A Note about Analytic Solvability of Complex Planar Vector Fields with Degeneracies

Paulo L. Dattori da Silva

Abstract. This paper deals with the analytic solvability of a special class of complex vector fields defined on the real plane, where they are tangent to a closed real curve, while off the real curve, they are elliptic.

1 Introduction and Some Known Results

Let

$$
\begin{equation*}
\mathcal{L}=a(x, y) \partial / \partial x+b(x, y) \partial / \partial y \tag{1.1}
\end{equation*}
$$

be a complex vector field, defined on \mathbb{R}^{2}, where a and b are real-analytic complexvalued functions that do not vanish simultaneously. Consider $\overline{\mathcal{L}}=\overline{a(x, y)} \partial / \partial x+$ $\overline{b(x, y)} \partial / \partial y$.

We say that \mathcal{L} is elliptic at $(x, y) \in \mathbb{R}^{2}$ if $\mathcal{L}_{(x, y)}$ and $\overline{\mathcal{L}}_{(x, y)}$ are linearly independent. If \mathcal{L} is elliptic at (x, y), then \mathcal{L} is equivalent to the Cauchy-Riemann operator $\partial / \partial \bar{z}$ in some neighborhood of (x, y).

In this paper we shall consider complex vector fields \mathcal{L}, given by (1.1), which are tangent to a closed real curve Σ, while off the real curve, they are elliptic and such that $\mathcal{L} \wedge \overline{\mathcal{L}}$ vanishes of constant finite order $m \geq 1$ along Σ.

At points $(x, y) \in \Sigma$, the vector field (1.1) is not elliptic. However, at points $(x, y) \in \Sigma$ and in suitable local coordinates, (1.1) can be rewritten in the form

$$
\begin{equation*}
\partial / \partial t-i x^{m} c(x, t) \partial / \partial x, \quad \Re c(0,0) \neq 0, \tag{1.2}
\end{equation*}
$$

where c is a real-analytic complex-valued function. As a consequence of the CauchyKowalevsky theorem, we have that (1.2) is locally equivalent to a multiple of

$$
\partial / \partial t-i x^{m} \partial / \partial x .
$$

Note that $\partial / \partial \bar{z}$ and $\partial / \partial t-i x^{m} \partial / \partial x$ satisfy the well-known Nirenberg-Treves condition (\mathcal{P}) and, consequently, the local solvability is well understood (see [16]).

[^0]However, the problem of solvability of (1.1) is still interesting if we deal with the solvability in a full neighborhood of Σ.

After a change of coordinates in a tubular neighborhood of Σ, we can assume that (1.1) is given by

$$
\begin{equation*}
\mathcal{L}=\partial / \partial t+(a(x, t)+i b(x, t)) \partial / \partial x \tag{1.3}
\end{equation*}
$$

defined on $\Omega_{\epsilon}=(-\epsilon, \epsilon) \times S^{1}, \epsilon>0$, where a and b are real-analytic real-valued functions and $t \rightarrow(a+i b)(0, t) \equiv 0$; moreover, $\Sigma=\{0\} \times S^{1}$. Note that \mathcal{L} satisfies condition (\mathcal{P}) on Ω_{ϵ}, since \mathcal{L} is tangent to Σ and elliptic away from Σ.

For operators given by (1.3), condition (\mathcal{P}) has a simple statement: \mathcal{L} satisfies condition (\mathcal{P}) if and only if the function b does not change sign on any integral curve of $\Re(\mathcal{L})=\partial / \partial t+a(x, t) \partial / \partial x$ (see [13]).

A simple calculus shows that $\mathcal{L} \wedge \overline{\mathcal{L}}=2 i b(x, t) \partial / \partial x \wedge \partial / \partial t$ and, consequently, we can write $b(x, t)=x^{m} b_{0}(x, t)$, where $b_{0}(0, t) \neq 0$, for all $t \in S^{1}$. Hence (1.3) can be rewritten in the form

$$
\begin{equation*}
\mathcal{L}=\partial / \partial t+\left(x^{n} a_{0}(x, t)+i x^{m} b_{0}(x, t)\right) \partial / \partial x \tag{1.4}
\end{equation*}
$$

