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A Note about Analytic Solvability of
Complex Planar Vector Fields with
Degeneracies

Paulo L. Dattori da Silva

Abstract. This paper deals with the analytic solvability of a special class of complex vector fields defined

on the real plane, where they are tangent to a closed real curve, while off the real curve, they are elliptic.

1 Introduction and Some Known Results

Let

(1.1) L = a(x, y)∂/∂x + b(x, y)∂/∂y

be a complex vector field, defined on R2, where a and b are real-analytic complex-

valued functions that do not vanish simultaneously. Consider L = a(x, y)∂/∂x +

b(x, y)∂/∂y.

We say that L is elliptic at (x, y) ∈ R2 if L(x,y) and L(x,y) are linearly independent.

If L is elliptic at (x, y), then L is equivalent to the Cauchy–Riemann operator ∂/∂z

in some neighborhood of (x, y).

In this paper we shall consider complex vector fields L, given by (1.1), which are

tangent to a closed real curve Σ, while off the real curve, they are elliptic and such

that L ∧ L vanishes of constant finite order m ≥ 1 along Σ.

At points (x, y) ∈ Σ, the vector field (1.1) is not elliptic. However, at points

(x, y) ∈ Σ and in suitable local coordinates, (1.1) can be rewritten in the form

(1.2) ∂/∂t − ixmc(x, t)∂/∂x, ℜc(0, 0) 6= 0,

where c is a real-analytic complex-valued function. As a consequence of the Cauchy–

Kowalevsky theorem, we have that (1.2) is locally equivalent to a multiple of

∂/∂t − ixm∂/∂x.

Note that ∂/∂z and ∂/∂t − ixm∂/∂x satisfy the well-known Nirenberg–Treves condi-

tion (P) and, consequently, the local solvability is well understood (see [16]).
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However, the problem of solvability of (1.1) is still interesting if we deal with the

solvability in a full neighborhood of Σ.

After a change of coordinates in a tubular neighborhood of Σ, we can assume that

(1.1) is given by

(1.3) L = ∂/∂t + (a(x, t) + ib(x, t))∂/∂x

defined on Ωǫ = (−ǫ, ǫ) × S1, ǫ > 0, where a and b are real-analytic real-valued

functions and t → (a + ib)(0, t) ≡ 0; moreover, Σ = {0} × S1. Note that L satisfies

condition (P) on Ωǫ, since L is tangent to Σ and elliptic away from Σ.

For operators given by (1.3), condition (P) has a simple statement: L satisfies

condition (P) if and only if the function b does not change sign on any integral curve

of ℜ(L) = ∂/∂t + a(x, t)∂/∂x (see [13]).

A simple calculus shows that L ∧ L = 2ib(x, t)∂/∂x ∧ ∂/∂t and, consequently,

we can write b(x, t) = xmb0(x, t), where b0(0, t) 6= 0, for all t ∈ S1. Hence (1.3) can

be rewritten in the form

(1.4) L = ∂/∂t + (xna0(x, t) + ixmb0(x, t))∂/∂x,

where either n ≥ m or n < m and a0(0, t) 6= 0, for all t ∈ S1.

We say that an operator L of the form (1.4) is Cw-solvable at Σ if given a real-

analytic function f defined in a neighborhood of Σ and satisfying

∫ 2π

0

∂( j) f

∂x j
(0, t)dt = 0, j = 0, . . . , k − 1, k = min{m, n},

there exists a real-analytic function u solution of Lu = f in a neighborhood of Σ.

When m = 1, it was shown in [14] that

λ =
1

2π

∫ 2π

0

(b0 − ixn−1a0)(0, t)dt

is an invariant of L and, if λ ∈ C \ R, then L is equivalent to Tλ = ∂/∂t − iλ∂/∂x.

The Cw-solvability of the model operator Tλ was studied in [8] when λ ∈ C \ R, and

in [5] when λ ∈ R (see also [6]). Moreover, if λ ∈ R \ Q , the following was proved

in [10].

Proposition 1.1 Let L be given by (1.4) with m = 1 and irrational λ. Then, the

operator L is Cw-solvable at Σ if and only if L is real-analytically equivalent to Tλ and

(log |e2πniλ − 1|/n) is bounded.

When m = 1 and λ ∈ Q , if we consider that the functions a0 and b0, given in

(1.4), depend only on the x-variable, then there are infinitely many compatibility

conditions for the equation Lu = f and, consequently, L is not Cw-solvable at Σ.

From now on, we shall assume m ≥ 2. It was proved in [15] that if n ≥ m, then

(1.4) is real-analytically equivalent to

Rm = ∂/∂θ − i
rm

rP ′(r) − (m − 1)P(r) + µrm−1
∂/∂r,
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where µ ∈ C and P(r) is a polynomial with degree at most m − 2 and ℜP(0) < 0,

provided a certain function

f (r, θ) =
α−(m−1)

rm−1
+ · · · +

α−1

r
+ µ log |r| + iθ +

∑

j≥1

f j(θ)r j

converges. It was proved in [6] that Rm is not Cw-solvable at Σ.

When n < m, the study of Cw-solvability at Σ of (1.4) is untouched. In this paper

we shall consider m, n ≥ 2 and we shall allow n < m; however, we shall consider that

the functions a and b depend only on the x-variable.

For related papers see, for instance, [1–4, 7, 9, 11, 12].

2 Analytic Solvability at Σ

Let

(2.1) Ln = ∂/∂t − xn+1c0(x)∂/∂x, c0 ∈ Cw, c0(0) 6= 0, n ≥ 1,

be a complex vector field defined on Ωǫ = (−ǫ, ǫ) × S1, ǫ > 0, where c0(x) =

a0(x) + ib0(x), and a0, b0 are real-analytic real-valued functions.

