves are
induced in them and they are tidally truncated. At times of apoapse the spi-
ral features tend to disappear and the disks become more axisymmetric again.
These periodic changes of the distortions alter the internal structure of the disk
as well. The question arises what influence do these changes have on the planet
formation process. Planet formation is believed to proceed along two different
lines: a) Through gravitational collapse of a spiral structure. Instability occurs
when the so called Toomre parameter Q, which measures the importance of pres-
sure versus gravity, becomes (locally) smaller than unity. Then pressure forces
are not sufficient to prevent gravitational collapse. b) Through coagulation of
solid material and subsequent gas accretion. As can be inferred from Fig. 2 the
Q-parameter is always much larger than 1, indicating a gravitationally stable
disk. On the other hand, the temperatures in the disk during periapse are so
high that even the most abundant species (water ice) cannot condense to form
the seeds for further growth of the planetesimals.

Hence, from the computations one may conclude that, at least for these
chosen parameters of the disks, planet formation is inhibited in binary stars.
One has to keep in mind however, that the heating and cooling of the disk is
treated still approximative and the calculations are only two-dimensional. For
larger orbital separations of a few hundred AU say, the effects of the secondary
become smaller and planet formation will not be affected.

3.3. Stability of Orbits

An important pre-requisite for the formation of planetesimals is the long term
stability of their orbits. Dvorak (1986) and Holman & Wiegert (1999) have stud-
ied the restricted 3-body problem, in which the planet is treated as a test particle
in the potential of two orbiting stars. They perform numerical integrations and
the total integration time covers more than 104 orbits of the planet. The mass
ratio of the stars, their eccentricity and semi-major axis. are varied. The critical
distance acrit a planet must have to be on a stable orbit is determined as a
function of these orbital parameters of the binary star.

Two different configurations of orbits have been studied. Following the
designation of Dvorak (1986), the first are planetary or P-type orbits which are
well outside the binary. The second type studied are S-type orbits, where the
planet orbits near one of the stars, with the second star to be considered as a
perturber. For P-type orbits there exist a minimum acrit a planet must have to
be on a stable orbit around the binary. For S-type orbits there is a maximum
acrit such that the perturbations of the perturber remain finite. The S-type
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Figure 2. Azimuthally averaged Toomre-parameter Q (top) and the
midplane temperature in the disk versus radius. Indicated are the
vaporization temperatures of various species.
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orbits are certainly more relevant to the properties of the observed extrasolar
planets (see table 1).

For an average eccentricity of e = 0.5 one finds for S-type orbits acrit ~ 0.14.
All observed extrasolar planets have semi-major axis well below this limit. For
P-type orbits the minimum distance a planet must have from the binary is
acrit ~ 3.6. This value lies beyond the inner truncation radius of a circumbinary
disk (rgap = 3.0).

3.4. The Evolution of an Embedded Planet in a Binary Star

Another approach to analyze the influence of a companion on the formation of
a massive planet has been taken by Kley (2000b) who studied the evolution of
a massive planet still embedded in a protoplanetary disk.

A planet with the mass 1MJup is placed initially on a circular orbit around
a 1M0 star at a distance of aJ = 5.2AU. The surrounding protostellar disk has
a mass of Md = 0.01M0 within 1- 20AU, a surface density profile E(r) ex r- 1/ 2 ,

and a Reynolds number of 105 . The secondary has a given fixed mass of M 2 =
0.5M0 and an eccentricity of e2 = 0.5. The semi-major axis a2 of the secondary
is varied from about 50 to 100 AU for different models. To minimize initial
disturbances, the secondary is placed at apastron in the beginning. During
the evolution, the planet may accrete material from the disk and increase its
mass. These evolution calculation are similar to the migration computations as
presented by Kley (1999, 2000a) and Nelson et al. (2000). '

In the presence of the secondary the disk becomes truncated at the outer
radius. At the same time the planet will truncate the disk from the inner side
such that the disk material will be confined to a narrow ring (see Fig. 3). The
obtained values for the outer truncation radius agree favourably with the value
r-]« = 0.17 as obtained above. The very steep density and pressure gradient
near the planet lead to an increased mass accretion rate onto the planet, and to
a faster inward migration, cf. Fig. 3.

The reduced migration time may then also reduce the growth of a proto-
planet and planet formation will again be inhibited by the presence of a com-
panion.

3.5. Planet Formation in Circumbinary Disks

In circumbinary disks the angular momentum barrier causes material to pile
up near the inner edge of the gap, although there may be some accretion onto
the binary star taking place (see contribution by Mathieu and by Stassun, this
volume). This accumulation of material may be favourable for planet formation
mainly for two reasons: a) The possibility of gravitational instability and collapse
is increased. This scenario has been studied by Laughlin and Lin and preliminary
results including the self-gravity of the disk indicate a Toomre Q-value of around
1. For rapidly cooling isothermal disks fragments can form which may be tossed
out as blobs to possibly form free-floating objects of very low mass; and b) As the
flow is super-Keplerian near the inner edge of the disk pressure effects will cause
a particle accumulation near the inner edge of the disk, which could increase
planet formation. However, the perturbations by the star will also stir up the
particles increasing their relative velocities (see above). So, the net effect on the
efficiency of planet formation is not clear.
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Figure 3. Left: Azimuthally averaged surface density for models
with varying distance (a2) of the secondary, given in units of the plan-
etary distance (5.2AU), after 250 orbits of the planet. The solid black
line indicates the initial surface density profile. Right: Evolution of the
mass (bottom) and semi-major axis (top) of the planet. The evolution
of an unperturbed planet (i.e. no secondary star) which is described
in detail in Nelson et al. (2000) is given by the solid lines (denoted
"Unpert").

4. Summary and Outlook

517

We have seen that the predominant effect a companion has on the efficiency of
planet formation is a negative one. The stirring induced by the secondary star
heats up the disk, making it more difficult for particles to stick together and at
the same time inhibiting gravitational collapse. However, since planet formation
in itself is still a poorly understood process new detailed numerical computa-
tions are needed to arrive at a more detailed understanding of the process. Some
of the problems addressed may include: i) a detailed calculation of the torques
acting on the planet to estimate timescales of migration and the influence of the
secondary, ii) more elaborate thermodynamics in disks (shock, viscous dissipa-
tion, cooling, magnetic fields) to calculate the efficiency of fragmentation and
collapse, iii) multiple planet calculations (in binary systems) to study the evolu-
tion of the semi-major axis, the eccentricity, and the efficiency of ejections. To
achieve these goals multi-dimensional (MRHD, magneto-radiation-hydro) com-
putations will be required.
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