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1. Introduction. The problem of determining the possible morphological 
types of convex polyhedra in three-dimensional Euclidean space Ez is well 
known to be quite hopeless. We lack not only any general way of determining 
whether there exists a convex polyhedron having as faces / 3 triangles, /4 quad
rangles, . . . , and fn n-gons, but even much more special questions of this 
kind seem to be rather elusive. 

Restricting the attention to the class of convex and trivalent polyhedra 
(i.e. convex polyhedra in which every vertex is incident on three faces), the 
following well-known necessary condition for the existence of such a poly
hedron having fk &-gonal faces, k = 3, 4, 5, . . . , n, is easily derivable from 
Euler's formula: 

(1) E ( 6 - k)fk= 12. 

This necessary condition is not sufficient; for example, there exists no poly
hedron1 with / 3 = 4, / 6 = 1 or 2, and fk = 0 for n ^ 3, 6. 

Equation (1) does not impose any restriction on the value of f&. Neverthe
less, the last remark shows that /e may not be taken arbitrarily. As an example 
we mention also the fact (Bruckner 1, p. 119) that among the 19 different 
solutions of (1) with fk = 0 for k > 7, only 11 are realizable as polyhedra 
with/6 = 0; other solutions are realizable only if/6 is at least 1, 2, or 3, depend
ing on the solution. 

Some time ago, Professor H. S. M. Coxeter posed the question whether for 
every n ^ 1 there exist polyhedra Pn with/5 = 12,/6 = n,fk = 0 for k 9^ 5, 6. 
Denoting by Qn polyhedra wi th/ 4 = 6, / 6 = n, fk = 0 for k ^ 4, 6, the answer 
to Coxeter's problem is contained in the following theorem. 

THEOREM 1. Polyhedra Pn and Qn exist for every non-negative integer n satis
fying n y£ 1. 

On further inquiry we found that the situation is different with regard to 
polyhedra Rn with / 3 = 4, f6 = n, fk = 0 for k 9^ 3, 6. We have the following 
theorem. 
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^ e r e and in what follows "polyhedron" will always mean "convex trivalent polyhedron in 
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THEOREM 2. Polyhedra Rn exist if and only if n is a non-negative even integer 
different from 2. 

This fact seems to be new, and somewhat surprising, especially in view 
of the contrast with the result concerning Pn or Qn. On the other hand, Theorem 
2 gives a partial answer to a rather old question (Eberhard 2, p. 84): Do there 
exist polyhedra with an odd number of faces such that the number of edges 
of each face is a multiple of 3? 

We shall prove Theorem 1 (in § 2) by indicating the construction of poly
hedra Pn and Qn, n ^ 1. Polyhedra P i and <2i obviously do not exist. Theorem 
2 will be proved in § 3 using elementary considerations which may be of 
possible use also in other problems. 

Throughout the paper we shall make use of the following consequence of 
Steinitz's (4) "Fundamentaltheorem der konvexen Typen" (Griinbaum-
Motzkin 3): A graph G is 3-polyhedral (i.e. may be realized by the edges and 
vertices of a convex polyhedron P in E3) if and only if G is a 3-connected 
planar graph. Moreover, the faces of P are uniquely determined and corre
spond to the faces of any realization of G on the 2-sphere. 

2. Proof of Theorem 1. Theorem 1 will be established by describing 
two families of 3-connected tri valent planar graphs Pn* and Qw*, » ^ 1 , 
imbedded in the 2-sphere S2, the faces of Pn* being 12 pentagons, and those 
of Qn*, 6 quadrangles and n hexagons. 

For k = 0 the desired graphs are those of a dodecahedron and a cube. 
Q3* is represented in Figure 1. 

FIGURE 1 

The other graphs Pn* and Qn* are constructed as follows. Assume the 
graphs A, B, C, D (Fig. 2) each drawn on a hemisphere, with the heavy 
lines as equator. Combining two hemispheres with A on each we obtain P*\ 
combining similarly 

A and B, we obtain P3*, 
A and C, or B and B, P4*, 
A and D, or B and C, P5*, 
B and D, or C and C, P6*, 
C and D, P7*. 
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A B C D 
FIGURE 2 

In order 10 obtain P*j+ei (2 < j < 7; i = 1, 2, . . .), we proceed as above 
except that the two hemispheres are separated by i "belts" (Fig. 3), each 
consisting of six hexagons. As an illustration, P i 5* is represented in Figure 4. 

