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Abstract. In [I-S2], we gave an explicit form of zeta functions associated to the
space of symmetric matrices. In this paper, the case of L-functions is treated.
In the case of definite symmetric matrices, we show the ratinality of special
values of these L-functions.

Introduction

This is the third part of the series of our papers [I-S2] on zeta functions
associated to the space of symmetric matrices. In the first part, we gave an
explicit form of zeta functions, and in the second part, we discussed some
analytic properties of them. The purpose of this paper is to give an explicit
form of L-functions associated to that space.

For this space, two kinds of L-functions have been introduced by Sato
[Sa2], Hashimoto, one of the author [Sail], and by Arakawa [A].

The first ones are associated to Dirichlet characters, and were intro-
duced as L-functions of the prehomogeneous vector space of symmetric ma-
trices. The others are associated to a symmetric matrix with coefficients in
a finite field and appeared in the calculation of the contribution of unipo-
tent elements to the trace of some operators on the space of Siegel cusp
forms.

There exists a close relation between these two kinds of L-functions.
In fact, the second ones can be written by the first ones by means of the
Gauss sums defined in Saito[Sail]. Between these two kinds of L-functions,
the first ones are easy to treat. For example, the analytic continuation
and the functional equations of L-functions of the first kind were proved in
[Sa2], [Sail], [Sai2]. Furthermore our procedure of the computation of zeta
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functions in the first part can be easily applied to the case of L-functions
of the first kind. The second kind of L-functions seem to have a rather
complicated form. For simplicity, we assume n > 3 in this paper.

In §1, we give the definition of the two kinds of L-functions. Recalling
the definition of the Gauss sums in [Sail], we describe the relation between
these two kinds of L-functions. We introduce one more matrix-valued Gauss
sum and prove a result on it, which is a complement to the results in [Sail].

In §2, we give an explicit form of L-functions assuming the result on
orbital local series proved in §3. These results contain a generalization of
[I-S1].

In the case of positive definite matrices, using these explicit forms, we
prove the rationality of the values of the L-fucntions at non-positive integers.

In §3, we determine orbital local series for L-functions and complete
the proof of theorems in §2.

§1. L-functions and Gauss sums

For a ring R, we denote by S,(R) the set of symmetric matrices of
degree n with coeflicients in R. For a positive integer n, let L, (resp. L) be
the lattice in S,(Q) consisiting of integral (resp. half-integral) symmetric
matices of degree n, and Lg) (resp. L, (i)) its subset consisting of elements
with signature (i,n —i). Then SL,(Z) acts on L, and L} by g-z = gz'q
for g € SL,(2) and = € L, L}. We define some functions on L,, or L},
which we call characters in this paper. First, we consider characters defined
modulo p” for an odd prime p and then those modulo 2. Lastly, we consider

general ones. For a prime p and a positive integer v, we set Ry, = Z/p"Z.

Let p be an odd prime, and let ¢ be a Dirichlet character with the
conductor f(¢) = p” for a positive integer v. For © € L, or L}, set
Z = x mod p” and define

(,D(n) () = {cp(det z) if det 7 € R;;,:»

0 otherwise.

Let xp and xo be the quadratic character and the trivial one modulo p
respectively. For ¢ = x,, or xo and and integer r with 1 < r < n, we define

o) (z) = { Y(det ') if rank(Z) = r,

0 otherwise,

https://doi.org/10.1017/50027763000006243 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006243

ZETA FUNCTIONS ASSOCIATED TO SYMMETRIC MATRICES 151

- o
where 2’ is an element of S, (Rp1) with gZ'g = (a(c) 8) for g € GL,(Rp1)

and det 2/ # 0. The above definition is independent of the choice of #’. For
r = n, the above two definitions are identical. For r = 0, we set

1 if rank(z) =0,

0 otherwise.

W) = 3@ = {

(()TI)J instead of X(()T).

Let p = 2, and let ¢ and xo = xo,2 be as above. For z € L,, and r,
0 < r < n, we define (™ and X(()r) in the same way as in the case of p odd.
For z € L}, let Q; be the quadratic form in t1,t2,-- -, ¢, associated to x.

Then @, mod p is equivalent to one of

When it is necessary to indicate the prime p, we write x

tity + - troaty_q + t2,

for r odd,
(11) tito 4+ - +t—1ty,
(1.2) tity 4+ tp_sty_g + 12| +tr_qt, + 12,

for r even. We define for r even, 2 <r <mn, and z € L},

1 if Q; mod p is equivalent to (1.1),
X;(T) (x) =4 —1 if @, mod p is equivalent to (1.2),
0 otherwise.

For r = 0, we define X;(O) (z) =1ifx € 2L}, and X;(O)(x) = 0 otherwise.

We consider general characters. Let Nj, Na, N3 be three positive
square-free integers coprime to each other. For an odd prime p | Ny, choose
a character ¢, defined modulo a power of p with 90123 # xo0. When 2 | Ny,
we choose a non-trivial character @9 defined modulo a power of 2. For each
p | Ng and p | N3, we choose integers rp, 0 < 7, < n. Let N3 and N3 be the
product of primes p dividing N such that 7, is odd or even respectively.
We define N§, Nj similarly. For L,, we assume (2, N3) = 1. For = € L,,
we define

(1.3) bz =[] ¢ @) II x5 (@) T x52 ().

PNy p|N2 p|N3
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For L}, we assume (2, NyN§N3) = 1, and we define a character ¢ by
(1.3) replacing xgp ) by X;(r” ) when 2 | N5. It is easy to see 9 is invariant
under the action of SL,(Z).

For ¢, and L = L, L}, we define
G(s,Lip)=cn Y P(z)p(z)|detz|™>,

2€L®) /SLn(Z)

where "
_ 20T, I(k/2)

tn an(n+1)/4

b

and u(z) is the volume attached to z, the definition of which is given in §1
of the part I. This series converges absolutely for Re(s) > ”TH unless n = 2

and 7 = 1.

We give the definition of another kind of L-functions introduced by
Arakawa. Let p be an odd prime. For a € R and a positive integer m, we
set e (a) = exp(2may/—1/m). For S € S,(Rp1) and x € Ly, set

@) = 3 epltr(ay)),
y~S
where y is extended over all y € Sy, (Rp, 1) which are equivalent to S. Here we
understand ep(tr(z)) = ey(tr(z)) for z € Sp(Rp,1) with z (€ S,(Z)) mod p =
z. Then Arakawa’s L-function is defined by

G, L,S)=co Y. 78(2)p(z)|deta| ™,
z€L(®) /SLn(Z)

for L = L,, L}. This series converges absolutely also for Re(s) > %1
unless n =2 and 7 = 1.