where either $n \geq m$ or $n<m$ and $a_{0}(0, t) \neq 0$, for all $t \in S^{1}$.
We say that an operator \mathcal{L} of the form (1.4) is C^{w}-solvable at Σ if given a realanalytic function f defined in a neighborhood of Σ and satisfying

$$
\int_{0}^{2 \pi} \frac{\partial^{(j)} f}{\partial x^{j}}(0, t) d t=0, \quad j=0, \ldots, k-1, \quad k=\min \{m, n\}
$$

there exists a real-analytic function u solution of $\mathcal{L} u=f$ in a neighborhood of Σ.
When $m=1$, it was shown in [14] that

$$
\lambda=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(b_{0}-i x^{n-1} a_{0}\right)(0, t) d t
$$

is an invariant of \mathcal{L} and, if $\lambda \in \mathbb{C} \backslash \mathbb{R}$, then \mathcal{L} is equivalent to $T_{\lambda}=\partial / \partial t-i \lambda \partial / \partial x$. The C^{w}-solvability of the model operator T_{λ} was studied in [8] when $\lambda \in \mathbb{C} \backslash \mathbb{R}$, and in [5] when $\lambda \in \mathbb{R}$ (see also [6]). Moreover, if $\lambda \in \mathbb{R} \backslash \mathbb{O}$), the following was proved in [10].

Proposition 1.1 Let \mathcal{L} be given by (1.4) with $m=1$ and irrational λ. Then, the operator \mathcal{L} is C^{w}-solvable at Σ if and only if \mathcal{L} is real-analytically equivalent to T_{λ} and $\left(\log \left|e^{2 \pi n i \lambda}-1\right| / n\right)$ is bounded.

When $m=1$ and $\lambda \in \mathbb{O}$, if we consider that the functions a_{0} and b_{0}, given in (1.4), depend only on the x-variable, then there are infinitely many compatibility conditions for the equation $\mathcal{L} u=f$ and, consequently, \mathcal{L} is not C^{w}-solvable at Σ.

From now on, we shall assume $m \geq 2$. It was proved in [15] that if $n \geq m$, then (1.4) is real-analytically equivalent to

$$
R_{m}=\partial / \partial \theta-i \frac{r^{m}}{r P^{\prime}(r)-(m-1) P(r)+\mu r^{m-1}} \partial / \partial r
$$

where $\mu \in \mathbb{C}$ and $P(r)$ is a polynomial with degree at most $m-2$ and $\Re P(0)<0$, provided a certain function

$$
f(r, \theta)=\frac{\alpha_{-(m-1)}}{r^{m-1}}+\cdots+\frac{\alpha_{-1}}{r}+\mu \log |r|+i \theta+\sum_{j \geq 1} f_{j}(\theta) r^{j}
$$

converges. It was proved in [6] that R_{m} is not C^{w}-solvable at Σ.
When $n<m$, the study of C^{w}-solvability at Σ of (1.4) is untouched. In this paper we shall consider $m, n \geq 2$ and we shall allow $n<m$; however, we shall consider that the functions a and b depend only on the x-variable.

For related papers see, for instance, $[1-4,7,9,11,12]$.

2 Analytic Solvability at Σ

Let

$$
\begin{equation*}
\mathcal{L}_{n}=\partial / \partial t-x^{n+1} c_{0}(x) \partial / \partial x, \quad c_{0} \in C^{w}, \quad c_{0}(0) \neq 0, \quad n \geq 1 \tag{2.1}
\end{equation*}
$$

be a complex vector field defined on $\Omega_{\epsilon}=(-\epsilon, \epsilon) \times S^{1}, \epsilon>0$, where $c_{0}(x)=$ $a_{0}(x)+i b_{0}(x)$, and a_{0}, b_{0} are real-analytic real-valued functions.

In this section, we will deal with the study of the C^{w}-solvability of

$$
\begin{equation*}
\mathcal{L}_{n} u=f, \tag{2.2}
\end{equation*}
$$

in a full neighborhood of Σ, that is, the C^{w}-solvability at Σ.
The lemma below is due to Bergamasco and Meziani [6].
Lemma 2.1 ([6, Lemma 2.1]) Given $n \in \mathbb{Z}_{+}, a_{0} \in \mathbb{C}^{*}$, and $a_{n} \in \mathbb{C}$, there is $p \in \mathbb{Z}_{+}$ such that the differential equation

$$
z^{n+1} d v / d z-\left(a_{0}+a_{n} z^{n}\right) v=z^{p}
$$

has no holomorphic solution in any neighborhood of $0 \in \mathbb{C}$.
Now, we are ready to prove that \mathcal{L}_{n}, given by (2.1), is not C^{w}-solvable at Σ for every $n \geq 1$.