In this section, we will deal with the study of the Cw-solvability of

(2.2) Lnu = f ,

in a full neighborhood of Σ, that is, the Cw-solvability at Σ.

The lemma below is due to Bergamasco and Meziani [6].

Lemma 2.1 ([6, Lemma 2.1]) Given n ∈ Z+, a0 ∈ C∗, and an ∈ C, there is p ∈ Z+

such that the differential equation

zn+1dv/dz − (a0 + anzn)v = zp

has no holomorphic solution in any neighborhood of 0 ∈ C.

Now, we are ready to prove that Ln, given by (2.1), is not Cw-solvable at Σ for

every n ≥ 1.

Theorem 2.2 Let Ln be given by (2.1). For every n ≥ 1, there exists f ∈ Cw(Σ)

satisfying
∫ 2π

0

∂( j) f

∂x j
(0, t)dt = 0, j = 0, . . . , n

such that the equation (2.2) has no solution u ∈ Cw in any neighborhood of Σ.

Proof Define f (x, t) = ϕ(x)eit , where ϕ is a real-analytic function defined on an

interval of center x = 0. For a fixed n ≥ 1, assume that the equation Lnu = f has a
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solution u ∈ Cw in a neighborhood of Σ. The solution u can be written, using partial

Fourier series, in the form

u(x, t) =

∑

j∈Z

û j(x)ei jt , where û j(x) =
1

2π

∫ 2π

0

u(x, t)e−i jt dt ;

moreover, since u is a solution of (2.2), we have that û1 must satisfy the ordinary

differential equation

(2.3) iû1(x) − xn+1(a0(x) + ib0(x))
dû1

dx
(x) = ϕ(x).

Consider the complexification of (2.3):

(2.4) iÛ1(ζ) − ζn+1(A0(ζ) + iB0(ζ))
dÛ1

dζ
(ζ) = Φ(ζ),

where ζ = x + ix̃ ∈ C and Û1, A0, B0, and Φ are complexifications of û1, a0, b0, and

ϕ, respectively.

We claim that there is a holomorphic change of coordinates in a neighborhood of

0 ∈ C2 that transforms the equation (2.4) in an equation as in Lemma 2.1. To prove

this claim, we define

F(ζ, η) = −
α0

n(1 + η)n
+

α0

n
+

α1ζ

n − 1
+

α2ζ
2

n − 2
+ · · · + αn−1ζ

n−1

+ h0ζ
n ln(1 + η) −

∑

j≥1

h j

j
ζ j+n,

where αk and h j , k = 0, . . . , n, and j ∈ Z+ are such that

1

A0(ζ) + iB0(ζ)
= α0 + α1ζ + α2ζ

2 + · · · + αn−1ζ
n−1 + ζnh(ζ)

and h(ζ) =
∑

j≥0 h jζ
j . We have that F(0, 0) = 0 and ∂F

∂η (0, 0) = α0 6= 0; note that

α0 =
1

a0(0)+ib0(0)
. Hence, by the implicit function theorem, there is a holomorphic

function η(ζ) defined on a disk |ζ| < δ, with η(0) = 0, such that

F(ζ, η(ζ)) = 0, if |ζ| < δ.

Now, define z(ζ) = ζ(1 + η(ζ)). It follows that

dz

dζ
= 1 + η −

α1ζ
n−1

+ 2α2ζ
2

n−2
+ · · · + (n − 1)αn−1ζ

n−1 + nh0ζ
n ln(1 + η)

α0+h0ζn(1+η)n

(1+η)n+1

−

∑

j≥1

(

j+n
j

)

h jζ
j+n

α0+h0ζn(1+η)n

(1+η)n+1

.
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Since F(ζ, η(ζ)) = 0, we have

−h0ζ
n ln(1 +η) = −

α0

n(1 + η)n
+

α0

n
+

α1ζ

n − 1
+

α2ζ
2

n − 2
+ · · ·+αn−1ζ

n−1 −
∑

j≥1

h j

j
ζ j+n,

and thus

dz

dζ
= 1 + η +

α0 + α1ζ + α2ζ
2 + · · · + αn−1ζ

n−1 +
∑

j≥1 h jζ
j+n − α0

(1+η)n

α0+h0ζn(1+η)n

(1+η)n+1

.

Hence,

α0 + h0ζ
n(1 + η)n

ζn+1(1 + η)n+1

dz

dζ
=

α0 + α1ζ + α2ζ
2 + · · · + αn−1ζ

n−1 +
∑

j≥0 h jζ
j+n

ζn+1
,

which implies

α0 + h0ζ
n(1 + η)n

ζn+1(1 + η)n+1

dz

dζ
=

1

ζn+1(A0 + iB0)(ζ)
.

Therefore, equation (2.4) is transformed to

zn+1 dw

dz
− i(α0 + h0zn)w = −Φ(ζ(z))(α0 + h0zn);

equivalently,

(2.5) zn+1 dw

dz
− (α̃0 + h̃0zn)w = f (z),

where α̃0 = iα0, h̃0 = ih0 and f (z) = −Φ(ζ(z))(α̃0 + h̃0zn).

Choosing ϕ(x) = − xp(1+η(x))p

α̃0+h̃0xn(1+η(x))n , with p ∈ Z+, we obtain f (z) = zp.

It follows from Lemma 2.1, with a suitable choice of p ∈ Z+, that equation (2.5)

has no holomorphic solution, w, in any neighborhood of z = 0. Therefore, there

is no û1(x) real-analytic solution of (2.3), and, consequently, there is no u(x, t) real-

analytic solution of (2.2) in any neighborhood of Σ.

Remark 2.3 Note that in Theorem 2.2 it is permitted b0(0) = 0 and, in particular,

b0 ≡ 0.
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