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Abstract

We establish power-series expansions for the asymptotic expectations of the vertex num-
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Keywords: Expectation of missed area; expected vertex number; random polytopes; set
estimation; spindle convexity

2020 Mathematics Subject Classification: Primary 52A22
Secondary 52A27; 52A10; 60D05

1. Introduction and results

Reconstructing a possibly unknown set, or some of its characteristic quantities, from a ran-
dom sample of points is a much-investigated classical problem that arises naturally in various
fields, like stereology [1], computational geometry [13], statistical quality control [8], etc.
Estimating the shape, volume, surface area, and other characteristic quantities of sets is of
interest both in geometry and statistics, although the aspects investigated are in many cases
different in the respective fields. For an overview of set estimation see, for example, [7]. The
set may be quite arbitrary, but often various restrictions are imposed on it. One common such
restriction that has received much attention is when the set is required to be convex. In such
a setting polytopes spanned by random samples of points from the set form a natural estima-
tor. The theory of random polytopes is a rich and lively field with numerous applications. For
a recent review and further references see, for example, [31]. The convex hull is an optimal
estimator if no further restrictions are imposed on the set K other than convexity. However, in
this paper we study another estimator under further assumptions on K, namely that the degree
of smoothness of the boundary of K is prescribed to be Ck+1, and it also assumed that the
curvature is positive everywhere. Under these circumstances, using congruent circles to form
the hull of the sample yields better performance than the classical convex hull.

Since the case when the number of random points is fixed is notoriously difficult, it has
become common to investigate the asymptotic behaviour of functionals associated with ran-
dom polytopes as the number of points in the sample tends to infinity. The investigations of
the asymptotic behaviour of random polytopes started with the classical papers [26, 27] in

Received 21 March 2023; accepted 14 February 2024.
∗ Postal address: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary.
∗∗ Email address: fodorf@math.u-szeged.hu
∗∗∗ Email address: montenegro.pinzon.nicolas.alexander@o365.u-szeged.hu

© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

1
https://doi.org/10.1017/jpr.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.27
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2024.27&domain=pdf
https://doi.org/10.1017/jpr.2024.27


2 F. FODOR AND N. A. MONTENEGRO PINZÓN

the 1960s. They studied the following particular model in the plane. Let K be a convex body
(a compact convex set with nonempty interior) in d-dimensional Euclidean space R

d, and let
x1, . . . , xn be independent random points from K selected according to the uniform probability
distribution.

The convex hull Kn = [x1, . . . , xn] of x1, . . . , xn is called a (uniform) random polytope in
K. Asymptotic formulas in the plane were proved in [26, 27] for the expected number f0(Kn) of
vertices of Kn and the expectation of the missed area A(K \ Kn) under the assumption that the
boundary ∂K of K is sufficiently smooth, and also in the case when K itself is a convex polygon.
This was extended in [35] to the d-dimensional ball Bd, and in [2] for d-dimensional con-
vex bodies with at least a C3+-smooth boundary (three times continuously differentiable with
everywhere positive Gauss–Kronecker curvature). All smoothness conditions were removed in
[33]. The results were extended in [6] for nonuniform distributions and weighted volume
difference.

Let Vi(·), i = 1, . . . , d, denote the ith intrinsic volume of a convex body. A power series
expansion of the quantity E(Vi(K) − Vi(Kn)) for all i = 1, . . . , d as n → ∞ was established in
[24] under stronger smoothness conditions on the boundary of K.

Theorem 1. ([24].) Let K be a convex body in R
d with Vd(K) = 1 whose boundary ∂K is Ck+1+

for some integer k ≥ 2. Then

E(Vi(K) − Vi(Kn))

= c(i,d)
2 (K)n−2/(d+1) + c(i,d)

3 (K)n−3/(d+1) + · · · + c(i,d)
k (K)n−k/(d+1) + O(n−(k+1)/(d+1)) (1)

as n → ∞. Moreover, c(i,d)
2m+1 = 0 for all m ≤ d/2 if d is even, and c(i,d)

2m+1 = 0 for all m if d is
odd.

Under the same conditions as in Theorem 1, we can obtain from (1) a series expansion for
the number of vertices E(f0(Kn)) via Efron’s identity [10]:

E(f0(Kn))

= d2(K)n(d−1)/(d+1) + d3(K)n(d−2)/(d+1) + · · · + dk(K)n(d−k+1)/(d+1) + O(n(d−k+2)/(d+1))

as n → ∞, where the coefficients di(K) also depend on the dimension d.
Theorem 1 was proved in [14] when i = 1. Using properties of the convex floating body, the

planar case of Theorem 1 was established for the area (d = 2, i = 2) in [23]. In particular, it
was proved that

d4(K) = c(2,2)
4 (K) = −�

(
7

3

)
1

5
3

√
3

2

∫
∂K

k(x)κ1/3(x) dx,

where �(·) is Euler’s gamma function, k(x) is the affine curvature (for information about the
affine curvature see, for example, [5, pp. 12–15] or [15, Section 7.3]), κ(x) is the curvature of
∂K at x, and integration on the boundary ∂K of K is with respect to arc length.

For more information about approximations of convex bodies by classical random polytopes
we refer to [3, 25, 31, 32, 34].

