

A Note about Analytic Solvability of Complex Planar Vector Fields with Degeneracies

Paulo L. Dattori da Silva

Abstract. This paper deals with the analytic solvability of a special class of complex vector fields defined on the real plane, where they are tangent to a closed real curve, while off the real curve, they are elliptic.

1 Introduction and Some Known Results

Let

(1.1)
$$\mathcal{L} = a(x, y)\partial/\partial x + b(x, y)\partial/\partial y$$

be a complex vector field, defined on \mathbb{R}^2 , where *a* and *b* are real-analytic complexvalued functions that do not vanish simultaneously. Consider $\overline{\mathcal{L}} = \overline{a(x, y)}\partial/\partial x + \overline{b(x, y)}\partial/\partial y$.

We say that \mathcal{L} is elliptic at $(x, y) \in \mathbb{R}^2$ if $\mathcal{L}_{(x,y)}$ and $\overline{\mathcal{L}}_{(x,y)}$ are linearly independent. If \mathcal{L} is elliptic at (x, y), then \mathcal{L} is equivalent to the Cauchy–Riemann operator $\partial/\partial \overline{z}$ in some neighborhood of (x, y).

In this paper we shall consider complex vector fields \mathcal{L} , given by (1.1), which are tangent to a closed real curve Σ , while off the real curve, they are elliptic and such that $\mathcal{L} \wedge \overline{\mathcal{L}}$ vanishes of constant finite order $m \geq 1$ along Σ .

At points $(x, y) \in \Sigma$, the vector field (1.1) is not elliptic. However, at points $(x, y) \in \Sigma$ and in suitable local coordinates, (1.1) can be rewritten in the form

(1.2)
$$\partial/\partial t - ix^m c(x,t)\partial/\partial x, \quad \Re c(0,0) \neq 0$$

where *c* is a real-analytic complex-valued function. As a consequence of the Cauchy–Kowalevsky theorem, we have that (1.2) is locally equivalent to a multiple of

$$\partial/\partial t - ix^m \partial/\partial x.$$

Note that $\partial/\partial \overline{z}$ and $\partial/\partial t - ix^m \partial/\partial x$ satisfy the well-known *Nirenberg–Treves* condition (\mathcal{P}) and, consequently, the local solvability is well understood (see [16]).

Received by the editors June 4, 2008.

Published electronically February 10, 2011.

The author was supported in part by FAPESP

AMS subject classification: 35A01, 58Jxx.

Keywords: semi-global solvability, analytic solvability, normalization, complex vector fields, condition (\mathcal{P}) .

However, the problem of solvability of (1.1) is still interesting if we deal with the solvability in a full neighborhood of Σ .

After a change of coordinates in a tubular neighborhood of Σ , we can assume that (1.1) is given by

(1.3)
$$\mathcal{L} = \partial/\partial t + (a(x,t) + ib(x,t))\partial/\partial x$$

defined on $\Omega_{\epsilon} = (-\epsilon, \epsilon) \times S^1$, $\epsilon > 0$, where *a* and *b* are real-analytic real-valued functions and $t \to (a + ib)(0, t) \equiv 0$; moreover, $\Sigma = \{0\} \times S^1$. Note that \mathcal{L} satisfies condition (\mathcal{P}) on Ω_{ϵ} , since \mathcal{L} is tangent to Σ and elliptic away from Σ .

For operators given by (1.3), condition (\mathcal{P}) has a simple statement: \mathcal{L} satisfies condition (\mathcal{P}) if and only if the function *b* does not change sign on any integral curve of $\Re(\mathcal{L}) = \partial/\partial t + a(x,t)\partial/\partial x$ (see [13]).

A simple calculus shows that $\mathcal{L} \wedge \overline{\mathcal{L}} = 2ib(x,t)\partial/\partial x \wedge \partial/\partial t$ and, consequently, we can write $b(x,t) = x^m b_0(x,t)$, where $b_0(0,t) \neq 0$, for all $t \in S^1$. Hence (1.3) can be rewritten in the form

(1.4)
$$\mathcal{L} = \partial/\partial t + (x^n a_0(x,t) + i x^m b_0(x,t)) \partial/\partial x,$$

where either $n \ge m$ or n < m and $a_0(0, t) \ne 0$, for all $t \in S^1$.