Theorem 2.2 Let \mathcal{L}_{n} be given by (2.1). For every $n \geq 1$, there exists $f \in C^{w}(\Sigma)$ satisfying

$$
\int_{0}^{2 \pi} \frac{\partial^{(j)} f}{\partial x^{j}}(0, t) d t=0, \quad j=0, \ldots, n
$$

such that the equation (2.2) has no solution $u \in C^{w}$ in any neighborhood of Σ.
Proof Define $f(x, t)=\varphi(x) \mathrm{e}^{i t}$, where φ is a real-analytic function defined on an interval of center $x=0$. For a fixed $n \geq 1$, assume that the equation $\mathcal{L}_{n} u=f$ has a
solution $u \in C^{w}$ in a neighborhood of Σ. The solution u can be written, using partial Fourier series, in the form

$$
u(x, t)=\sum_{j \in \mathbb{Z}} \hat{u}_{j}(x) \mathrm{e}^{i j t}, \quad \text { where } \quad \hat{u}_{j}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(x, t) \mathrm{e}^{-i j t} \mathrm{~d} t
$$

moreover, since u is a solution of (2.2), we have that \hat{u}_{1} must satisfy the ordinary differential equation

$$
\begin{equation*}
i \hat{u}_{1}(x)-x^{n+1}\left(a_{0}(x)+i b_{0}(x)\right) \frac{\mathrm{d} \hat{u}_{1}}{\mathrm{~d} x}(x)=\varphi(x) \tag{2.3}
\end{equation*}
$$

Consider the complexification of (2.3):

$$
\begin{equation*}
i \hat{U}_{1}(\zeta)-\zeta^{n+1}\left(A_{0}(\zeta)+i B_{0}(\zeta)\right) \frac{\mathrm{d} \hat{U}_{1}}{\mathrm{~d} \zeta}(\zeta)=\Phi(\zeta) \tag{2.4}
\end{equation*}
$$

where $\zeta=x+i \tilde{x} \in \mathbb{C}$ and $\hat{U}_{1}, A_{0}, B_{0}$, and Φ are complexifications of $\hat{u}_{1}, a_{0}, b_{0}$, and φ, respectively.

We claim that there is a holomorphic change of coordinates in a neighborhood of $0 \in \mathbb{C}^{2}$ that transforms the equation (2.4) in an equation as in Lemma.2.1. To prove this claim, we define

$$
\begin{aligned}
F(\zeta, \eta)=-\frac{\alpha_{0}}{n(1+\eta)^{n}}+\frac{\alpha_{0}}{n}+\frac{\alpha_{1} \zeta}{n-1}+\frac{\alpha_{2} \zeta^{2}}{n-2} & +\cdots+\alpha_{n-1} \zeta^{n-1} \\
& +h_{0} \zeta^{n} \ln (1+\eta)-\sum_{j \geq 1} \frac{h_{j}}{j} \zeta^{j+n}
\end{aligned}
$$

where α_{k} and $h_{j}, k=0, \ldots, n$, and $j \in \mathbb{Z}_{+}$are such that

$$
\frac{1}{A_{0}(\zeta)+i B_{0}(\zeta)}=\alpha_{0}+\alpha_{1} \zeta+\alpha_{2} \zeta^{2}+\cdots+\alpha_{n-1} \zeta^{n-1}+\zeta^{n} h(\zeta)
$$

and $h(\zeta)=\sum_{j \geq 0} h_{j} \zeta^{j}$. We have that $F(0,0)=0$ and $\frac{\partial F}{\partial \eta}(0,0)=\alpha_{0} \neq 0$; note that $\alpha_{0}=\frac{1}{a_{0}(0)+i b_{0}(0)}$. Hence, by the implicit function theorem, there is a holomorphic function $\eta(\zeta)$ defined on a disk $|\zeta|<\delta$, with $\eta(0)=0$, such that