When estimating a planar convex body under curvature restrictions, it may naturally be more
advantageous to use suitably curved arcs to form the boundary of the approximating set that fit
K better than line segments. One of the simplest such constructions uses radius-R circular arcs
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Series expansions for random disc-polygons 3

and the resulting (convex) hull is called, among other names, the R-spindle convex hull; for
precise definitions, see below. The radius should be chosen in such a way that the (generalised)
random polygon is still contained in K. This imposes the condition on R that it should be at
least as large as the maximum radius of curvature of ∂K. However, similarly to the classical
convex case, difficulties arise when R is equal to the maximal radius of curvature, so this case
usually needs separate treatment using different methods.

In this paper, we study the R-spindle convex variant of the above probability model in the
Euclidean plane R

2. Let R > 0 be fixed, and let x, y ∈R
2 be such that their distance is at most

2R. We call the intersection [x, y]R of all (closed circular) discs of radius R that contain both
x and y the R-spindle of x and y. A set X ⊆R

2 is called R-spindle convex if from x, y ∈ X it
follows that [x, y]R ⊆ X. Spindle convex sets are also convex in the usual linear sense. In this
paper we restrict our attention to compact spindle-convex sets. One can show (cf. [4, Corollary
3.4, p. 205]) that a convex body in R

2 is R-spindle convex if it is the intersection of (not
necessarily finitely many) closed discs of radius R. The intersection of finitely many closed
discs of radius R is called a convex R-disc-polygon. Let X be a compact set which is contained
in a closed disc of radius R. The intersection of all planar R-spindle-convex bodies containing X
is called the R-spindle-convex hull of X, and it is denoted by [X]R. Perhaps it is easier to grasp
this notion if we point out the similarity with the classical convex hull. In the R-spindle-convex
case the radius-R discs play a similar role to what closed half-spaces do for classical convex
hulls. Thus, in a heuristic way, we can consider the classical convex hull as a limiting case as
R → ∞. If X ⊂ K for an R-spindle-convex body K in R

2, then [X]R ⊂ K. A prominent class
of R-spindle-convex sets in R

2 that are directly relevant in this paper is provided by convex
bodies whose boundary is C2+-smooth with curvature κ(x) ≥ 1/R for all boundary points x ∈ ∂K
[30, Sections 2.5 and 3.2]. For more detailed information about spindle convexity we refer to
[4, 19].

We note that there exist further generalisations of spindle convexity, most notably the con-
cept of L-convexity in which the translates of a fixed convex body L play the role of the radius-R
closed disc; for more information, see, for example, [17]. Another further generalisation is
H-convexity as introduced in [16], where the hull of a set is generated by intersections of
transformed copies of a fixed convex set C by a set H of affine transformations. A similar con-
cept (see, for example, [18]) to R-spindle convexity, called α convexity, also exists, where the
α-convex hull of a set is defined as the complement of the union of all radius-r open balls dis-
joint from the set. The α-convex hull of a finite sample is different from its R-spindle-convex
hull as it is nonconvex while the R-convex hull is always convex. We note that the α-convex
hull can be used to estimate not necessarily convex sets as well; see [21, 22, 28], where several
such results are proved about random samples chosen from the set according to an absolute
continuous probability distribution.

A convex R-disc-polygon is clearly R-spindle convex. We also consider a single radius-R
disc and a single point as R-disc-polygons, albeit trivial ones. The nonsmooth points of the
boundary of a nontrivial convex R-disc-polygon are called vertices. The vertices divide the
boundary into a union of radius-R circular arcs of positive arc length that we call edges. Thus,
a nontrivial convex R-disc-polygon has an equal number of edges and vertices, just like a
classical convex polygon, except the sides are radius-R circular arcs. The radius-R disc has one
edge and no vertex, and a single point has one vertex and no side.

Our probability model is the following. Let K be a convex body in R
2 with an at least

C2+-smooth boundary, and let R be such that κ(x) > 1/R for all x ∈ ∂K. Let x1, . . . , xn be inde-
pendent random points in K chosen according to the uniform probability distribution. The
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4 F. FODOR AND N. A. MONTENEGRO PINZÓN

R-spindle-convex hull KR
n = [x1, . . . , xn]R is called a uniform random R-disc-polygon in K,

and is a convex R-disc-polygon. It is clear that KR
n has an equal number of vertices and sides

with probability 1, and its vertex set is formed by some of the random points x1, . . . , xn. Let
f0(KR

n ) denote the number of vertices of KR
n . We note that in [21] the radius rn of the discs used

in the estimation of an α-convex set tends to zero as n → ∞. In our model, we use suitable
fixed-radius discs in order to guarantee that the R-spindle-convex hull of the random sample
is contained in K. However, after the statements of our main results, we briefly discuss what
happens to the quality of the approximation when the radius R tends to the limits of its possible
range.

It was proved in [11, Theorem 1.1, p. 901] that under the above conditions, as n → ∞,

E(f0(KR
n )) = z1(K)n1/3 + o(n1/3), (2)

E(A(K \ KR
n )) = A(K)z1(K)n−2/3 + o(n−2/3), (3)

where

z1(K) = 3

√
2

3A(K)
· �
(

5

3

) ∫
∂K

(
κ(x) − 1

R

)1/3

dx,

and A(K) denotes the area of K.
We note that (2) and (3) are connected by an Efron-type [10] identity [11, (5.10), p. 910],

which states that

E(f0(KR
n )) = n

E(A(K \ KR
n−1))

A(K)
.