We say that an operator \mathcal{L} of the form (1.4) is C^{w} -solvable at Σ if given a realanalytic function f defined in a neighborhood of Σ and satisfying

$$\int_{0}^{2\pi} \frac{\partial^{(j)} f}{\partial x^{j}}(0,t) dt = 0, \quad j = 0, \dots, k-1, \quad k = \min\{m, n\},$$

there exists a real-analytic function u solution of $\mathcal{L}u = f$ in a neighborhood of Σ . When m = 1, it was shown in [14] that

n_

ten m = 1, it was shown in [14] that

$$\lambda = \frac{1}{2\pi} \int_0^{2\pi} (b_0 - ix^{n-1}a_0)(0, t)dt$$

is an invariant of \mathcal{L} and, if $\lambda \in \mathbb{C} \setminus \mathbb{R}$, then \mathcal{L} is equivalent to $T_{\lambda} = \partial/\partial t - i\lambda\partial/\partial x$. The C^w -solvability of the model operator T_{λ} was studied in [8] when $\lambda \in \mathbb{C} \setminus \mathbb{R}$, and in [5] when $\lambda \in \mathbb{R}$ (see also [6]). Moreover, if $\lambda \in \mathbb{R} \setminus \mathbb{Q}$, the following was proved in [10].

Proposition 1.1 Let \mathcal{L} be given by (1.4) with m = 1 and irrational λ . Then, the operator \mathcal{L} is C^w -solvable at Σ if and only if \mathcal{L} is real-analytically equivalent to T_{λ} and $(\log |e^{2\pi ni\lambda} - 1|/n)$ is bounded.

When m = 1 and $\lambda \in \mathbb{Q}$, if we consider that the functions a_0 and b_0 , given in (1.4), depend only on the *x*-variable, then there are infinitely many compatibility conditions for the equation $\mathcal{L}u = f$ and, consequently, \mathcal{L} is not C^w -solvable at Σ .

From now on, we shall assume $m \ge 2$. It was proved in [15] that if $n \ge m$, then (1.4) is real-analytically equivalent to

$$R_m = \partial/\partial\theta - i \frac{r^m}{rP'(r) - (m-1)P(r) + \mu r^{m-1}} \partial/\partial r,$$

250

where $\mu \in \mathbb{C}$ and P(r) is a polynomial with degree at most m - 2 and $\Re P(0) < 0$, provided a certain function

$$f(r,\theta) = \frac{\alpha_{-(m-1)}}{r^{m-1}} + \dots + \frac{\alpha_{-1}}{r} + \mu \log|r| + i\theta + \sum_{j\geq 1} f_j(\theta)r^j$$

converges. It was proved in [6] that R_m is not C^w -solvable at Σ .

When n < m, the study of C^w -solvability at Σ of (1.4) is untouched. In this paper we shall consider $m, n \ge 2$ and we shall allow n < m; however, we shall consider that the functions a and b depend only on the x-variable.

For related papers see, for instance, [1–4,7,9,11,12].

2 Analytic Solvability at Σ

Let

(2.1)
$$\mathcal{L}_n = \partial/\partial t - x^{n+1} c_0(x) \partial/\partial x, \quad c_0 \in C^w, \quad c_0(0) \neq 0, \quad n \ge 1,$$

be a complex vector field defined on $\Omega_{\epsilon} = (-\epsilon, \epsilon) \times S^1$, $\epsilon > 0$, where $c_0(x) = a_0(x) + ib_0(x)$, and a_0, b_0 are real-analytic real-valued functions.

In this section, we will deal with the study of the C^{w} -solvability of

in a full neighborhood of Σ , that is, the C^{w} -solvability at Σ .