To describe the relation between these L-functions, we recall the Gauss
sums introduced in [Sail]. For n = xp, or xo, and = € S, (Rp,1) of rank 7,
we define

n(z) = n(detz’),
I/
0 O
GL,(Rp1) and detz’ # 0. Then n(zx) is well-defined. If r = 0, we set
n(z) = 1. We define

where 7’ is an element of S,(R,1) such that ‘gzg = ( 0) with g €

W (@,m) = > n(y)ep(tr(zy)),
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where y runs through all elements of S,,(R,, 1) of rank r. For € L, or L},
we set W (z,n) = W (&,n) with Z = z mod p. Then for S € S,(R, 1) of
rank r, we have

(14) (@) = VP, x0) + X (WP, X))

For two integers r, t such that 0 <7, t <n and » =t mod 2, we define
Wn(r,t) as follows. When r = ¢ = 1 mod 2, we set

W (r,t) = W, (z, xp) Xp (),

where z is an element of S, (R, 1) of rank t. Then by Cor. 1.2 of [Sail],
this is independent of the choice of z (denoted by W (7, 5) with r = 2: — 1,
t =27 — 1 in [Sail]). When both of r and t are even, we set

Wh(r,t) = W (x, xp)

for z € Sp(Rp,1) with rank = = ¢. This is also independent of the choice of
z by Cor. 1.14 of [Sail] (The proof of Cor. 1.14 there is incomplete in the
case where n is even and rankz = ¢t = n. But this case can be deduced
easily from Prop. 1.12 of [Sail].). Let G(xp) be the usual Gauss sum for
Xp- In these notations, we can prove

PROPOSITION 1.1.  Let p be an odd prime and let x € S,(Rp1).
(1) If r ts odd, then

[(n=1)/2) ,
Wra,xp) = > W(r,2j + DxF+(2),
=0
[n/2

]
W (z,x0) = Gxp)" D W (1,2 — Dx ) (2)
i=1

[(n+1)/2] i) 2i-1)
—Glxp) ™ Y. W r— 1,2 - 2)(x¢” (z) + chig ()
j=1

+ W (O, x0)X\ ().

(2) Let v > 2 be even, and let T be an element of S,41(Rp1) such that
Xp(Z) = xp(x) and rank(Z) = rank(z) + 1. Then one has

[n/2] . .
(@, xp) Z W (r, 27) S (@) + x§7 (),

W (@, x0) = Glxp) " W (E, Xp) — W (, X0).
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Here we understand that Xgm)(:c) =0 for m > n when n is even, and Oy, is
the zero matrixz of degree n.

Proof. These assertions follow easily from Cor. 1.2, Cor. 1.14, Prop.
1.13, Prop. 1.11 and Prop. 1.12 of [Sail].

This shows that the L-functions (;(s,L,S) can be written as linear
combinations of (;(s, L, x). For example, if the rank r of S is odd, then by
(1) of Prop. 1.1. and (1.4) we have

[(n=1)/2)
1 . -
G, L) = S (nl(S) 3 WNr,2j +1)G(s, L x? ™)
7=0
[n/2] .
+G0)" D WH(r, 25 = 1)G(s, Lx)
j=1
[(n+1)/2] o .
—Glxp) ™t D W r = 1,25 — 2)(Gi(s, Lyxg ) + G(s, Loxg Y 7))
j=1

- W: (On> XO)Ci(Sa L’ XSO))) .

We can prove a similar formula for S of rank r even by (2) of Prop. 1.1.
Hence the rationality of special values of (;(s, L, S) follows from that of

Ci (SaLaw)‘
Here we insert a result on Gauss sums, which is a complement to

Th. 1.15 and Cor. 1.17 of [Sai] (in Th. 1.15, W(x,) should be read W (x;)%)
There, for u, v such that 0 < u, v < [n/2], we define

W (x, Xo0)Xp(T) if n is even and n = 2u,
Wi (u,v) = § W1 (2, x0)
+ W3, (x, x0))xp(z) otherwise,

with « € S,,(Rp1) of rank x = 2v, which is independent of the choice of z,
and the Gauss sum

We(xp) = (We'(t — 1,5 — 1)).
We define one more matrix-valued Gauss sum
U (xp) = (W™(2i — 2,25 — 2)),
where the (i, j) component of UZ(xp) is W™(2i — 2,25 — 2).
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THEOREM 1.2.  The notation being as above, one has

Ve eo)We () = 9" 2 By,
where Ejy /9111 is the unit matriz of degree [n/2] + 1.

Proof. We give a proof only for the case n odd, since the other case
can be treated in the same way. Then the (4, ) component of the product
of matrices on the left hand side is equal to

[n/2]+1
(1.5) > Wy, xp) (Wak_o (4 X0) + Wah_1 (4, X0))Xp (1),
k=1

where z,y € S,(Rp1) of rank 2k — 2, 25 — 2 respectively. Using the fact
that (cf. Prop. 1.13 of [Sail])

Wﬁ—z(x,Xp) = Wznz'—2($,»Xp)

for z, o’ € Sn(Rp,1) of rank 2k — 1, 2k — 2 respectively, we see (1.5) is equal
to

Y xe®en(tr(y2))Wai_s (2 xp)
2€Sn(Rp,1)

= Z Xp(¥)Xp(w) Z ep(tr((y +w)z))
w 2650 (Z/pZ)

— pn(n+1)/26ij,

where w runs through all elements of Sy, (Rp1) of rank 2¢ — 2. Here we used

the fact that the rank of y is even. This completes the proof.

82. Explicit form of L-functions

In this section, we give an explicit form of L-functions assuming the
results in §3 and discuss the rationality of the values of L-functions at non-
positive integers. As for the calculation of the L-functions, we follow the
procedure of [I-S2], and only give an outline.

Let Ny, N2, N3 and 1 be as in §1. We set 9, = gogn), XZ(,T”), or X(()T;Z)
according to whether p divides N1, N3, or N3, and extend ), to Sp(Rp.)
for a large v and to S,(Z,) naturally. For p prime to NiNyN3, let v, be
the characteristic functions of Sy, (Rp,) or Sp(Z,). For p = 2, let S,(Zp)e
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be the subset of S,,(Z,) consisting of elements (z;;) such that z;; = 0 mod p
for all 4, and let S, (Rp.)e be the similar subset of S,(R,,).

If 2 | N3, we set ¢5(z) = X;(T”)(m) = X;(T”)(y) for x € S,(Rp,)e or
Sn(Zp)e taking y € Ly, such that 2y = z mod p¥. When (2, N5) = 1, let ¢
be the characteristic function of S, (Rp,) or Sp(Zp). In the following, we
assume r, > 1, since the case of r, = 0 can be easily reduced to the case
where p [ Ny Ns.

For i, 0 <i <, let

§= (_1)n—i, € = (_1)(n—i)(n~i+1)/2’

and set
[o¢] o0
&i(s, Ln, ) = > ai(d)|d]™°,  &(s, Ly, 0) = Y af(d)2"*|d|~°.
od=1 Sd=1

The first step is to express a;(d) and a(d) by local data. For this, we
introduce some notations. Let 1, and ¢, be the constant function with
value 1 and the Hasse invariant on Sy, (Z,) or S, (R, ) respectively, and for
a, b € Q, let (a,b), be the Hilbert symbol of a and b. For w, = ¢, or g,
and d € Z,, d # 0, we define

>‘P(¢P’ d, wp) = Ul_i__)n(}o )\p,u (#}pa d, wp)
()‘;(7/’1)’ d, wp) = yh_)r{)lo A;(d’;: d, wp) for p = 2),

where

)‘p,V(T/’pad: Wp) = 2_62’pp_v(d)+(n(n_1)/2)u|SLn(R1J,V)|‘1 Z d)p(a:)wp(m)
2€5n (Rp,v,d)

()‘;,u (’lﬁ;, d, wp) - 2—62,pp—v(d)+(n(n—1)/2)uISLn(RP’V)I—l
X Z Yy (z)wp(z)for p = 2).