In this paper we prove the following theorems that provide power-series expansions of
E(f0(KR

n )) and E(A(K \ KR
n )) in the case when ∂K satisfies stronger differentiability conditions.

Theorem 2. Let k ≥ 2 be an integer, and let K be a convex body in R
2 with a Ck+1+ -smooth

boundary. Then, for all R > maxx∈∂K 1/κ(x),

E(f0(KR
n )) = z1(K)n1/3 + · · · + zk−1(K)n−(k−3)/3 + O(n−(k−2)/3)

as n → ∞. All the coefficients z1, . . . , zk can be determined explicitly. In particular,

z1(K) = 3

√
2

3A(K)
�

(
5

3

) ∫
∂K

(
κ(x) − 1

R

)1/3

dx,

z2(K) = 0,

z3(K) = −�

(
7

3

)
1

5
3

√
3A(K)

2

∫
∂K

(
κ ′′(x)

3(κ(x) − 1/R)4/3
+ 2R2κ2(x) + 7Rκ(x) − 1

2R2(κ(x) − 1/R)1/3

− 5(κ ′(x))2

9(κ(x) − 1/R)7/3

)
dx.

By the spindle-convex version of Efron’s identity we obtain the following corollary.

Theorem 3. Let k ≥ 2 be an integer, and let K be a convex body in R
2 with a Ck+1+ -smooth

boundary. Then, for all R > maxx∈∂K 1/κ(x),

E(A(K \ KR
n )) = z′

1(K)n−2/3 + · · · + z′
k−1(K)n−k/3 + O(n−(k+1)/3)

as n → ∞, where zi
′(K) = A(K)zi(K) for i = 1, . . . , k.
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Series expansions for random disc-polygons 5

We note that we only evaluate zi(K), i = 1, 2, 3, explicitly in this paper because the calcu-
lation, although possible, becomes more complicated as i increases, even when K is a closed
disc. The coefficients zi(K) depend only on R, the area of K, and on the power-series expansion
of the local representation of the boundary of K, see (6); in particular, on the derivatives of κ

up to order i − 1.
Although Theorems 2 and 3 are only valid for R > RM = maxx∈∂K 1/κ(x), it may also be

interesting to look at the behaviour of the coefficients zi(K) at the limits of the range of R.
When R → ∞, the integral in z1(K) tends to the affine arc length of ∂K [11]. For z3(K), direct
calculation yields

lim
R→∞

κ ′′(x)

3(κ(x) − 1/R)4/3
+ 2R2κ2(x) + 7Rκ(x) − 1

2R2(κ(x) − 1/R)1/3
− 5(κ ′(x))2

9(κ(x) − 1/R)7/3
= k(x)κ1/3(x),

where k(x) is the affine curvature of ∂K at x, cf. also (1).
On the other hand, when R → R+

M, then

lim
R→R+

M

z1(K) = 3

√
2

3A(K)
�

(
5

3

) ∫
∂K

(
κ(x) − 1

RM

)1/3

dx,

where the integrand is bounded, nonnegative, and zero in exactly those points where κ(x) =
1/RM. We conjecture that the right-hand side is equal to limn→∞ Ef0(KR

n ))n−1/3 when R = RM
and K is not a closed disc. However, this asymptotic expectation is not known. We also note
that z1(K) is a monotonically decreasing function of R, which shows that it is indeed more
advantageous to use circular arcs to form the hull of the random sample of n points in order to
approximate K better. Although the order of magnitude in n of the approximation is the same
as in the linearly convex case, the main coefficient is smaller.

Furthermore, we note that in the particular case when K = B2 and R > 1,

z1(B) = 3

√
2

3π
�

(
5

3

)
2π

(
1 − 1

R

)1/3

,

z2(B) = 0,

z3(B) = −�

(
7

3

)
1

5
3

√
3π

2
2π

2R2 + 7R − 1

2R2(1 − 1/R)1/3
.

If R → 1+ then z1(B) → 0 and z3(B) → −∞, and both are monotonically increasing functions
showing that the quality of approximation improves as R tends to 1. This behaviour comes
as no surprise as the expected number of vertices behaves fundamentally differently from the
previously discussed situation when K �= B; the order of magnitude in n is different if K = B,
as we will see below. Finally, we note that we also suspect that z3(K) behaves similarly to z3(B)
when R → R+

M, but this is not clear from its current form.
It was proved in [11] that

E(f0(B(R)R
n )) = π2

2
+ o(1), E(A(B(R) \ B(R)R

n )) = R2π3

2

1

n
+ o

(
1

n

)

as n → ∞. The unusual behaviour of E(f0(B(R)R
n )), i.e. that it tends to a finite constant, was

explained in [20], which proved, in the much wider context of L-convexity (see also [12]),
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6 F. FODOR AND N. A. MONTENEGRO PINZÓN

that E(f0(B(R)R
n )) tends to the expectation of the number of vertices of the polar of the zero

cell of a Poisson line process whose intensity measure on R is A(B(R))−1 = 1/(R2π ) times the
Lebesgue measure, and whose directional distribution is uniform on S1 [20, (6.1), p. 29]. In
Section 4, we calculate (the first three terms of) the power-series expansion of E(f0(B(R)R

n )) for
the sake of completeness. This gives the speed of convergence of E(f0(B(R)R

n )) to π2/2. We
note that here we only quoted the result from [20] in the plane; however, it was proved in R

d.
The rest of the paper is organised as follows. In Section 2, we briefly recall from [11]

the necessary background and describe how E(f0(B(R)R
n )) can be calculated. In Section 3, we

provide the power-series expansions of the involved geometric quantities. In Section 4, we
quote a power-series expansion of the incomplete beta function from [14]. We prove Theorem 2
in Section 5. Finally, in Section 6, we treat the case when K = B(R).