The lemma below is due to Bergamasco and Meziani [6].

Lemma 2.1 ([6, Lemma 2.1]) *Given* $n \in \mathbb{Z}_+$, $a_0 \in \mathbb{C}^*$, and $a_n \in \mathbb{C}$, there is $p \in \mathbb{Z}_+$ such that the differential equation

$$z^{n+1}dv/dz - (a_0 + a_n z^n)v = z^p$$

has no holomorphic solution in any neighborhood of $0 \in \mathbb{C}$.

Now, we are ready to prove that \mathcal{L}_n , given by (2.1), is not C^w -solvable at Σ for every $n \ge 1$.

Theorem 2.2 Let \mathcal{L}_n be given by (2.1). For every $n \ge 1$, there exists $f \in C^w(\Sigma)$ satisfying

$$\int_0^{2\pi} \frac{\partial^{(j)} f}{\partial x^j}(0,t) dt = 0, \quad j = 0, \dots, n$$

such that the equation (2.2) has no solution $u \in C^w$ in any neighborhood of Σ .

Proof Define $f(x,t) = \varphi(x)e^{it}$, where φ is a real-analytic function defined on an interval of center x = 0. For a fixed $n \ge 1$, assume that the equation $\mathcal{L}_n u = f$ has a

P. L. Dattori da Silva

solution $u \in C^w$ in a neighborhood of Σ . The solution u can be written, using partial Fourier series, in the form

$$u(x,t) = \sum_{j \in \mathbb{Z}} \hat{u}_j(x) e^{ijt}, \quad \text{where} \quad \hat{u}_j(x) = \frac{1}{2\pi} \int_0^{2\pi} u(x,t) e^{-ijt} dt;$$

moreover, since u is a solution of (2.2), we have that \hat{u}_1 must satisfy the ordinary differential equation

(2.3)
$$i\hat{u}_1(x) - x^{n+1}(a_0(x) + ib_0(x))\frac{\mathrm{d}\hat{u}_1}{\mathrm{d}x}(x) = \varphi(x).$$

Consider the complexification of (2.3):

(2.4)
$$i\hat{U}_1(\zeta) - \zeta^{n+1}(A_0(\zeta) + iB_0(\zeta))\frac{d\hat{U}_1}{d\zeta}(\zeta) = \Phi(\zeta),$$

where $\zeta = x + i\tilde{x} \in \mathbb{C}$ and \hat{U}_1, A_0, B_0 , and Φ are complexifications of \hat{u}_1, a_0, b_0 , and φ , respectively.

We claim that there is a holomorphic change of coordinates in a neighborhood of $0 \in \mathbb{C}^2$ that transforms the equation (2.4) in an equation as in Lemma 2.1. To prove this claim, we define

$$F(\zeta,\eta) = -\frac{\alpha_0}{n(1+\eta)^n} + \frac{\alpha_0}{n} + \frac{\alpha_1\zeta}{n-1} + \frac{\alpha_2\zeta^2}{n-2} + \dots + \alpha_{n-1}\zeta^{n-1} + h_0\zeta^n \ln(1+\eta) - \sum_{j\ge 1} \frac{h_j}{j}\zeta^{j+n},$$

where α_k and h_j , k = 0, ..., n, and $j \in \mathbb{Z}_+$ are such that

$$\frac{1}{A_0(\zeta)+iB_0(\zeta)}=\alpha_0+\alpha_1\zeta+\alpha_2\zeta^2+\cdots+\alpha_{n-1}\zeta^{n-1}+\zeta^nh(\zeta)$$

and $h(\zeta) = \sum_{j\geq 0} h_j \zeta^j$. We have that F(0,0) = 0 and $\frac{\partial F}{\partial \eta}(0,0) = \alpha_0 \neq 0$; note that $\alpha_0 = \frac{1}{a_0(0)+ib_0(0)}$. Hence, by the implicit function theorem, there is a holomorphic function $\eta(\zeta)$ defined on a disk $|\zeta| < \delta$, with $\eta(0) = 0$, such that

$$F(\zeta, \eta(\zeta)) = 0$$
, if $|\zeta| < \delta$.