$€Sn(Rp,V’d)e

Here v is the additive valuation of Z, such that v(p) = 1, and

Sn(Rpy,d) ={z € Sp(Rp,) | detz = d mod p”}
(Sn(Rpyyd)e = Sp(Rpu,d) N Sp(Rpy)e for p=2).
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Forw=1ore, and d € Z d # 0, we define
>‘f (Q;ba da (4)) = H )‘p('l/)pv da wp)
P

(N} (%, d,w) = Ao vy, d,wp) [[ Ap(ps s wp) for p =2).
p#2
Then by Siegel’s formula and the invariance of v in a genus, in the same
way as Prop. 2.2 of [I-S], we obtain

a;(d) = crn(Ar(¥,d,0) + eAf(¥,d, g))|d|+D/2]

a;(d) = o [Tep(@™™) [T xp(27") (N}, d, 1) + eXF(3, d, )| 172,
p|N1 p|Ng

As in the case of zeta-functions, our L-functions depends only on § and e,
and we set

5(87 L7¢7 67 6) = gi(sa Lv’l»b)

To sum up the above quantities, we introduce another local data

)‘p(d);m d, wp, {ni}, {d:}), /\;(1#;, d, wp, {ni}, {di}),

and some power series. Let n = n; 4+ no + --- + n,, be a partition of n
into m positive integers. We denote this by {n;} and call m the length
of {n;}. A patition is called even if all n; are even and odd otherwise. A
sequence ty,ta, -+, t,, of integers of the same length m is called a sequence
associated to {n;} if it satisfies t; < to < --- < t,,. For {n;}, {¢;} as above,
let Sy (Rpu,d, {n:}, {ti}) be the subset of S,(R,,,,d) consisting of elements
equivalent to

ptlml 0--- .- 0
0 pt2x2 0
2.1
(2.1) 0 0 0
0 0 o phma,

with respect to GLn(Rpy), for z; € Sp,(Rpu, Ry,), and let

Sn(Rp,ua d; {nz}> {tz})e = S’n(Rp,uy d, {ni}, {tz}) n Sn(Rp,u)e-

The matrix of the form (2.1) will be denoted by (®p*z;). Similarly as
above, for {n;} and {t;}, we define

/\p(dJa d7 w, {n'L}a {tz}) = VILIEO /\p,u(’lp7 daw) {le}, {tl})>
(A;(¢;v d,w, {nl}> {tl}) = ulggo )‘;,u('lb;’ d,w, {nl}v {tl}) for p = 2)a
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where

AP;V(QbP’ d, Wp, {nl}> {tz})
= 27 HODSL (R )T (@)

2€Sn (R, d,{n.},{t.})
(Ap (W, dywp, {ni}, {t:})
= 270ppv(@+nn=1)/2¥ |51, (R, )| S Yi(@)wp(a)

P
z€S} (Ry,d{n, } {ti})e
for p=2).
Let t = 3", n;t;. Then we have
(d’p’d wp Z )‘ "wbp)d wp»{nz} {t })
{nz} t=v(d)
AWy dwp) = D Ay, dywp, {ni}, {t:}) for p = 2).

{n,} t=v(d)

Here {n;} and {t;} run through all partitions of n and all sequences asso-
ciated to them satisfying v(d) = t. By these constants, we define orbital
local series with characters as follows. For v, 9y, wp as above, we set

Ap(¥p, dywp, {ni}, {ti}) = A(¥p, d, wp, {ni}, {t:})
Ay (W3, dywp, {ni}, {ti}) = Ay (5, d, wp, {ni}, {t:}) for p =2)
y { (=)D p)t if g is odd and wy = &,
1 otherwise,

and for dg € Z,, define

Zn (1, Pp, wp, do) =D A (¥, dop’, wp, {ni}, {t;)p{r /2ty
{ma} {t.}

(Zn (s, wpy do) = Y Ay (¥, dop’, wp, i}, {8:})p( /Dt for p = 2),
{n.} {t.}

where {n;} runs through all partitions of n and {¢;} runs through all se-
quences associated to {n;} satisfying 0 < ¢;. In the case n is even, define

1
Zn,o('u;’@bp, lp, dO) = §(Zn(u,¢p, lp, dO) - Zn(_u7 ¢p7 lp, dO))a

1
Z’n,e(uv wpv lp, dO) = '2_ (Zn(ua ¢p7 lp, dO) + Z’n(—uv ¢p7 Lp, dO))7
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and define Zy; ,(u, 5, tp, do) and Zne(u, 5, tp, do) similarly. We denote the
series aoociated to the characteristic functions of S, (Z,), or Sp(Zp). simply
by

Zn(U,LUp, do), Zn(uawpa d0)7 Z;:,o(uawpad())a

and so on. These are calculated in §5 of [I-S2]. The other series will be
calculated in §3.

We treat the cases of n odd and n even separately. First let n be odd.
To state our result, we introduce some notations. For v, we define Dirichlet
characters QZ' and 9 by

b=T]wes ¥=T]e I]

plN1 plN1  p|N§

For p | NaN3, set

Ap(ua wp: lfp) = Zn(U, 1/}pa Lp, 1)/Zn(u7 lp, 1)
» { (1= p= D)=t ifp | N3,

1 otherwise,
A;D(“’? ¢p7 Ep) = Zn(u; wpa spa 1)/Zn(u7 5p7 1)
><{(1—U)‘1 if p | N3,
1 otherwise.

If p=2]| N3, we set
A;(u> w;’wp) = Zr’zk(u’ 1/);,%): 1)/Z:;(u,wp, 1)
For w =, ¢, and L,, define

A(s,p,w) = 1 AT 2a®) T xa(®))p™% ¥p, wp)

pIN2Ns  q|M alN3 q#p
and for L, define A*(s,¢,w) = A(s,9,w) if 2 f N§ and if 2 | N§, define

A*(s,1,w) replacing Ag(u,p,wp) by Aj(u,v,,wp) in the above definition
of A(s,9,w). In these notations, we can prove

THEOREM 2.1. Let n be an odd integer > 3, and assume r, > 1 for

https://doi.org/10.1017/50027763000006243 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006243

160 T. IBUKIYAMA AND H. SAITO

p | NaoNs. Let A(s,¢,w), A*(s,¥,w), and ¥, 1 be as above. Then one has

|17 Byl -
(s, Ln,,6,¢€) = o 1(7121),11)(5)
o1 . /2 R
x (2002 A(s, 3, 1) L(s ~ ¥) I L(2s — (2 — 1),4?)
i=1
] /2 .
+ 65(n+1)/2(_1)(n —1)/8A(3,1/)75)L(s,¢) H L(2s — 2i,¢2)),
i=1

/2 g
§(S7L;a¢76’ ) IH 21‘ (n 1)5 H QOP ) H XP(2_TP)

2n= 1(n21) p|Ny pINg
n— 1 _ /2]
X (A*(S,'l/J,L)L(S 5 E L(2s — (2i — 1), o )
[n/2]
+ €6 FDR2(—1) WD/ A% (5,90, ) L(s, ) [] L(2s — 23,97)).
i=1

Proof. We give a proof only for L,,. We note (d, N1) = 1if A¢(¢,d,w) #
0. For éd > 0, let

d=§[]p" =pdop, dop< 7.
p

By the results in §3, Z,(u, %y, tp, do) is independent of dy if p f N1 N, and
we see for w =1

Ap(,d,e) = H 2_62’p¢p(d)(P_2)[:L1/2] H Xp(do,p) H )‘p(‘/’mptpﬁp)

PN p|Ng (p,N1)=1
=98) [[ 277 (07%) )
PN
x TI ((MTea® TI xa@)®Ap(pp™,10))-
(p,N1)=1 q|N1 q|N3 g#p

From this we see

> A%, d,)|d| D2
6d>0
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=(6) [T 27( —2)[711/2]

P|N1

H <Z H v (p) H Xq(p))tpAp(¢p>Ptp>Lp)P(n+1)tp/2—tps)

(p,N1)=1tp=0 q|N, q|N3 g#p

=9(8) I 277 (0™*) )y

pIM1
X H Zn((H @(p) H Xq(P)P°s ps tp, 1).