2. Expectation of the number of vertices of KR
n

Our arguments are based on the methods of [14, 26]. We also note that, compared to those of
[21], our methods essentially depend on the higher regularity and smoothness of the boundary
of K and the explicit local power-series expansion of ∂K. Notice that it is enough to prove the
theorem for R = 1; from that, the statement for general R follows by a scaling argument.

Due to the Ck+1+ condition, K is both smooth, i.e. has a unique supporting line at each
boundary point, and strictly convex. Let ux ∈ S1 denote the unique outer unit normal vector to
K at x, and for u ∈ S1 let xu be the (again) unique boundary point where the outer unit normal
is equal to u.

We use B◦ to denote the interior of B. A subset D of K is a disc-cap of K if D = K \ (B◦ + p)
for some point p ∈R

2. It was proved in [11] that for a disc-cap of K, D = K \ (B◦ + p), there
exists a unique point x0 ∈ ∂K ∩ D and t ≥ 0 such that B + p = B + x0 − (1 + t)ux0 . We call x0
the vertex and t the height of D.

We may assume that o ∈ int K. Let A = A(K) = V2(K). Let Xn = {x1, . . . , xn} be a sample
of independent and identically distributed uniform random points from K. For xi, xj ∈ Xn, we
denote by xixj the shorter unit circular arc connecting xi and xj with the property that xi and xj

are in counterclockwise order on the arc. Let

E(K1
n ) = {xixj : xi, xj ∈ Xn and xixj is an edge of K1

n}
be the set of directed edges of K1

n . For xi, xj ∈ Xn, let Cij be the disc-cap of K determined by the
disc of xixj, and Aij = A(Cij). Note that xixj ∈ E(K1

n ) exactly when all the other n − 2 random
points of Xn are in K \ Cij. Thus, due to the independence of the random points,

E(f0(K1
n )) =

∑ 1

An

∫
K

· · ·
∫

K
1{xixj ∈ E(K1

n )} dx1 · · · dxn

=
(

n

2

)
1

A2

∫
K

∫
K

(
1 − A12

A

)n−2

+
(

1 − A21

A

)n−2

dx1 dx2, (4)

where in the first line the summation extends over all ordered pairs of distinct points from
Xn. Now, we use the same reparametrization for the pair (x1, x2) as in [11]. Let (x1, x2) =
�(u, t, u1, u2), where u, u1, u2 ∈ S1 and 0 ≤ t ≤ t0(u) are chosen such that C(u, t) = C12, where
C(u, t) is the unique disc-cap of K with vertex xu and height t, and

(x1, x2) = (xu − (1 + t)u + u1, xu − (1 + t)u + u2).
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Series expansions for random disc-polygons 7

The vectors u1 and u2 are the unique outer unit normals of ∂B + xu − (1 + t)u at x1 and
x2, respectively. For fixed u and t, both u1 and u2 are contained in the same arc L(u, t) of
S1, whose length is denoted by �(u, t). The uniqueness of the vertex and height of disc-caps
guarantees that the map � is well defined, bijective, and differentiable on a suitable domain of
(u, t, u1, u2). The Jacobian of � is

|J�| =
(

1 + t − 1

κ(xu)

)
|u1 × u2|.

Let A(u, t) denote the area of the disc-cap with vertex xu and height t. For each u ∈ S1, let t0(u)
be maximal such that A(u, t0(u)) ≥ 0. Then, after the change of variables, from (4) we get

E(f0(K1
n )) =

(
n

2

)
1

A2

∫
S1

∫ t0(u)

0

∫
L(u,t)

∫
L(u,t)

(
1 − A(u, t)

A

)n−2

×
(

1 + t − 1

κ(xu)

)
|u1 × u2| du1 du2 dt du

=
(

n

2

)
1

A2

∫
S1

∫ t0(u)

0

(
1 − A(u, t)

A

)n−2

J(u, t) dt du,

where

J(u, t) =
(

1 + t − 1

κ(xu)

) ∫
L(u,t)

∫
L(u,t)

|u1 × u2| du1 du2

= 2

(
1 + t − 1

κ(xu)

)
(�(u, t) − sin �(u, t)).

We note that due to the C2+ property of ∂K, J(u, t) ≤ C for some 0 < C ≤ 6(2π + 1) that
depends only on K.