FIGURE 3 

In an analogous manner the graphs Qn* are constructed starting from K, 
L, M, N (Fig. 5). Thus 

K and K yield Q2*, 
K and L (Ve, 
K and M Q5*, 
L and L Ç6*, 
L and M, or K and TV, Q7*, 
L and TV Ç9*. 
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FIGURE 4 

FIGURE 5 
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The remaining graphs, (?8*, (?**, k > 10, may be obtained by inserting the 
appropriate number of "belts" represented in Figure 6. As an illustration, 
Qi3* is represented in Figure 7. 

FIGURE 7 
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3. Proof of Theorem 2. Let P be a planar graph imbedded in a 2-sphere, 
and let 5 be an oriented simple circuit in P. We define the leftness X(5) as the 
excess of the number of edges of P branching off from 5 to the right over 
the number of edges branching off to the left. Thus in a trivalent graph, if F 
is the boundary of a &-gonal face taken in the positive direction, then \(F) = k. 

If P is a trivalent planar graph,2 a (not necessarily simple) circuit G is called 
a geodesic if i'right-turn" and "left-turn" vertices alternate on G. E.g., the 
heavy lines in Figure 4 are geodesies, while those in Figure 7 are not. 

An intersection of two branches of a geodesic has one of the two forms 
represented in Figure 8 (both forms do occur). We shall call I an "acute" 
and II an "obtuse" self-intersection. 

i 
FIGURE 8 

The following statement is easily proved by induction on the number of 
faces enclosed. 

LEMMA 1. If P is such that \(F) is divisible by 3 for every F, then X(5) is 
divisible by 3 for every simple circuit S in P. 

Crucial in the proof of Theorem 2 is the following lemma. 

LEMMA 2. If P is such that \(F) is divisible by 3 for every Fy then all the 
geodesies of P are simple. 

Proof. If G is a geodesic of any graph such that G is not simple, let G* be 
any simple loop of G. If G* is oriented in the positive sense, then, as can be 
easily checked, X(G*) = 2 if G* is determined by an acute self-intersection 
of G, and X(G*) = 1 if G* is determined by an obtuse self-intersection of G. 
But in view of Lemma 1, X(G*) = 0 (mod 3), and therefore each geodesic G 
is simple. 

2In the remainder of this section all graphs are understood to be connected, trivalent, and 
planar (imbedded in a 2-sphere). F will always denote the boundary of a face of P, taken in 
the positive orientation. 
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Now we are able to describe completely the structure of Pn* graphs. Let P 
be such a graph and let Go be a geodesic with positive orientation, containing 
one (and therefore two) edges of one of the triangles T1 of P , T1 being to the 
left of the (simple) geodesic G0. It is then obvious (see Fig. 9) that the region 
L to the left of Go can be described as follows. The triangle T1 is followed by 

VWV- /Vv 
FIGURE 9 

a row consisting of a certain number /, / > 0, of hexagons, beyond which 
follows another triangle T2. (Thus L consists of 2 triangles and of / hexagons 
between them.) If I = 0, P can be 3-connected only if P is the graph of a 
tetrahedron. In the remainder of the proof we shall therefore assume / > 1. 

Now, if Go contains also the edge of another triangle Tz (which is necessarily 
to the right of Go) the above reasoning (applied to G0 with the negative 
orientation) shows that the region R to the right of Go consists of two tri
angles, T3 and P4, and /' hexagons between them. Since X(G0) = 0, it follows 
that I = V and P consists of 4 triangles and 2/ hexagons. 

If, on the other hand, Go does not meet any other triangle besides T1 and 
T2, the boundary of R consists exclusively of edges of hexagons (see Fig. 10). 
Then the edges of these hexagons which are non-incident to Go form another 
geodesic G±, enclosing Go and of the same length as Go. Note that the "belt" 
between G0 and Gj consists of 2/ + 2 hexagons. With regard to Gj the above 

FIGURE 10 

https://doi.org/10.4153/CJM-1963-071-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-071-3


POLYHEDRA 751 

alternative holds: either there is a triangle meeting Gi, in which case the 
^outside" region of G\ consists of two triangles and / hexagons; or G\ is adjacent 
to hexagons only and there exists a second belt of 21 + 2 hexagons incident 
to Gi and bounded on the "outside" by another geodesic G2. 

After a certain number w of steps (w > 0) obviously the first alternative 
must take place, and then P may be described as follows: P contains two 
strips (one to the left of Go, and the other to the right of Gw) each of which 
consists of two triangles and I hexagons; the two strips are separated by w 
belts, each consisting of 2 / + 2 hexagons. Therefore P contains altogether 
2(1 + w + Iw) hexagons, and thus the number of hexagons in P is even, as 
claimed in Theorem 2. Moreover, since every even number 2k can be obtained 
in the above form (e.g. for I = k, w = 0), and since the corresponding graph 
is 3-connected except for / = 0, w > 0, and / = 1, w = 0, Theorem 2 is 
proved completely. 
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