(p,N1)=1 qlN1 q|N3 g#p

From this we easily obtain our formula. The case of w = ¢ can be treated
in the same way, and will be omitted.

From this theorem, we can deduce the following result on the rationality
of the values at non-positive integers of L-functions.

COROLLARY 2.2. Let Q(v) be the field generated by the values of v
over Q. Then for a positive integer m, the values (1 —m, Ly, 1, 6,€) and
E(1—m, L} 1, 6,€) are contained in Q).

Proof. Since

[n/2) )
H L(2(1 —m) — 2i,¢9?) =
we have
lHn/2 1
§(L—m, Ln,,6,¢) = .2 (T 1)'2/1(6)/1(1 — m, 1, )2 D/2
2
n—1 - [n/2] .
X L1 —m - ) IT LG —2(m+i - 1),92).
=1

Our assertion for L,, easily follows from this. The case of L} is similar.

Now we turn to the case of n even. We introduce more notations.
For a quadratic field K, we denote by dg the discriminant of K and for
K = Q& Q, we set dg = 1. For a quadratic field K, we denote by yx
the Dirichlet character corresponging to K, and for K = Q& Q by xx the
trivial character.
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To describe the -part of the L-function, we define two Dirichlet series
D(s,,6) and D*(s,%,8). If Ng # 1, we set D(s,v,6) = D*(s,9,6) = 0.
For K as above and an odd prime p | N2 N3, we set

By(u, p, tp, K)
{ Zn,o(ua wpa lp, dK/p)/Zn,o(u7 Lp, dK/p) if p | N2N37 b | dKa

Zn,e(U, Vp, bpy AKc) [ Zn e (U, 1y i) if p| NaNs, p fdk,
forp=2]| N3
Zp,0(t, ps tp, e [D°) [ Z0 (0, 1, dic [9°) i PP | dg,
By(u, Yp, tp, K) =  Zne (U, Pp, tp, dic /D) | Zne (0, 1, dic /D7) if PP || di,
Zne(UyPp, tp, di) [ Zn e (U, tp, dK) if p fdk,
and for K with (dg,2) =1

BQ(U,K)
_ { (1= (1 -u?)(1 =2 ) (1 = xk (22727 1u?)h)  if 2 f Ny,
L Xk (2)272) N1 4 27+ 2k (2)27Y2) if 2| NVy.

If 2 | N5 for L = L}, we define Bj(u, 3,12, K) in the same way as above
ta‘klng Z:;,,o(u7 wé) L2, dO)a Zr*z,,e(u7 ¢;7 L2, dO) instead of Zn,o(“’a ¢21 L2, dO)a[l]
Zn,e(u,%2,t2,dp). Using these functions, we define

B(S,’([), LaK)
= b p)p b(dg)Ba(h(2)275, K)  if 2 fd,
- 1 5,007 b ) % {&(@/4) 2 1
B*(s,9,1, K)

HP|N2N3 Bp(i(p)p—ﬁ ¢p7 lp, K) if 2 *Nf,

= (d) | By($(2)27°, 95,00, K)
X HpIN2N3/2 Bp('(/](p)p_S? 1/)17’ lps K) if 2 I N2€

and the Dirichlet series by

* n -n n n—
D*(s,,6) = (1)l 3 2(2m) /2(5—1)!|d;{|( 72
(~1)"/28d g >0
(dg»N1)=1

. L(25,9?)L(25 — n + 1,42
x B*(s,, 0, K)P(d) L(=, ) I(j(;;'tﬁ— )(nE;_' 1T)l j/:)zxi))

|dK|_37

2
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D(s,,8) = (-1)"/412%s 3™ 2(2m) n/2(_ —1)ldg| D72

(-1)"/28d g >0
(df - N1)=1

L(2s,9%?)L(2s — n + 1,9?)
L(2s = (n/2 = 1),9?xk)
Here K runs through quadratic fields or Q @ @ such that (—1)"/ 28dg > 0,

and dj = di/(dk,4). In the above definition, we understand ¥2xx as a
character modulo Nidg.

B(s, 1,0, K)L (5, xx) Jdie| ™.

Next we introduce notations necessary to describe the s-part of the
L-function. We set

1 if (=1)"26N§ = 1 mod 4,

0 otherwise,

k(n,6,1) = {

and denote by H the quadratic field or Q@ @ such that dy = (—1)"/26Ng
when k(n, §,v) = 1. For a prime p | NoN3, we set

Bp(ua¢p’5p) = Zn(ua¢p’5p’ du [p)/Zn(u, €p>dH/p)
N {(1 = ((=1)%dg/p,p)pp~*) " ifp| N3,

1 otherwise,

and when 2 | N5 for L7, for p = 2, we set

B;(u, 1/);’ ep) = Zp(u, w;a ep,du )/ Zn (U, €p, dpr ).

Finally we define

B(s,%,e) = [ Bo(d(®)p™*, ¥p, cp),

p|N2N3
Hp'NgN:; Bp(d)(p)p“s, ¢p> E;D) if 2 XN267

B*(s,%,€) = { Bi(4h(p)p~, v3,22) )
X Hp[N2N3/2 BP(,lp(p)p_su 11[}177 Ep) if 2 | JV2e

In these notation, we can prove

THEOREM 2.3. Let n be even > 4, and assume 1, > 1 for p | NaNs.
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Let the notation be as above. Then one has

f(S,Lnﬂ/) 6 6)
|Hn/2 I'p il - . -~ [n/2]-1
= Ww((—l) ) (=) 4D(s, v, 6) H L(2s — 2i,§?)
) o(n+2)/2 g/
+ er(n, 6,) (=18 (dy) n/2%
n/2
(s,9,¢) [T L(2s = (2i = 1),$?)),
=1
n/2—1
6oL, = 2 ISy ap2) T p27) [T stz ™)
2n1(B3E)! PN pINg
[n/2]-1 X
X ((—1)[n/4lD*(3,¢,6) H L(2s — 2i,4?)
=1
R 2B’
o+ en(n,8,)(—1)" /S (d ) L
n/2
x B*(s,,¢) [[ L(2s — (21 — 1),1/32)),
=1
where

;/2,@0 = 2(5)! (2m) / L(§,XH)-

Proof. We treat the case of L. In this case, (N1 N§N3,2) = 1. Asin

the case of n odd, the L-function is, up to the factor

2 [ e ] % (27),

p|N1 p|Ng

the sum of the following two series

(2.1) cn 3 N5(d, b, 0)|d| (/2
bd=1

(2.2) cn 3 Ni(d, 1, e)|d| D2
od=1
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We note (d, N;) =1 if X}(d, Y, w) # 0.