Let 0 < δ < A be an arbitrary but fixed small number. Let 0 < t1 be such that, for arbitrary
t ∈ [t1, t0(u)] and u ∈ S1, A(u, t) ≥ δ. Then

∫
S1

∫ t0(u)

t1

(
1 − A(u, t)

A

)n−2

J(u, t) dt du ≤ C
∫

S1

∫ t0(u)

t1

(
1 − A(u, t)

A

)n−2

dt du

≤ 2πC
∫ 2

t1

(
1 − δ

A

)n−2

dt

≤ 4πC

(
1 − δ

A

)n−2

,

and thus, in particular, with a suitably small choice of δ,

E(f0(K1
n )) =

(
n

2

)
1

A2

∫
S1

∫ t1

0

(
1 − A(u, t)

A

)n−2

J(u, t) dt du + O(n−k). (5)

In the following sections we evaluate the integral (5) under different smoothness assump-
tions on ∂K.
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8 F. FODOR AND N. A. MONTENEGRO PINZÓN

3. Power-series expansions

Let k ≥ 2 be an integer and K ⊂R
2 a convex body with a Ck+1+ boundary ((k + 1) times

continuously differentiable with everywhere positive curvature). We will use the following
statement from [14] (see also [29]). We state it in the form used in [24], but only for d = 2.

Lemma 1. Let K be a convex body in R
2 with a Ck+1+ boundary for some integer k ≥ 2. Then

there exist constants α, β > 0 depending only on K such that the following holds for every
boundary point x of K. If x = 0 and the (unique) tangent line of K at x is R, then there is an
α-neighbourhood of x in which the boundary of K can be represented by a convex function
f (σ ) of differentiability class Ck+1 in R. Moreover, all derivatives of f up to order k + 1 are
uniformly bounded by β.

Let u ∈ S1 and let x = xu ∈ ∂K. Assume that K is in the position described in Lemma 1.
Let f be the function that represents the boundary of K in an α-neighbourhood of x. Then f
is of the form f (σ ) = b2(u)σ 2 + · · · + bk(u)σ k + O(σ k+1), where the coefficients bi = bi(u),
i = 2, . . . , k, depend on u. We will suppress the dependence of coefficients on u (and thus
on x) when we work with a fixed u. We will only indicate dependence when u is used in the
argument.

We recall the following facts from the differential geometry of plane curves. Let r(s) be
the arc-length parametrization of ∂K with r(0) = x in the neighbourhood of x such that the
following hold. With the above assumptions on K, let the vector r′(0) and the unit normal
vector r′′(0)/κ(0) = −u form the basis of a Cartesian coordinate system, in which we denote
the coordinate along the r′-axis by σ , and the r′′-axis by η. Then

σ = σ (s) = s − κ2(0)

3! s3 − 3κ(0)κ ′(0)
s4

4! + O(s5),

η = η(s) = κ(0)
s2

2
+ κ ′(0)

s3

3! + (κ ′′(0) − κ3(0))
s4

4! + O(s5);

(6)

see, for example, [9, Section 1.6]. From the equality f (σ (s)) = η(s) we can identify the
coefficients b2, . . . , bk. In particular,

b2 = κ(0)

2
, b3 = κ ′(0)

6
, b4 = κ ′′(0) + 3κ3(0)

24
.

With a slight abuse of notation, in the above formulas we use κ to denote the curvature as a
function of s, which is different from the previous usage. Later, we will also use the same letter
when the curvature is a function of the outer unit normal u. Moreover, when u (s or x) is fixed,
we suppress the dependence of κ on u (s or x). It will always be clear from the context which
function we consider.

We will also use the following statement due to [14], see also [24]. (We state it again only
for d = 2, so this is a simpler version of the original theorem.)

Lemma 2. Let η = η(σ ) = bmσm + · · · + bkσ
k + O(σ k+1) for 0 ≤ σ ≤ α, 2 ≤ m ≤ k, be a

strictly increasing function. Then there are coefficients c1, . . . , ck−m+1 and a constant γ > 0
such that the inverse function σ = σ (η) has the representation

σ = σ (η) = c1η
1/m + · · · + ck−m+1η

(k−m+1)/m + O(η(k−m+2)/m)
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for 0 ≤ η ≤ γ . The coefficients c1, . . . , ck−m+1 can be determined explicitly in terms of
bm, . . . , bk. In particular,

c1 = 1

b1/m
m

, c2 = − bm+1

mb(m+2)/m
m

, c3 = − bm+2

mb(m+3)/m
m

+ (m + 3)b2
m+1

2m2b(2m+3)/m
m

.

For t ≥ 0, let the unit-radius lower semicircle with centre (0, 1 + t) be represented by the
function

gt(σ ) = t + 1 −
√

1 − σ 2 = t + 1 −
∞∑

i=0

(−1)i

(
1
2
i

)
σ 2i = t + g2σ

2 + · · · + g2iσ
2i + · · ·

for σ ∈ [−1, 1], where g2 = 1
2 , g3 = 0, and g4 = 1

8 .
Let σ+ = σ+(t) > 0 and σ− = σ−(t) < 0 such that f (σ+) = gt(σ+) and f (σ−) = gt(σ−). For

sufficiently small σ > 0,

t = t(σ ) = f (σ ) − 1 +
√

1 − σ 2 = u2σ
2 + · · · + ukσ

k + O(σ k+1),

where, in particular, u2 = b2 − g2, u3 = b3, and u4 = b4 − g4.
Note that we subsequently express coefficients in terms of the ui (as long as it does not

become too complicated) as they carry all the information about ∂K and the circle. We will
only substitute their values when we determine our final answer.

