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ABSTRACT

The paper gives some asymptotic results for the compound distribution of
aggregate claims when the claim number distribution is negative binomial. The
case when the claim numbers are geometrically distributed, is treated separately.

1. INTRODUCTION

1A. Let JCI , x2,... be independent identically distributed random variables (the
independent severities) on (0, oo) with cumulative distribution F. Let n be a
random variable (the claim number), independent of the £,'s with distribution
on the non-negative integers defined by

(1) Pn = Pr(^ = n )

Let

(B=O)J

(the total aggregate claim amount). Then the cumulative distribution of s is

(2) G(s)= £ PnFn'(s).

The idea of the present paper is to develop asymptotic expressions when if00

for
(i) the tail

(ii) the stop-loss premium

K(s) = 9(max(is,0))=\ H(x)dx;
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(iii) the density

or the point probability

&=Pr(s=s) .

IB. We are going to use some notation and results from Feller (1971):
If A and B are functions, by the notation A(s)~B(s) as s tends to, say, a,

we shall mean that the ratio A(s)/B(s) tends to 1 as s tends to a.
We shall call the severity distribution F arithmetic if it is concentrated on the

set {A, 2A, 3A,...} for some A, and we shall call the largest such A the span of
the distribution. When we treat arithmetic distributions, we shall for convenience
assume that the span is equal to one; general span-length is obtained by rescaling.

We shall say that a function A is ultimately monotone if there exists a y such
that A(x) is monotone for all x > y.

It is assumed that there exists a K satisfying

(3) - = f eKXdF(x),
P •'(0,00)

and that

(4) v=p\ xeKXdF(x)
J(0,oo)

is finite.

2. GEOMETRICALLY DISTRIBUTED CLAIM NUMBER

2A. In the present section we are going to assume that pn satisfies (1) with a = 1,
that is,

pn=pn(l-p).

Then the distribution G satisfies the identity

(5) G(s) = l - p + p f G(s-x)dF(x), (s>0)
J(0,s]

as is seen by rewriting (2) as

G(s)= I pn(l-p)Fn\s)
n=0

'1-P+P I pn(l-p)(Fn'*F){x)
n=0

= l-p+p(G*F)(s).
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We see that (5) has the form of a renewal equation with defective distribution
pF. This means that we can apply results from renewal theory. In subsections
2B-C we do this for the non-arithmetic case, in subsection 2D for the arithmetic
case.

2B. Assume that F is non-arithmetic. Then by formulae (6.7) and (6.16) of
Chapter XI in Feller (1971) we get

^ * , (s foo).
KV

From this we can also easily obtain an asymptotic expression for the stop-loss
premium K{s).

THEOREM 1. The stop-loss premium K(s) satisfies

K(s)~^Re-KS, (5 t°o).
K V

PROOF. By using L'Hopital's rule we get

,. K {s) ,. -H{s) \-p
hm —=zr = hm — = —^- ,
sf°° e sf°° —K e K v

which proves the theorem. Q.E.D.

2C. If F has a density /, then G has an atom

(6) G(0) = po

at zero, and for s > 0 a density

(7) g(s)= I pnf\s).
n = l

THEOREM 2. The density g(s) satisfies

PROOF. We use L'Hopital's rule:

1-p ,. H(s) .. -gjs) 1,. gis)
= h m _K. = h m —7 = — hm —r=r.

Kv sT» e sT» -K e K stoo e

From this follows the theorem. Q.E.D.

2D. In this subsection we shall assume that the distribution F is arithmetic
with unit span, and we introduce

A =Pr (£, = *), (fc = l , 2 , . . . ) .
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Then

[x]

F(x)= I/,,
; = i

THEOREM 3. When s goes to infinity through the integers, we have

(8) (i)

(9) (ii)

(iii) ^
ve

PROOF. For the whole proof s will always denote a non-negative integer.
(i) In the present case (5) becomes

G{s) = l-p+p

As G(s -i) = 0 for / >s, we may extend the sum to infinity,

Introduction of H(s) = 1 -G{s) gives

H{s)=p I H(s-i)fi.

We get
CO OO O

X=S X=S 1 = 1

CO / OO \

= P I I tf(y))/,,

and thus

By using

we obtain

= P Z ms) + i-s)ft+l K(s-i)pf,.
i=s+l i=l
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Multiplying this equation by eKS and introducing

ft =PfieKi

and

K*(s)=K(s)eKS

give

(10) K*(s)=peKS £ ms) + i-s)f,+ iK*(s-i)f?.
i=s+l i=l

Considered as point probabilities / * , / * , • • • defines a proper probability distri-
bution because of (3). Hence (10) is a proper renewal equation, and the renewal
theorem (Karlin and Taylor, 1975, p. 81) gives

limK*(s) = - lpeKi I {%(s) + i-]%.
*t°o v ,=o j=/+i

In the following development we use that

We have

»(s) = 9(n mx i) = zr— %(xi).
1-p

OO OO

i=0 ;=0

;=o L eK — 1 , = o fc=; J

e -1 \p I ,=o fc=o ,=o

Lc - 1 ,=0 k=o e - 1 J

,=o k=o

From this follows (i).
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(ii) As

\ = K(s)-K(s + l),
we get

limtf(s) eKS = limK(s) eKS ~e~K limK(s +1) e"

( )
st°o

which proves (ii).
(iii) As

g.=H(s)~H(s + l),

the proof of (iii) goes as the proof of (ii).
This completes the proof of Theorem 3. Q.E.D.