First we calculate the series (2.1). Let d = det 2z for x € LY. Then
there exists K and a positive integer f such that (—1)"/ 2d = di f%. Let
do p be as in the proof of Th. 2.1. Then by the results in §3, we have

)‘}(¢7 d, L H ‘PP M2 n/z(l + (( )n/dep))Pp_n/Q)
PN

X/\3(¢3,2t2do,2,b2) H Ap(¢p’ptpd0,paLp)~
(p72N1):1

If N3 # 1, this vanishes by (2) of Th. 3.1. Hence we assume N§ = 1. Let
L:(z)(K ) be the subset of Lfl(z) consisting of all the elements x such that
(—1)™2 det 2z = dg f? for a positive integer f, and set

Qv = (T ep@™) 2™ Y $(@)u(x)| detz|™
Pl L;(’)(K)/SLTL(Z)

Then the series (2.1) is the sum of these series over K such that (dx, N1) =1
and (—1)"26dg > 0. Since dg is fixed, we see as in the case of n odd

82 (5,1,0)

= cn¢((_1)n/2dK)ldK|(n+1)/2—s H (p~2);/12_1(1 _ XK(p)p—n/2)—1
PN

X H Zn,o("/;(p)p~s7 1/Jp7 lp, dK/p)
(p7N1):17 p7é2) p|dK

X H Zn,e('([}(p)p‘sa "/1p7 lp, dK)

(p,N1dg)=1, p#2
Zy ($(2)27%, 95,19, dic /2%)  if 8] d,
x $ Z% ($(2)27°, 05, 10,dic /22) if 4 d,

~

Zy (Y(2)27°,93, 12, dK) if 2 fdg.

Then we see

] . n/2-1
¢ (s,%,0) = 27 enb((—1)"2dr) (] ¢(20))1dic| D72 SL( L XK)
=1

A _ 2 n/2—1
L(25,92)L(25 — n + 1,92) T Los — 26,%)

L(2s—n/2—|—1,¢2xK i1

From this we obtain our result for ¢.

x Bi(s, 9,1, K)
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To compute the series associated to ¢, first we note d contributing to
(2.2) is of the form §NSf? for a positive integer f by the results in §5 of
[I-S2] and Th. 3.1 and Th. 3.2. At p = 2, dgo/6N§ € Q5?. Taking account
of the factor 2= 1(1 + ((—1)™2dg 2 — 1)2) of Z(u,t2,dg2)(cf. Th. 5.3 of [I-
S2]), we see (2.2) vanishes unless (—1)”/26N$ = 1 mod 4. Let H be the
quadratic field or Q ® @ such that diy = (—1)*26Ng. Then we see under
this condition that (2.2) is equal to

endh(~1)"d)
% (T (2t y (0 = x@)p™)™)) Za(@(2)27°, 45, 22, )

plN1
X H Zn(@z(p)p—s, '%bp, Ep, dH) H Zn(I/AJ(p)p_S, 7;[);07 Ep, dH/p)a
(p,2N1Ng)=1 pINg

and hence is equal to

n/2—1
Lr%ﬂ&l(_1)n(n+2)/8,¢;((_l)n/2dH)XH(2)
2n—1(252))
n/2
2(2m)7"(n/2 = DIL(S, xar) B* (s, %) [ L(2s — (20 = 1),4?).
=1

This completes the proof. The case of L, can be treated in the same way
and will be omitted.

We give a special case of the above result as a corollary, which is a
generalization of Th. 1 of [I-S1].

COROLLARY 2.4. Let L=0L;}, and ¢ = X,(,T”) for an odd prime p and
an odd integer r,. Then one has

. 2| 177" Bail
ﬁ(S,L ﬂp 5 ) on— 1(n22)!
B*(s,@b,g)xp(Q_TP)XH(Q)
x 2(2m)~"(n/2 — DIL(Z, xa) T3 ¢(2s — (2i — 1))
if (=1)™26p = 1 mod 4,

0 otherwise.

(_ 1)n(n+2)/8

In the above corollary, B*(s,,¢) can be given explicitly by

Cry (p7%)((—1) et 1/2 p) (e =28 p? nmry41)/2]
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in the notation of §3.

Next we discuss the rationality of the values of the L-functions at non-
positive integers. For a Dirichlet character ¢ and a Dirichlet series A(s) =
Y2 apn”®, we set

(A] Ry)(s) Z anp(n)n”".
For the trivial character xo, modulo p, we set

(Al Ry, )(s) = > ann™®,
(n,p)=1

and

(A Uy)(s) = Zann s,
8|n

Lastly we set
(A|I)(s) = Als).

Let D*(s,6) be the Dirichlet series introduced in §1 of [I-S2], which is
D(s,1,6) for the trivial ¥ and is associated to Eisenstein series of weight
(n+ 1)/2. For abbreviation, we set D*(s) = D*(s,6). We show our series
D(s,,6) and D*(s, 1, §) can be written as a linear combination of Dirichlet
series of the form
(2.3)

B(s)(A | RJ, H Ry, H Ryo,)(s), B(s)(A| RJ, H Ry, H Ry, ,U2)(s)

pES peT peS peT

for A(s) = D*(s), where B(s) is a rational function in p~° for p | N. First
we note

(D™ | By)(s)

= (-4 N 2(2m) ™ (n/2 - 1)!ldK|<"—1>/%(dK)L<9,xK)
(=1)7/26d g >0

L(2s, 1/12)L( s—n+1, 1/)2)| <
L(2s—(n/2-1), T/JZXK)

= (=1)/4 > (& | Ry)(s),

(~1)"/28d g >0, (dg,N1)=1
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where
ni(s) = 2(2m) ™ (n/2 — D|dg |72
n L(2s,9?)L(2s — n + 1,92

X L(§7XK) (25 — (/2 — 1), 0%xx) |dg|~°.
Let p be an odd prime with (p, N1) = 1. Then we see
(D" | ByBy,,)(s)
) —2s 02 n—1—2s

(dg,pN1)=1, (1 — ﬁz(p)XK(p)pn/Z—l—Zs)

(=1)"/26d g >0
Hence for € = £+1 we have

(D™ | Ry Ry, (eRy, +1)/2)(s)

m/a) (L= 92 (p)p ™) (1 — P2 (p)p" %)

=1 72 2-1-2
(1 = 92(p)xk (p)pn/>~1729)
x ) (nc | R;)(5),
(—1)"/28dg >0, (dx,N1p)=1, xp(dK)=c
and
> (nk | Ry)(s)

(=1)"/28dg >0, (dg,N1p)=1, xp(dx)=¢
(1) (1 = P (p)xk (p)p"/*~1=%)

(1= 42(p)p~2)(L — Y2 (p)p" 1~ %)
x (D* | RyRyo ,(Ry, + 1)/2)(s).

Subtracting the above series for ¢ = £1 from (D* | R)(s), we obtain an
expression for

Y (1 | Ry)(s),

pldx
by the series of type (2.3).

Now let p = 2 and let x3 be the character modulo 8 such that x2(m) =

(—1)(’”2‘1)/ 8 for an odd integer m. Then by the above procedure we obtain
an expression of

) (n | Ry)(s)

(_1)n/26dK>07 (NlpvdK)=1) X?(dK):E
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for e = +1 and

S k| Ry)(s)

(=1)"/26dg >0, pldk

as a linear combination of Dirichlet series of the form (2.3). Now we see

Y. (x| Ry —U2)(s)

(=1)"/26dx >0, pldic

= 3 =P ) - )k | Ry)(s).

(=1)™/28dyc >0, p?||dk

This shows that

Yo (k| Ry)(s), Y. (x| Ry)(s)

(=1)"/28dk >0, p?||dg (—1)"/28dx >0, p?ldk

can be written as linear combinations of Dirichlet series of type (2.3). Since
the rational functions By(u, ¥y, tp, K) and By (u, vy, tp, K) depend only on
xk (p) for an odd prime p (whether (p,dx) = 1, xx(2) = £1, p* | dxg,
or p* | di for p = 2), combining the above results for odd primes and
for p = 2, our assertion can be easily verified. If A(s) is a Dirichlet series
associated to a holomorphic modular form of weght (n+1)/2, by a result of
[S], the series of type (2.3) for B(s) = 1 are also Dirichlet series associated
to holomorphic modular forms of weight (n + 1)/2.