Since u2 > 0 by the conditions on ∂K, Lemma 2 yields

σ+ = σ+(t) = c1t1/2 + · · · + ck−1t(k−1)/2 + O(tk/2), (7)

where

c1 = u−1/2
2 , c2 = − u3

2u2
2

, c3 = 5u2
3 − 4u2u4

8u7/2
2

.

Similarly, we obtain that

σ− = σ−(t) = c̃1t1/2 + · · · + c̃k−1t(k−1)/2 + O(tk/2), (8)

where the coefficients c̃1, . . . , c̃k−1 can be determined explicitly. In particular, c̃1 = −c1, c̃2 =
c2, and c̃3 = −c3. Thus, using (7) and (8), the area of the disc cap C(u, t) is

A(u, t) =
∫ σ+

σ−
gt(σ ) − f (σ ) dσ

=
∫ σ+

σ−
t − u2σ

2 − · · · − ukσ
k + O(σ k+1) dσ

=
[

tσ − u2

3
σ 3 − · · · − uk

k + 1
σ k+1 + O(σ k+2)

]σ+

σ−

= a1t3/2 + a2t2 + · · · + ak−1t(k+1)/2 + O(t(k+2)/2), (9)

where the coefficients a1, . . . , ak−1 can be expressed explicitly. In particular,

a1 = 4

3
u−1/2

2 , a2 = 0, a3 = 5u2
3 − 4u2u4

10u7/2
2

.
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Note that, for sufficiently small t, ∂A(u, t)/∂t = σ+(t) − σ−(t).
Now we turn to expressing the Jacobian J(u, t) in the form of a series expansion in t. Using

(7) and (8), we get

�(u, t) =
∫ σ+

σ−

√
1 + (g′

t(σ ))2 dσ =
∫ σ+

σ−

√
1

1 − σ 2
dσ = [

arcsin σ
]σ+
σ−

= h1t1/2 + h2t + · · · + hk−1t(k−1)/2 + O(tk/2), (10)

where the coefficients h1, . . . , hk−1 can be expressed explicitly. In particular,

h1 = 2u−1/2
2 , h2 = 0, h3 = 15u2

3 + 4u2(u2 − 3u4)

12u7/2
2

.

Note that the coefficients c1, c2, c3 (also c̃1, c̃2, c̃3), a1, a2, a3, and h1, h2, h3 were calcu-
lated in [11, pp. 911–912] with a different notation.

Now, using (10), we get

�(u, t) − sin �(u, t) =
∞∑

i=0

(−1)i �
2i+1(u, t)

(2i + 1)! = l1t3/2 + · · · + lk−1t(k+1)/2 + O(t(k+2)/2),

where the coefficients l1, . . . , lk−1 can be calculated explicitly. In particular,

l1 = 4

3
u−3/2

2 , l2 = 0, l3 = 25u2
3 + 4u2(u2 − 5u4)

10u9/2
2

.

Then,

J(u, t) = 2

(
1 + t − 1

κ(xu)

)
(�(u, t) − sin �(u, t)) = j1t3/2 + · · · + jk−1t(k+1)/2 + O(t(k+2)/2),

(11)
where the coefficients j1, . . . , jk−1 can be calculated explicitly. In particular,

j1 = 8u−3/2
2 (κ − 1)

3κ
, j2 = 0, j3 = 8u−3/2

2

3
+ 25u2

3 + 4u2(u2 − 5u4)

5u9/2
2

(κ − 1)

κ
.

For a fixed n, let y = y(u, t) be defined by

y

n − 2
= A(u, t)

A
.

Then, by (9) and using Lemma 2 for
√

t and then squaring, we obtain

t = p1

(
y

n − 2

)2/3

+ · · · + pk−1

(
y

n − 2

)k/3

+ O

((
y

n − 2

)(k+1)/3)
, (12)

where the coefficients p1, . . . , pk−1 can be calculated explicitly. In particular,

p1 =
(

3A

4

)2/3

u1/3
2 , p2 = 0, p3 = 9A( − 5u2

3 + 4u2u4)

320u2
2

.
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Then, substituting (12) into (11), we obtain

J

(
u,

y

n − 2

)
= q1

(
y

n − 2

)
+ · · · + qk−1

(
y

n − 2

)(k+1)/3

+ O

((
y

n − 2

)(k+2)/3)
, (13)

where the coefficients q1, . . . , qk−1 can be calculated explicitly. In particular,

q1 = j1p3/2
1 , q2 = 0, q3 = j3p5/2

1 + 3j1p3p1/2
1

2
.

In the coefficients q1, q3 we used j1, j3 and p1, p3 instead of the ui in order to simplify the
notation.

4. The incomplete beta function

In evaluating the integral (5), we use the following expansion of the incomplete beta
function from [14].

Lemma 3 ([14].) Let β ∈R. There are coefficients γ1, γ2, . . . ∈R depending on β that can be
determined explicitly such that, for a fixed l = 1, 2, . . . and 0 < α ≤ 1,

∫ αn

0

(
1 − t

n

)n

tβ dt = �(β + 1) + γ1

n
+ · · · + γl

nl
+ O

(
1

nl+1

)
as n → ∞.

In particular,

γ1 = −�(β + 3)

2
, γ2 = −�(β + 4)

3
+ −�(β + 5)

8
.