Now, define $z(\zeta) = \zeta(1 + \eta(\zeta))$. It follows that

$$\frac{dz}{d\zeta} = 1 + \eta - \frac{\frac{\alpha_1 \zeta}{n-1} + \frac{2\alpha_2 \zeta^2}{n-2} + \dots + (n-1)\alpha_{n-1} \zeta^{n-1} + nh_0 \zeta^n \ln(1+\eta)}{\frac{\alpha_0 + h_0 \zeta^n (1+\eta)^n}{(1+\eta)^{n+1}}} - \frac{\sum_{j \ge 1} \left(\frac{j+n}{j}\right) h_j \zeta^{j+n}}{\frac{\alpha_0 + h_0 \zeta^n (1+\eta)^n}{(1+\eta)^{n+1}}}.$$

Since
$$F(\zeta, \eta(\zeta)) = 0$$
, we have

$$-h_0\zeta^n \ln(1+\eta) = -\frac{\alpha_0}{n(1+\eta)^n} + \frac{\alpha_0}{n} + \frac{\alpha_1\zeta}{n-1} + \frac{\alpha_2\zeta^2}{n-2} + \dots + \alpha_{n-1}\zeta^{n-1} - \sum_{j\ge 1}\frac{h_j}{j}\zeta^{j+n},$$

and thus

$$\frac{dz}{d\zeta} = 1 + \eta + \frac{\alpha_0 + \alpha_1 \zeta + \alpha_2 \zeta^2 + \dots + \alpha_{n-1} \zeta^{n-1} + \sum_{j \ge 1} h_j \zeta^{j+n} - \frac{\alpha_0}{(1+\eta)^n}}{\frac{\alpha_0 + h_0 \zeta^n (1+\eta)^n}{(1+\eta)^{n+1}}}.$$

Hence,

$$\frac{\alpha_0 + h_0 \zeta^n (1+\eta)^n}{\zeta^{n+1} (1+\eta)^{n+1}} \frac{dz}{d\zeta} = \frac{\alpha_0 + \alpha_1 \zeta + \alpha_2 \zeta^2 + \dots + \alpha_{n-1} \zeta^{n-1} + \sum_{j \ge 0} h_j \zeta^{j+n}}{\zeta^{n+1}},$$

which implies

$$\frac{\alpha_0 + h_0 \zeta^n (1+\eta)^n}{\zeta^{n+1} (1+\eta)^{n+1}} \frac{dz}{d\zeta} = \frac{1}{\zeta^{n+1} (A_0 + iB_0)(\zeta)}.$$

Therefore, equation (2.4) is transformed to

$$z^{n+1}\frac{dw}{dz} - i(\alpha_0 + h_0 z^n)w = -\Phi(\zeta(z))(\alpha_0 + h_0 z^n);$$

equivalently,

(2.5)
$$z^{n+1}\frac{dw}{dz} - (\tilde{\alpha}_0 + \tilde{h}_0 z^n)w = f(z)$$

where $\tilde{\alpha}_0 = i\alpha_0$, $\tilde{h}_0 = ih_0$ and $f(z) = -\Phi(\zeta(z))(\tilde{\alpha}_0 + \tilde{h}_0 z^n)$.

Choosing
$$\varphi(x) = -\frac{x^p(1+\eta(x))^p}{\tilde{\alpha}_{p+1}+\tilde{h}_p x^n(1+\eta(x))^n}$$
, with $p \in \mathbb{Z}_+$, we obtain $f(z) = z^p$.

It follows from Lemma 2.1, with a suitable choice of $p \in \mathbb{Z}_+$, that equation (2.5) has no holomorphic solution, w, in any neighborhood of z = 0. Therefore, there is no $\hat{u}_1(x)$ real-analytic solution of (2.3), and, consequently, there is no u(x, t) real-analytic solution of (2.2) in any neighborhood of Σ .