Therefore in the case of 6 = 1, for A(s) = D*(s) the Dirichlet series of
type (2.3) for B(s) = 1 are holomorphic at non-positive integers, as in the
case of zeta functions. By the results in §5 of [I-S2], Th. 3.1 and Th. 3.2,
we can check that in the expression of D(d,,6), or D*(s,1,8) as a linear
combination of functions of the form (2.3), the denominators of B(s)’s do
not vanish at non-positive integers. Hence we obtain

C(l - m7La wa 17 6)
M2-lp o
— enfn, 5, w>'§:ﬁ_§2§—ﬂ¢<<—l>nﬂ>2(2m—"<§ 112 xn)
n/2—1
x J[ L-2(m+i-1),9?
=1
272B(1 —m,,¢) if L =L,,

X 2n(1——m) HpINl (PP(Q_R)
X [Ipng xp(277)B*(1 = m,¢e) if L=1Lj.
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From this we obtain the following result.

PROPOSITION 2.5. Let n be an even integer > 4, and let Q()) be as
in Cor. 2.2. Assume 6 = 1. Then one has

g(l —m, La¢7 ]-7 6) € Q(¢)
for a positive integer m and L = L,,, LY.
As a special case, we can prove

COROLLARY 2.6. Let n be as in Prop. 2.5. Let L = L} and assume
N = N; = p for an odd prime p, or N = No = p for an odd prime p and
rp = n. Let ¢ be a character modulo p such that ¢* # X0, in the first case
and ¢ = Xxp in the second case. Let 1) be the character defined by these data
as in (1.3). Then one has

6(1 —m, L:u ’(/J7 1) 6)

n(1omy | T2 By - in
=270 )—27;:11(71—_52)!—‘6@(2 ™)k(n, 1, €)(—1)"n+2/E

for a positive integer m. Here we understand L(s,?) = ((s) in the second
case.

This is a generalization of Th. 2 of [A]. The case of n = 2 can be treated
by the functional equation in [Sai2].

83. Orbital local series

In this section, we determine the orbital local series for L-fuctions and
comopletes our calculation. Throughout this section, we fix a prime p and
sometimes we abbreviate the suffix p, for example, R,, = R,, o™ = @;E,n).

For non-negative integers m, n, and d € Z,, and indeterminates U, q,
we set

0 if n is odd,
((—1)n/2d,p) if n is even,

ﬂ(nad) = {
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(U, @) = '1—[1(1 ) itm>d,

1 if m =0,

(p—2) — (p—2 p—2)m _ H(l _p_%) it m Z 1,
m ’ ) =1

1 if m=0.

For an integer 7, 0 < r < n we define a polynomial C,(u) in u by

r(n—r)/2un—r )

Cr(u) = (p_2)[—r}2] (p_2)&711,—r)/2]p

We recall some formal power series introduced in [I-S2]. For a partition
{ni} of length m and a sequence {t;} associated to it, we set

Qtnid 1) = =3 P S,

=1 ]<’L

Q{ni}, {t:}) = QUni}, {t:}) + o antz
We define

Xo(u,) =3 Y (H(p ~1 ) QUn 1)) 302, it

{ni} 1<t1 i=1

Yatnt) Z Z (H(p [nz/Z])pQ({nl}’{t’})uZz 1t
{nz}even 1<ty i=1

Xn(u,€) =) 3 (TL@ )y g p2 8D
{n;} 1<t1, t;=0mod?2 for n, odd i=
M S

n, even, t; odd

MTo-2v-1 ), O ith)
Y1) P

Yo (u,e) = Z Z (H(P

1
{n;} 1<t1, t,=0mod2 for n; odd i=1
(T e

n; even t, even

X

Here {n;} runs through all partitions of n, even ones in Y (u, ¢) and {¢;} runs
through all sequences associated to {n;} with t; > 1, satisfying ¢; = 0 mod 2
for n; odd in the latter two cases.

https://doi.org/10.1017/50027763000006243 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006243

172 T. IBUKIYAMA AND H. SAITO
By Prop. 5.6 and Prop. 5.9 of [I-S2], we have explicitly

Xn(uy0) = (5 2) (1 = pn=D/20) 1
{ (pu?,p )[:Ll/z] if n is odd,

(1 — p= (/2 (3 ’p2)[—n1/2] if n is even,

Yo, 1) = (072) g (2, 97 s

n+1 . .
Xn(u,e) = (p7%) 1) WP iy o if n is odd,
[n/2] p—n/2un(pu , P )n/2 if n is even,

n(,2 n2y—1 L
Yn(u,s) = (p—z)—l v (u P )(n+1)/2 if n is odd,
/A (pu P )n/2 if n is even.

First we treat the case of odd primes.

THEOREM 3.1. Let p be an odd prime, and let dy € Z;;.
(1) Let ¢ = ™. Then, one has for w =1 ore

Zn(u, ™, w, do) = (p72) )0 (do) (1 + B(n, do)p™"/?).

(2) Let ¢ = x5,
(a) Let w =¢. If n is odd, then

Zn(u, X, 1, do) = Ci(u)
(=1)n="2dg, p)p= =2 (pru?, p?)1 oy if T are odd,
x { ((=1)77/2,p)p~/?
x (1—p— 1)/2u)_1(pT+1u2,p2)iE71L_r)/2] if T is even.
Let n be even. If r is odd, then
Zn o, X, 4, do) = Zne(u, x5, 1, do) = 0,

and if r is even, then

Zno(u, Xg), tydo)

= Cr(u)((_l)r/z,p)(l —Pn_1u2) (P u? ' P )(n r)/2
X (=(1=p7") + (1= p)pmH D 2,
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Znie(u, x5, do) = Cr(w)((~1)"/%, D)1 = p"®) 7 (0", 2%) )
<2 (~(1-p7")
+(1+ ((—=1)"/2do, p)p™/2)(1 = ((=1)"/*do, p)p"/>~1u?) ).

(b) Let w = e. Then one has

Zn(u, Xg),e do) = Cyr(u)

(—1)=1/2dy, p) (p+1u?, p? if n is odd and r is odd,

-1

( ){n—r)/2
(( )r/? p)(l + u)(pru2,p2)i7ll-r+l)/2] zfn is odd and r is even,
xS ((— )(n —r+1)/2 p)(PTu2>p2)[_(rll~r+1)/2] if n is even and r is odd,
(=172, p)(((—1)"2dy, p)+p "/2)

x (p"tu2,p )[( —n/2) if n is even and r is even.