If α is chosen from a closed subinterval of (0,1], then the constant in O(·) can be chosen
independent of α.

In our calculations, we need the following corollary of Lemma 3.

Lemma 4. Under the assumptions of Lemma 3, there are coefficients γ ′
1, γ ′

2, . . . ∈R such that

∫ α(n−2)

0

(
1 − t

n − 2

)n−2

tβ dt = �(β + 1) + γ ′
1

n
+ · · · + γ ′

l

nl
+ O

(
1

nl+1

)
as n → ∞.

In particular,

γ ′
1 = −�(β + 3)

2
, γ ′

2 = −�(β + 4)

3
− 2�(β + 3).

If α is chosen from a closed subinterval of (0,1], then the constant in O(·) can be chosen
independent of α.

Proof. Using Lemma 3 and

n

n − 2
= 1

1 − (2/n)
= 1 + 2

n
+ 4

n2
+ · · · ,
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we obtain

∫ α(n−2)

0

(
1 − t

n − 2

)n−2

tβ dt

= �(β + 1) + γ1

n

n

n − 2
+ · · · + γl

nl

nl

(n − 2)l
+ O

(
1

nl+1

nl+1

(n − 2)l+1

)

= �(β + 1) + γ ′
1

n
+ · · · + γ ′

l

nl
+ O

(
1

nl+1

)
,

from which we can get the coefficients γ ′
1, . . . , γ ′

l by simple calculation. �

5. Proof of Theorem 2

Proof of Theorem 2. Substituting (13) in the integral (5) and using (12), we obtain

E(f0(K1
n )) =

(
n

2

)
1

A2

∫
S1

∫ t1

0

(
1 − A(u, t)

A

)n−2

J(u, t) dtdu + O(n−k)

=
(

n

2

)
1

A2

1

n − 2

∫
S1

∫ τ (n−2)

0

(
1 − y

n − 2

)n−2

J

(
u,

y

n − 2

)
t′
(

y

n − 2

)
dydu

+ O(n−k).

We evaluate the inner integral as follows. Collecting the terms according to the exponent of
y/(n − 2) and also the error term yields

(
n

2

)
1

A2

1

n − 2

∫ τ (n−2)

0

(
1 − y

n − 2

)n−2

J

(
u,

y

n − 2

)
t′
(

y

n − 2

)
dy

= v1

(
n

2

)
1

A2

1

(n − 2)5/3

∫ τ (n−2)

0

(
1 − y

n − 2

)n−2

y2/3 dy + · · ·

+ vk−1

(
n

2

)
1

A2

1

(n − 2)(k+3)/3

∫ τ (n−2)

0

(
1 − y

n − 2

)n−2

yk/3 dy

+ O

(
1

(n − 2)(k−2)/3

∫ τ (n−2)

0

(
1 − y

n − 2

)n−2

y(k+1)/3 dy

)

(14)

as n → ∞. The coefficients v1, . . . , vk−1 can be determined explicitly. In particular,

v1 = 2

3
p1q1, v2 = 0, v3 = 4

3
q1p3 + 2

3
p1q3.

Here we use p1, p3 and q1, q3 to express v1, v3 for the sake of brevity. Of course, they can also
be expressed explicitly in terms of the ui.
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We evaluate the above integrals one by one using Lemma 4. In particular, the first integral
is as follows:

v1

(
n

2

)
1

A2

1

(n − 2)5/3

∫ τ (n−2)

0

(
1 − y

n − 2

)n−2

y2/3 dy

= 3

√
2

3A

(κ − 1)1/3

κ

n(n − 1)

(n − 2)5/3

(
�

(
5

3

)
− �(10/3)

2

1

n
+ · · ·

)

= 3

√
2

3A

(κ − 1)1/3

κ

(
�

(
5

3

)
n1/3 +

(
7

3
�

(
5

3

)
− �(10/3)

2

)
1

n2/3
+ · · ·

)
,

where in the last line we used the binomial series expansion

n(n − 1)

(n − 2)5/3
= n1/3 + 7

3
n−2/3 + · · ·

The second (nonzero) integral is the following:

v3

(
n

2

)
1

A2

1

(n − 2)7/3

∫ τ (n−2)

0

(
1 − y

n − 2

)n−2

y4/3 dy

= v3

2A2

n(n − 1)

(n − 2)7/3

(
�

(
7

3

)
− �(13/3)

2

1

n
+ · · ·

)

= v3

2A2

(
�

(
7

3

)
n−1/3 +

(
11�(7/3)

3
− �(13/3)

2

)
n−4/3 + · · ·

)
,

where we used the binomial series expansion

n(n − 1)

(n − 2)7/3
= n−1/3 + 11

3
n−4/3 + · · ·

Evaluating the k − 1 integrals in (14) and collecting the terms, including the error term, we
obtain(

n

2

)
1

A2

∫ t1

0

(
1 − A(u, t)

A

)n−2

J(u, t) dt = w1n1/3 + w2n0 + · · · + wk−1n−(k−3)/3

+ O(n−(k−2)/3),

where, in principle, all the coefficients w1, . . . , wk−1 can be calculated explicitly. In
particular,

w1(u) = 3

√
2

3A
�

(
5

3

)
(κ(u) − 1)1/3

κ(u)
,

w2(u) = 0,

w3(u) = −�

(
7

3

)
1

5
3

√
3A

2

(
κ ′′(u)

3(κ(u) − 1)4/3κ(u)
+ 2κ2(u) + 7κ(u) − 1

2(κ(u) − 1)1/3κ(u)
− 5(κ ′(u))2

9(κ(u) − 1)7/3κ(u)

)
,

where we recall that κ is a function of u.
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We note here that, when calculating further coefficients, we must also take into account
some of the lower-order terms from previous integrals. This does not yet affect the evaluation
of w3, as the second-largest term in the first integral is n−2/3. However, this would have to be
added when calculating w4, and so on.