$$
F(\zeta, \eta(\zeta))=0, \quad \text { if } \quad|\zeta|<\delta
$$

Now, define $z(\zeta)=\zeta(1+\eta(\zeta))$. It follows that

$$
\begin{aligned}
\frac{d z}{d \zeta}=1+\eta & -\frac{\frac{\alpha_{1} \zeta}{n-1}+\frac{2 \alpha_{2} \zeta^{2}}{n-2}+\cdots+(n-1) \alpha_{n-1} \zeta^{n-1}+n h_{0} \zeta^{n} \ln (1+\eta)}{\frac{\alpha_{0}+h_{0} \zeta^{n}(1+\eta)^{n}}{(1+\eta)^{n+1}}} \\
& -\frac{\sum_{j \geq 1}\left(\frac{j+n}{j}\right) h_{j} \zeta^{j+n}}{\frac{\alpha_{0}+h_{0} \zeta^{n}(1+\eta)^{n}}{(1+\eta)^{n+1}}} .
\end{aligned}
$$

Since $F(\zeta, \eta(\zeta))=0$, we have

$$
-h_{0} \zeta^{n} \ln (1+\eta)=-\frac{\alpha_{0}}{n(1+\eta)^{n}}+\frac{\alpha_{0}}{n}+\frac{\alpha_{1} \zeta}{n-1}+\frac{\alpha_{2} \zeta^{2}}{n-2}+\cdots+\alpha_{n-1} \zeta^{n-1}-\sum_{j \geq 1} \frac{h_{j}}{j} \zeta^{j+n}
$$

and thus

$$
\frac{d z}{d \zeta}=1+\eta+\frac{\alpha_{0}+\alpha_{1} \zeta+\alpha_{2} \zeta^{2}+\cdots+\alpha_{n-1} \zeta^{n-1}+\sum_{j \geq 1} h_{j} \zeta^{j+n}-\frac{\alpha_{0}}{(1+\eta)^{n}}}{\frac{\alpha_{0}+h_{0} \zeta^{n}(1+\eta)^{n}}{(1+\eta)^{n+1}}}
$$

Hence,

$$
\frac{\alpha_{0}+h_{0} \zeta^{n}(1+\eta)^{n}}{\zeta^{n+1}(1+\eta)^{n+1}} \frac{d z}{d \zeta}=\frac{\alpha_{0}+\alpha_{1} \zeta+\alpha_{2} \zeta^{2}+\cdots+\alpha_{n-1} \zeta^{n-1}+\sum_{j \geq 0} h_{j} \zeta^{j+n}}{\zeta^{n+1}}
$$

which implies

$$
\frac{\alpha_{0}+h_{0} \zeta^{n}(1+\eta)^{n}}{\zeta^{n+1}(1+\eta)^{n+1}} \frac{d z}{d \zeta}=\frac{1}{\zeta^{n+1}\left(A_{0}+i B_{0}\right)(\zeta)}
$$

Therefore, equation (2.4) is transformed to

$$
z^{n+1} \frac{d w}{d z}-i\left(\alpha_{0}+h_{0} z^{n}\right) w=-\Phi(\zeta(z))\left(\alpha_{0}+h_{0} z^{n}\right)
$$

equivalently,

$$
\begin{equation*}
z^{n+1} \frac{d w}{d z}-\left(\tilde{\alpha}_{0}+\tilde{h}_{0} z^{n}\right) w=f(z) \tag{2.5}
\end{equation*}
$$

where $\tilde{\alpha}_{0}=i \alpha_{0}, \tilde{h}_{0}=i h_{0}$ and $f(z)=-\Phi(\zeta(z))\left(\tilde{\alpha}_{0}+\tilde{h}_{0} z^{n}\right)$.
Choosing $\varphi(x)=-\frac{x^{p}(1+\eta(x))^{p}}{\tilde{\alpha}_{0}+\tilde{h}_{0} x^{n}(1+\eta(x))^{n}}$, with $p \in \mathbb{Z}_{+}$, we obtain $f(z)=z^{p}$.
It follows from Lemma 2.1 with a suitable choice of $p \in \mathbb{Z}_{+}$, that equation (2.5) has no holomorphic solution, w, in any neighborhood of $z=0$. Therefore, there is no $\hat{u}_{1}(x)$ real-analytic solution of (2.3), and, consequently, there is no $u(x, t)$ realanalytic solution of (2.2) in any neighborhood of Σ.