(3) Let = x{ .
(a) Let w=1¢. If n is odd, then
Zn(u, X(() ), t,dp) = Cp(u)(1 —p("—l)/Qu)vl
{ (1—p=(n=2r4l)/2y, )(p’u2,p2)['(i_r)/2] if r s odd,

(p™t1u?,p ) [(n=r)/2] if r is even,

If n is even, then

Zn,o(u, Xg"), L dO) = Cr(u)(l _ pn—l 2)_1
L 2’p Jitn=ry2 if r is odd,
(1- ))p(n 1)/2,, (pruz’p2)ﬁ-r)/2] ifr is even,

Zne(u, x50, do) = Cp(u)(1 = p'u?) ™!

p(n—l)/2u( r+1u2 P )[(n /2] ifr is Odd,

(L4 ((=1)™2do, p)p~™/?)
x (11— ((—1)”/2d0 p)p"/31 2)
+ (p7t = prHu?) (pru?, p )[(n —n/2) if r is even.
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(b) Let w = e. Then one has

Zn(ua X(()T), €, d[)) = Cr(u)
p—(n—T)/z(p”“uz,pz)[_(;_r)n] if n is odd and r is odd,

(p~/? +pr/zu)(pru27p2)—(7lb_r+1)/2] tf n is odd and r is even,

x S pr2u(pru?, p )[(n —rt1)/2] if n is even and r is odd,
(p~ (=12 4 ((=1)™/2dy, P)P'T/ %)
\ x (prtiu?, p? ) (n—r)/2] if n is even and r is even.

Proof. These formulas can be proved in the same way as in the case of
zeta functions, and we give a proof only for formulas in (2). Let d = dgp*
with do € Z;. If X (3:) # 0 for z € Sp(Ry,dopt, {ni}, {t:}), then ny = r
and t; = 0. In the following we assume this condition. Let = = (®phx;).
Then Xﬂ) () = xp(det 1) = (det z1, p).

Let w = ¢. Then in the same way as in §3 of the part I, we see

A oty (s}, {6) = PP D2 A o (),

=1

where

(Xp i) = (p—1)"m Y Z (dhp)n(l+,3(ni,di)p_"’/2).

dids---dm=domodp =1
The summation is extended over dq,ds, - - -, dy, € Ry such that dids - - - d,, =
do mod p. For i, 1 <i<m —1, let n} =n;41. Then {n}} gives a partition
ofn—r.
If n is odd, then we see easily

AGGY e {ni})

0 if 7 is odd, and {n}} is odd,
=< ((=1)»)2dy, p)p=(»=")/2 if r is odd, and {n}} is even,
((=1)/2, p)p~"/? if r is even.

Let n be even. If r is odd, {n!} is odd and as above A(Xg), t,{n;}) =0. If
T is even, then
(=172, p)p~r/? if {n]} is odd,
A, ) = { ((—1)/2, p)p/2
+((=1)("=/2dg, p)p=(=")/2 if {n!} is even.
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By the same calculation as in the proof of Lemma 5.7 of [I-S2], we see

Zn(u> Xg‘)a Ly d(])
— () ((=1)=")/2dg, p)p= =112y, (p"/%u,.) if 7 is odd,
[T/Z ((_1)1“/2,p)p——r/QXn_‘T(pr/Zu, L) if r is even,

if n is odd and
Zn(u, X, 1 do) = (072 oy (=172, p)p ™2 X (07, 1)
+ ((_1)(n~r)/2d07p)p-(n—r)/2Y (pr/2 ))

if n and r are even. This proves (a).
Next assume w = ¢. In this case, as above we have

Mo, dopts e, {ni}, {t:}) = pR2Umd D (TT (72 )

e(do, {mi}, {t:}) A &, {na}, {8:})
where

AW e, {ni}, {ti})
=(-1)7" 3 (d,p) [TQ+ B(ni, i) p~™/?)(di )",

dido---dm=domodp i=1

and
S(d(), {nz}, {tz}) - (pt, dO) H(pni,pnj)titj H((—l)nl(ni+l)/2,p)ti-
i<j i=1

Let n be odd. If 7 is odd, by substituting

dy =dodyt - dy)}

m

we see easily A(X;ff),e {n;},{t:}) vanishes unless t; = 1 mod 2 for n; odd,

¢ > 1. If this condition is satisfied, then

A& fnad, () = (do,p) TT ()™ p)p™ /2

n; even, t, even

https://doi.org/10.1017/50027763000006243 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006243

176 T. IBUKIYAMA AND H. SAITO

Weseet=n—r=0mod 2 and

[T6™ 5 H(( e gt I ()

1<J n; even, t; even
m
(( 1r7‘+1)/2 H(p p H(pnz’p H( l)nz(nz+1)/2 )
1<y 1<J i=1

= (=170 p) (1) /2, p)
= (=", p).
Hence we have
e(do, {mi}, {t:)AOL, &, {ni}, {t:})
= (-1 %y, p) ][ ™2

n, even, t, even

Since t = 0 mod 2 in this case, in the same way as in Lemma 5.8 of the part
I by the above formula we see

Zn(u, X 8,do) = ((=1) """ 2do, p) (p72);; g Yor (07 P, ).

If r is even, we see easily A(Xg), g,{n;},{t:}) vanishes unless there exists ¢y
such that t; = tg mod 2 for n; odd. Assume this condition. Then we have

AGG e, {na}, {t:}) = (do, p)" I o™ ppm?

n; even, t;Ztomod2, 2<i
y ((=1)7/2,p)p~"/2  if t1(= 0) = to mod 2,
1 if ¢4 (= 0) # to mod 2.

Hence by a similar calculation, we obtain

e(do, {ni}, {t:}) Alxp, &, {ni}, {t:}) = (1) D72, p)'e((~=1)"/%, p)

—-r/2 -
« H p—m/Z y {p if tg = 0 mod 2,

n, even, t,Ztomod?2, 2<i 1 if to §é 0 mod 2.

Since t = tg mod 2, from this we see

Zn(U,Xg), €, dO)
= (p_Q)[r/2 (= 1)r/2 )(p_T/QXn—T(pT/2u’ )+ Yn—r(prmua €)).
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Let n be even. If r is odd, then A(X;T),e,{ni}, {t;}) vanishes unless
t; = 1 mod 2 for n; odd, ¢« > 1. If this condition is satisfied, then

AGY) e (nid {6]) = (@op) [T (12, p)p ™2,

n; even, t; even

In this case we see t =n — r =1 mod 2 and

TG ) L2 e ] (1)
=1

1<J n, even, t; even

((_1)n1(n1+1)/2, p)

e

= ()2 o) TT @7 ™) TT 0™, p™)
1<y 1<J %
— ((_1)(n—r+1)/2,p).
Hence we have
Zn(u,x,(f)a&dO) — ((~1)(n'r+1)/2,p)(p"z);/gYn_r(pr/Qu,e)
If r is even, then we see easily A(x,(f),s, {n;},{t;}) vanishes unless there
exists tg such that t; =ty mod 2 for n; odd. If this is satisfied, in the same
way as above we have

E(do, {n,}, {ti})A(Xg)v &, {n@}, {tl})
= ((_l)n/Qdﬂap)to((—1)T/27p) H p—nz/Q

n;even, t,Ztomod?2, 2<i
y p~"/? if ty = 0 mod 2,
1 if to # 0 mod 2,

1

for {n;} odd, and
e(do, {ni}, {8:1) AC, e, {mi}, {t:})

= ((=1)*2dg, p) I1 p ™/
n, even, t,Zlmod2, 2<3
+ ((_1)7/2’p)p—r/2 H p—ni/Z’

n; even, t,Z0mod2, 2<i

for {n;} even. This shows

Zalu, X0, do) = (5271 ((~1)772,p)
X (((=1)"2do, p)Yr (07?0, €) + 0772 X (7?0 €) ).