Finally, integration with respect to u yields

E(f0(K1
n )) =

∫
S1

w1(u)n1/3 + w2(u)n0 + · · · + wk−1(u)n−(k−3)/3 + O(n−(k−2)/3) du

= z1(K)n1/3 + z2(K)n0 + · · · + zk−1(K)n−(k−3)/3 + O(n−(k−2)/3),

where, again, all coefficient can be found explicitly. In particular,

z1(K) =
∫

S1
w1(u) du = 3

√
2

3A
�

(
5

3

) ∫
∂K

(κ(x) − 1)1/3 dx,

z2(K) = 0,

z3(K) =
∫

S1
w3(u) du

= −�

(
7

3

)
1

5
3

√
3A

2

∫
∂K

κ ′′(x)

3(κ(x) − 1)4/3
+ 2κ(x)2 + 7κ(x) − 1

2(κ(x) − 1)1/3
− 5(κ ′(x))2

9(κ(x) − 1)7/3
dx,

where we use that if ∂K is C2+-smooth and f (u) is a measurable function on S1, then∫
S1 f (u) du = ∫

∂K f (ux)κ(x) dx [30, (2.62)]. This completes the proof of Theorem 2. �

6. The case of the unit circle

For the sake of completeness, we consider the case when K = B(R). Since E(f0(B(R)R
n )) is

independent of R, we may assume that R = 1. We will use the simpler notation B1
n = B(1)1

n. In
[11, p. 916] it was proved that

E(f0(B1
n)) =

(
n

2

)
4
∫ π

0
sin (σ )

(
1 − sin (σ ) + σ

π

)n−1

dσ .

Let
y

n − 1
= sin (σ ) + σ

π
.

Since sin (σ ) + σ is a strictly monotonically increasing analytic function on [0, π ], its inverse
is also a strictly monotonically increasing analytic function by the Lagrange inversion theorem.
Then σ has a power-series expansion in terms of y/(n − 1) around y = 0 as follows:

σ = c1

(
y

n − 1

)
+ c3

(
y

n − 1

)3

+ · · · + c2k+1

(
y

n − 1

)2k+1

+ · · · ,

where all the coefficients can be calculated explicitly. In particular,

c1 = π

2
, c3 = π3

96
, c5 = π5

1920
.
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Thus,

sin (σ ) = e1

(
y

n − 1

)
+ e3

(
y

n − 1

)3

+ · · · + e2k+1

(
y

n − 1

)2k+1

+ · · · ,

where the coefficients can be calculated explicitly. In particular,

e1 = π

2
, e3 = −π3

96
, e5 = − π5

1920
.

Therefore,

E(f0(B1
n)) =

(
n

2

)
4

n − 1

∫ n−1

0

(
1 − y

n − 1

)n−1

sin

(
σ

(
y

n − 1

))
σ ′
(

y

n − 1

)
dy

= f1

(
n

2

)
4

(n − 1)2

∫ n−1

0

(
1 − y

n − 1

)n−1

y dy

+ f3

(
n

2

)
4

(n − 1)4

∫ n−1

0

(
1 − y

n − 1

)n−1

y3 dy

+ · · · + f2k+1

(
n

2

)
4

(n − 1)2k+2

∫ n−1

0

(
1 − y

n − 1

)n−1

y2k+1 dy + · · · ,

where all the coefficients f1, . . . , f2k+1, . . . can be evaluated explicitly using Lemma 3 and the
binomial series expansion of n/(n − 1)2k+1. In particular,

f1 = π2

4
, f3 = π4

96
, f5 = 11π6

15 360
.

Thus, by Lemma 4, the first integral yields(
n

2

)
π2

(n − 1)2

∫ n−1

0

(
1 − y

n − 1

)n−1

y dy

= π2

2

n

n − 1

(
�(2) − �(4)

2

1

n − 1
+
(−�(5)

3
+ �(6)

8

)
1

(n − 1)2
+ · · ·

)

= π2

2

(
1 − 2

n
+ 2

n2
+ · · ·

)
The second integral yields

f3

(
n

2

)
4

(n − 1)4

∫ n−1

0

(
1 − y

n − 1

)n−1

y3 dy

= π4

48

n

(n − 1)3

(
�(4) − �(6)

3

1

n − 1
+
(

−�(7)

3
+ �(8)

8

)
1

(n − 1)2
+ · · ·

)

Thus, for any k, E(f0(B1
n)) = w0n0 + w1n−1 + w2n−2 + · · · + wkn−k + O(n−k−1), where all the

coefficients w1, . . . w1, . . . , wk can be calculated explicitly. In particular,

w0 = π2

2
, w1 = −π2, w2 = π4 + 8π2

8
, w3 = 13π2

3
− 11π4

24
.
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