Remark 2.3 Note that in Theorem 2.2 it is permitted $b_{0}(0)=0$ and, in particular, $b_{0} \equiv 0$.

Acknowledgments This paper is in part motivated by discussions about solvability of complex vector fields with Professor Adalberto P. Bergamasco, to whom the author is grateful.

References

[1] A. P. Bergamasco, P. D. Cordaro, and G. Petronilho, Global solvability for a class of complex vector fields on the two-torus. Comm. Partial Differential Equations 29(2004), no. 5-6, 785-819. doi:10.1081/PDE-120037332
[2] A. P. Bergamasco and P. L. Dattori da Silva, Global solvability for a special class of vector fields on the torus. In: Recent progress on some problems in several complex variables and partial differential equations, Contemp. Math., 400, American Mathematical Society, Providence, RI, 2006, pp. 11-20.
[3] Solvability in the large for a class of vector fields on the torus. J. Math. Pures Appl. 86(2006), no. 5, 427-447.
[4] A. P. Bergamasco, P. L. Dattori da Silva, and M. R. Ebert, Gevrey solvability near the characteristic set for a class of planar complex vector fields of infinite type. J. Differential Equations 246(2009), no. 4, 1673-1702. doi:10.1016/j.jde.2008.10.028
[5] A. P. Bergamasco and A. Meziani, Semiglobal solvability of a class of planar vector fields of infinite type. Mat. Contemp. 18(2000), 31-42.
[6] , Solvability near the characteristic set for a class of planar vector fields of infinite type. Ann. Inst. Fourier (Grenoble) 55(2005), no. 1, 77-112.
[7] A. P. Bergamasco and G. Petronilho, Closedness of the range for vector fields on the torus. J. Differential Equations 154(1999), no. 1, 132-139. doi:10.1006/jdeq.1998.3563
[8] S. Berhanu and A. Meziani, Global properties of a class of planar vector fields of infinite type. Comm. Partial Differential Equations 22(1997), no. 1-2, 99-142. doi:10.1080/03605309708821288
[9] W. A. Cerniauskas and A. Kirilov, C^{k} solvability near the characteristic set for a class of vector fields of infinite type. Mat. Contemp. 36(2009), 91-106.
[10] P. D. Cordaro and X. Gong, Normalization of complex-valued planar vector fields which degenerate along a real curve. Adv. Math. 184(2004), no. 1, 89-118. doi:10.1016/S0001-8708(03)00139-7
[11] P. L. Dattori da Silva, Nonexistence of global solutions for a class of complex vector fields on two-torus. J. Math. Anal. Appl. 351(2009), no. 2, 543-555. doi:10.1016/j.jmaa.2008.10.039
[12] $\longrightarrow C^{k}$-Solvability near the characteristic set for a class of planar complex vector fields of infinite type. Ann. Mat. Pura Appl. 189(2010), no. 3, 403-413. doi:10.1007/s10231-009-0115-8
[13] L. Hörmander, Pseudodifferential operators of principal type. In: Singularities in boundary value problems (Proc. NATO Adv. Study Inst., Maratea, 1980), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., 65, Reidel, Dordrecht-Boston, MA, 1981, pp. 69-96.
[14] A. Meziani, On planar elliptic structures with infinite type degeneracy. J. Funct. Anal. 179(2001), no. 2, 333-373. doi:10.1006/jfan.2000.3695
[15] , Elliptic planar vector fields with degeneracies. Trans. Amer. Math. Soc. 357(2005), no. 10, 4225-4248. doi:10.1090/S0002-9947-04-03658-X
[16] L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation. Comm. Pure Appl. Math. 16(1963), 331-351. doi:10.1002/cpa.3160160308
Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, Departamento
de Matemática, Caixa Postal 668, São Carlos - SP, 13560-970 Brazil
e-mail: dattori@icmc.usp.br

[^0]: Received by the editors June 4, 2008.
 Published electronically February 10, 2011.
 The author was supported in part by FAPESP
 AMS subject classification: 35A01, 58Jxx.
 Keywords: semi-global solvability, analytic solvability, normalization, complex vector fields, condition (P).