Remark 2.3 Note that in Theorem 2.2 it is permitted $b_0(0) = 0$ and, in particular, $b_0 \equiv 0$.

Acknowledgments This paper is in part motivated by discussions about solvability of complex vector fields with Professor Adalberto P. Bergamasco, to whom the author is grateful.

https://doi.org/10.4153/CMB-2011-010-7 Published online by Cambridge University Press

P. L. Dattori da Silva

References

- A. P. Bergamasco, P. D. Cordaro, and G. Petronilho, *Global solvability for a class of complex vector fields on the two-torus*. Comm. Partial Differential Equations 29(2004), no. 5–6, 785–819. doi:10.1081/PDE-120037332
- [2] A. P. Bergamasco and P. L. Dattori da Silva, *Global solvability for a special class of vector fields on the torus*. In: Recent progress on some problems in several complex variables and partial differential equations, Contemp. Math., 400, American Mathematical Society, Providence, RI, 2006, pp. 11–20.
- [3] _____, Solvability in the large for a class of vector fields on the torus. J. Math. Pures Appl. **86**(2006), no. 5, 427–447.
- [4] A. P. Bergamasco, P. L. Dattori da Silva, and M. R. Ebert, *Gevrey solvability near the characteristic set for a class of planar complex vector fields of infinite type.* J. Differential Equations 246(2009), no. 4, 1673–1702. doi:10.1016/j.jde.2008.10.028
- [5] A. P. Bergamasco and A. Meziani, Semiglobal solvability of a class of planar vector fields of infinite type. Mat. Contemp.18(2000), 31–42.
- [6] _____, Solvability near the characteristic set for a class of planar vector fields of infinite type. Ann. Inst. Fourier (Grenoble) **55**(2005), no. 1, 77–112.
- [7] A. P. Bergamasco and G. Petronilho, *Closedness of the range for vector fields on the torus*. J. Differential Equations 154(1999), no. 1, 132–139. doi:10.1006/jdeq.1998.3563
- [8] S. Berhanu and A. Meziani, Global properties of a class of planar vector fields of infinite type. Comm. Partial Differential Equations 22(1997), no. 1–2, 99–142. doi:10.1080/03605309708821288
- [9] W. A. Cerniauskas and A. Kirilov, C^k solvability near the characteristic set for a class of vector fields of infinite type. Mat. Contemp. 36(2009), 91–106.
- [10] P. D. Cordaro and X. Gong, Normalization of complex-valued planar vector fields which degenerate along a real curve. Adv. Math. 184(2004), no. 1, 89–118. doi:10.1016/S0001-8708(03)00139-7
- P. L. Dattori da Silva, Nonexistence of global solutions for a class of complex vector fields on two-torus. J. Math. Anal. Appl. 351(2009), no. 2, 543–555. doi:10.1016/j.jmaa.2008.10.039
- [12] _____, C^k-Solvability near the characteristic set for a class of planar complex vector fields of infinite type. Ann. Mat. Pura Appl. 189(2010), no. 3, 403–413. doi:10.1007/s10231-009-0115-8
- [13] L. Hörmander, Pseudodifferential operators of principal type. In: Singularities in boundary value problems (Proc. NATO Adv. Study Inst., Maratea, 1980), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., 65, Reidel, Dordrecht-Boston, MA, 1981, pp. 69–96.
- [14] A. Meziani, On planar elliptic structures with infinite type degeneracy. J. Funct. Anal. 179(2001), no. 2, 333–373. doi:10.1006/jfan.2000.3695
- [15] _____, Elliptic planar vector fields with degeneracies. Trans. Amer. Math. Soc. 357(2005), no. 10, 4225–4248. doi:10.1090/S0002-9947-04-03658-X
- [16] L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation. Comm. Pure Appl. Math. 16(1963), 331–351. doi:10.1002/cpa.3160160308

Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, Departamento de Matemática, Caixa Postal 668, São Carlos - SP, 13560-970 Brazil e-mail: dattori@icmc.usp.br

254