3. NEGATIVE BINOMIALLY DISTRIBUTED CLAIM NUMBER

3A. We shall now drop the restriction a = 1 in (1). Then we have the following
theorems:

THEOREM 4. / /

R(s) = eKSH(s)

is ultimately monotone, then

(11) H(s) J 7

PROOF. Let

4>(t)=\ e-'xdF(x),
•'(0,00)J(0,oo)

(12) <r(t)=\ e-'su^K>j-K . ,
J[0,oo) \\-p<p(t)J

to{t)=\ e~'sR(s)ds=-
•'[0,00)

We want to show that

By Theorem 4 on p. 446 in Feller (1971) this is equivalent to

cj(t) — ( — - ) , (rjO).
K \ Vt J

y
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Let

/ vt \
= K[-

\l-p/

We have to show that

(13) lim 0 (0 = 1.
rj.0

We have

40 ^v no t-K

t vt \ a

- / < : ) l - 1
\i-pjno

= hm
40 \l-p<t>(t-K)

As, by L'Hopital's rule,

4 l ( ( ) 4
1 V 1
40 l-p<(>(t-K) 40 ~p<f)'{t-K) -p<t>'(-K)

(13) holds, and hence the theorem is proved. Q.E.D.

THEOREM 5. / / (11) holds, then

(14) K(s) ^—(^-A"sa-1e-KS, (s Too).

K F(a) \ v I

PROOF. L'Hopital's rule gives

,. K(s) -H(s)

— lim

a —I —KS , /

—KS e +(a —.

KS H(s)sT» KS-a + 1 KS e

-1im * w _ i
- l i m — a - i -KS - ir, sst» KS e K 1 (a)

which proves the theorem. Q.E.D.
3B. If F has a density /, then G has an atom p0 at zero, and for s > 0 a density

g(s) given by (7). Then we have the following theorem.

THEOREM 6. / / (11) holds, the density g(s) satisfies

^-A^-Z)"sa-1e-", (sfoo).
(a) \ v /
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PROOF. L'Hopital's rule gives

Kr(a) l v ) ~s^s
a'1e~KS it»

= lim

r(a)
KS g(s) gjs)

KS-a +1 KS e sToo KS e

and this proves the theorem. Q.E.D.

3C. The assumption that R (s) is ultimately monotone, is awkward, as it seems
very difficult to show that it is satisfied. As, when the condition holds,

R(s)~R*{s), (st»)

with

which is monotonely increasing to infinity for a > 1, constant for a = 1, and
monotonely decreasing to zero for a < 1, the condition must mean that R{s) is
ultimately monotonely increasing for a > 1 and ultimately monotonely decreasing
for a < 1; for a = 1 we cannot say whether the ultimate monotony is increasing
or decreasing, but in that case it does not matter as we then have the theorems
of Section 2.

In the arithmetic case the assumption of ultimate monotony of R(s) does not
hold as R(s) then increases continuously when s is a non-integer and decreases
in jumps at integers. But in this case Theorems 4 and 5 cannot hold as for a = 1
(9) and (8) contradict (11) and (14).

If F has a density /, the following lemma gives a condition equivalent to
ultimate monotony of R(s) when a ̂  1.

LEMMA 1. Assume that F has a density f and that a^\. Then R(s) is
ultimately monotone if and only if there exists an sa such that for all s>sa

H{s)

g(5).

His)'

PROOF. For s > 0

and hence

~ds~^
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But because of the ultimate monotony of R(s) there must exist an sa such that
for all s>sa, dR/ds § 0 as a § 1. This proves the lemma. Q.E.D.

The author believes that the assumption of ultimate monotony of R(s) in
Theorem 4 may be replaced by the assumption that the distribution F is
non-arithmetic, but has not been able to prove this result. An indication that
the result holds, is that it holds in the special case a = 1 as shown in subsection
2B. Another indication is given by the following example.

EXAMPLE. Let the severity distribution F be defined by the density

f(x) = pe~0x, (x>0,|8>0).

Then the Laplace transform of F is

(15) ^

and from (12) follows that the Laplace transform of G is

<r(t)

By expanding we get

cr(t)=
i =

As <t>(t;(3(l-p)Y is the Laplace transform of the distribution F(s; i,(3(l-p))
defined by

^ \ -le-brdr, (s,a,b>0)Y{s;a,b) = ^ \
F(a) Jo

we get

H(s)= I (
;=o \i

Assume that a is an integer. Then

;=o \i

As by L'Hopital's rule

'0,

T(a) '
we get

u' isToo)-
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From (3) and (15) we

that is,

(17)

and inserting this in (4)

get

gives

SUNDT

1 p
p /3 — K

K=/3(l-p) ,

(18) v= —

By inserting (17) and (18) in (16) we arrive at (11), which then holds also in
the case when a is an integer and F is the exponential distribution.
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