This completes the proof.
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For p = 2, in the same way as above, we can prove

THEOREM 3.2. Letp =2, and let dy € Z;.
(1) Let ¢ = o™ for a non-trivial character o. Then one has

Zn(1, 0™, 1,do) = 271 (072 L0 (do)
1 {if n is odd,
X § 1+ ((=1)"3do, —1)p~™
+ (((—l)n/zdo,p) + ((—=1)™2dy, *p))p_n‘n/z if n is even,

and
Z’n(uv So(n)a €, dO) [(n+1)/2] ( )(p )['n/2]
(=) =D/8(dy, (—1)nF/2) if n is odd,
X ( 1)n(n+2 /82 (1 (( 1)n/2d0, _1))
x (14 ((=1)"2dy, —1)p~™/?) if n is even.

(2) Letyp = i;(r) with r even.
(a) Let w =¢. Then one has

Zn(u, 571, do) = 27 p 020 (u)(1 = TV Pu) T )
if n is odd, and if n is even
Zy o, %51 1,do) = 271 Cr(w)p™ A (—(1 = p")
+ (1= p )" P (1= p ) T TR ) L e
Zro(u, X371, do) = 271 Cr() (1 = p" M) T Hp /2
x (p7 (1= p M) + (1 - PR (T (—1)2do, —1)
+p~ G2 ((=1)"?do, 2) + ((=1)"/?do, 2)))

x (p"u,p )(n —r)/2"

(b) Let w =¢.
If n is odd, then

Zi(u, %37, €, do) = p~ D/ (—1) DS (—1) D2 do)C (u)

X (p—r/2 + PT/QU) (pTUQ, Uz)ﬁi_r)/q
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If n is even, then
Z(u, 350, e, do) = p~ /2271 (1 4 ((—1)"2dp, —1))(— 1) D/EC, (u)

x (p~ "2 4 (1) 2do, p)p ™) (0P, D) h

(3) Let ¢ = Xgr).
(a) Let w =t.
If n is odd, then

Zn(u X, 1, do) = 27 Cr(u 0 - p" /2=t
{(1 (n— 2r+1)/2 )(pruz,pz)[(n—r)ﬂ] if r is odd,
(1 p )[(n~r)/2] if r is even.
If n is even, then
Zn o, X§ )51, do) = 27 Cp(w)(1 = p" 1)
(pTHuQ,pZ)[_(i_T)/Z] if’l‘ 18 Odd,
(1 — p_(n—T))p(’n—l)/2u(p’f'u2’pQ)i;_’r)/:z] lf’l" is even,
and

ZuelwxE 0, do) = 271 C(w) (1= M)
p D2y (prtlu2, p )[(n —r/2] if 7 is odd,
(1 2 + (1 — p ) ((=1)2dg, —1)p™
(=)™ 2do,2) + ((~1)"/2do, ~2))p~""/2))
x(p’“u2,p2)i,i4)/2] if r is even.

(b) Let w = ¢.
If n is odd, then

Zn(u,X(()T),E,dO) — p—(n+1)/2(_ )(nz-l)/S( (—1)(n+1)/2)CT(U,)
p—(n—r)/2(p7"+1 2 p )[(n /2l if v is odd,
(p——'r/Q 4+ p'/ 2y )(p"u?, p )[(n S if v is even.
If n is even, then
Zulu,xg &, do) = (—1)"Bp 2271 (1 4 (1) dy, ~1))Cr ()
pr/2u(pru2,p2)ii_T+l)/2] if v 1s odd,
(p~(=)/2 ¢ ((_1)"/2d0,p)p“r/2)(pr+1u2,pQ)Ri_T)/z] if 7 is even.
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Proof. We give a proof for (2), since the other case can be treated in
the same way, and give a proof for the case 7 > 1. The case r = 0 can be
treated in a similar way. Let z € SX(R,,d,{n;},{t:}) and 2y = = mod p”
for y € L*. Let x be equivalent to (®pliz;), with z; € Sy, (R,). We
see @y is equivalent to (1.1) or (1.2) if and only if ny = 7, {3 = 0 and
((—1)7?det z1,2) = ((=1)"/2dy,2) = 1 or —1 respectively, and )Z;(T)(w) =
((—1)"/2dy, 2). Hence we have as in the proof of Prop. 3.6 of the part I

N (5", do, (i}, {t:}) = p2 D[ (7)) AT (G, 0, (i, {13}),
=1

where
A*(X;;(T) . {nl} {tz}) -1 —2(m 1)
x ((—1)”2(11,2)(((—1)”2611,—1)+1)(1+((—1)T/2d1,2)?’”2)1)_7

dida--dm=domodp3
< [T @+ (=0)™2d, —1)p™ + ((—1)"/2d;, 2)p~™~™/2

n, even, 2<¢

+ (1) 2d;, —2)p™ /),
Here the summation is extended over all d; € R3 such that
didy -+ - dp, = dg mod 23.
If n is odd, then we see
NG, ik, () = 27
This shows that
22w, 2, 1 do) = 275 2 (p ) X (57,0,
If n is even, then we see
A, ), {t))

p3r/2 if {n;} is odd,

1) (p%72 4 p=3/2((=1)"2dy, —1)p~ ")

+p " (((=1)"?do, 2)
+ ((=1)™2dy, —2))p~=3("=")/2) " if {n;} is even.
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This shows that
Z4(u, %57 1, do)
= 274 p ) (P72 X (0720, 0) + (((—1)"2do, —1)p /2
+ (((=1)"2do, 2) + ((—1)"?do, —2))p~ /271Dy, (p/2u,1)).

Let w = . Then by means of the remark after Prop.3.9 of the part I
we have

A" (X;(T)a d7 €, {n’L}, {tl})
= p D (TL )t ) A 0G s (i}, (1)),
i=1

where

A (X*(r) g, {nz}’ {tl})

m
— 2—1p—2(m—1) Z p dO H n1(nz+1)/2d p)
dydz---dpm=domodp3 i=1

x [1(di, dj) x T] (o™, p™)"%
1<j 1<J
X (P—r/z(l + ((—1)T/2d1,p)P_T/z)&(dl)) x [ en. (di)-

2<s

Here €,,(d;) is as in the proof of Lemma 3.8 of the part I, and
en, (i) = (L + ((=1)™/*di, p) p™/%) e, ().

If {n;} is odd, A*("m e,{ni}, {t;}) vanishes unless there exists tp such
that t; = to mod 2 for n; odd. We note this implies ¢t = tg mod 2 if n is odd.
Under this condition, by the same calculation as in the proof of Prop. 3.8
of the part I we obtain

A OG™ e, i}, {t:))
- p‘[(”+1)/2]((_1)[("+1)/2]dg+1’p)top—T/Q H p—ni/2

n; even, t,Ztomod2
L (FDEEIBE,, (1)) if n is odd,
(—=1)MnH+2)/89-1(1 4 ((~1)"/2dg, 1)) if n is even.

https://doi.org/10.1017/50027763000006243 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006243

182 T. IBUKIYAMA AND H. SAITO
If {n;} is even, then

A*()N(;(r),s, {nt}, {tz}) = p—‘(n+7’)/22~1(1 + ((—1)n/2d0, _1))(_1)n(n+2)/8
X (((—1)"/2do,p) H p /2 4 H p—nz—/2)'

t; even t; odd

This shows that Z(u, ¥5", €, do) is equal to
= p~(nHr+D)/2(_ (=1 /8 (g, (-1)<n+1>/2)(p—2)[;}2]
X (Xn—r(p?u,8) + p7?Yy o (p?u,€)),
if n is odd, and is equal to
27 (1 + ((=1)™2do, —1))p~ 21y B (=) T
X ((=1)™2do, p)p™""*Ynr (PP, €) + X r (07?0, €)),

if n is even. This completes the proof.
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