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Abstract

It is well known that higher-order linear elliptic equations with measurable coefficients and higher-
order nonlinear elliptic equations with analytic coefficients can admit unbounded solutions, unlike their
second-order counterparts. In this work we introduce the concept of approximate truncates for functions
in higher-order Sobolev spaces and prove that if a solution of a higher-order linear elliptic equation has
an approximate truncate somewhere then it is bounded there.
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1. Introduction

The problem of regularity of second-order elliptic equations with bounded measurable
coefficients has been thoroughly investigated in the works of De Giorgi [1], Nash [10],
Moser [9], Ladyzhenskaya and Ural’tseva [7], Stampacchia [15], Serrin [12] and
Trudinger [17]. Issues such as boundedness of solutions, Hölder continuity, Harnack
inequality and removability of singularities are now well-established facts.

The hope for the generalization of these results to systems of elliptic equations,
to higher-order linear elliptic equations with bounded measurable coefficients and to
higher-order nonlinear elliptic equations with analytic coefficients was dealt a blow
with the discovery of counter-examples by De Giorgi [2], Freshe [3], and others. We
refer to the monograph by Giaquinta [4] for an interesting historical account of these
developments. Some results on boundedness and Hölder continuity of the solutions for
some isolated cases of higher-order elliptic equations (when the order of the equation
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is equal to the dimension of the underlying space or is in some sense close to it) were
obtained by Freshe [3], Widman [18, 19], Skrypnik [13] and Solonnikov [14].

Another stumbling block in the development of the theory is the lack of a suitable
concept of truncates for functions in higher-order Sobolev spaces, making it difficult
to use the method of De Giorgi or Stampacchia. Moser’s iteration process is also hard
to implement in this context since the insertion of any test function which contains the
power of an expression involving the solution in the weak formulation of the equations
leads to some terms which are hard to handle.

It is well known that regularity results for solutions of partial differential equations
and their a priori estimates depend on the class of equations as well as the class
of function spaces to which the solutions belong. So far efforts have been made
mainly in identifying suitable classes of equations whose solutions are bounded. The
identification of more restrictive classes of solutions for which boundedness can be
established for larger classes of equations seems not to have been undertaken even
though the idea is often used by researchers dealing with existence results.

This work deals with a class of functions in some higher-order Sobolev spaces
whose super level sets are extension domains in a sense to be made precise and which
admit what we refer to here as approximate truncates. Large classes of functions have
sufficiently smooth level sets. This smoothness depends in general on the magnitude
of the smoothness of the functions. We should mention here that super level sets
of singular functions might also be extension domains for Sobolev spaces. As an
example f (x)= 1/|x |, x ∈ Rn with n ≥ 2, is discontinuous but its super level sets,
which are balls with the centre removed, are obviously extension domains for some
Sobolev spaces modulo some appropriate conditions on the power of integrability
and differentiation order; a ball without its centre is not Lipschitz but the singularity
is removable. On the basis of the outstanding results of Jones [6] and Stein [16]
on sufficient conditions for a domain to be an extension domain for Sobolev spaces
(slightly less than lipschitzity), we see that the extension property for super level sets
of functions is a rather natural condition; we note that the corresponding necessary
condition is still one of the most challenging problems in analysis. The second
condition needed for a function to have an approximate truncate is a more subtle
one and seems not to have been previously discovered. This makes our concept of
approximate truncate an additional matter of independent interest.

It turns out that solutions of linear higher-order elliptic equations with bounded
measurable coefficients satisfying standard growth conditions from the classes of
functions with approximate truncates are bounded. The idea is to insert in the integral
identity in the weak formulation of the equation a test function constructed with the
help of an approximate truncate of the solution. Then some adaptation of the powerful
method of a priori estimates of De Giorgi and Stampacchia is possible. We limit
ourselves to higher-order linear equations, but generalization to nonlinear equations is
possible.

In Section 2, we introduce the concept of approximate truncates for Sobolev
functions and provide an example. In Sections 3 and 4, we derive some a priori
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estimates for the solution of a linear higher-order elliptic equation with bounded
measurable coefficients. In Section 5, we give an example of a function not admitting
an approximate truncate.

2. Approximate truncates for Sobolev functions

Let� be a bounded domain in Rn with the boundary ∂�; x = (x1, . . . , xn) denotes
a generic point in Rn . We denote by W l

p(�) (p ∈ (1,∞), l is a nonnegative integer)
the usual Sobolev space on �; W 0

p(�)=: L p(�). By W l
p,loc(�) we denote the space

of functions that, together with all their weak derivatives of order up to l, belong to
Ll

p(�
′) for any open set � whose closure is a subset of � in � and we denote by

W̊ l
p(�) the set of functions in W l

p(Rn) vanishing off � together with their derivatives
of order up to l.

Let u ∈ W l
p(�) and let k > 0. For any subdomain �′ lying inside � (�̄′

⊂�), we
denote by Ak(�

′) the set {x ∈�′
| u(x) > k}, the k-super level set of u. For any ε > 0,

we set Akε(�
′)= {x ∈�′

| dist(x, ∂Ak) < ε}, where dist stands for distance and ∂· the
boundary of a set ·. By B(x, R) we denote the ball centered at x with radius R > 0 and
by K (x, r, R) the annulus {x : r < |x |< R }, where |x | = (x2

1 + x2
2 + · · · + x2

n)
1/2.

We also set uk(x)= u(x)− k.

DEFINITION 1. Let �′ be a subdomain of � such that �′ ⊂�. We shall say
that u ∈ W l

p(�) has an approximate truncate in W l
p(�

′) if for all k > 0 such that

meas Ak(�
′) 6= 0, there exits an ε0 > 0 independent of k such that Akε(�′)⊂� for

all ε ∈ (0, ε0), and there exists an extension operator

Eεk : W l
p(Ak(�

′))→ W̊ l
p(Akε(�

′))

such that
lim
ε→0

‖Eεk uk − uk‖W̊ l
p(Akε(�

′))
= 0. (1)

We refer to the function vεk = Eεk uk as an approximate truncate of u in W l
p(�

′).

We call � an extension domain for W l
p if there exists a bounded operator E :

W l
p(�)→ W l

p(Rn) and we write u ∈ EW l
p. Sufficient conditions for a domain to be

an extension domain in Sobolev spaces can be found in the works of Jones [6] and
Stein [16]. The necessary condition in the general case is still not known. For the
existence of an extension operator from W l

p(Ak(�
′)) into W̊ l

p(Akε(�
′)) it is sufficient

that Ak(�
′) ∈ EW l

p, since due to the fact that Ak(�′)⊂ Akε(�
′) it is enough to

multiply any function in W l
p(Ak(�

′)) by a test function ϕ ∈ W̊ l
p(Akε(�

′)) such that
ϕ(x)= 1 in Ak(�

′). For condition (1) to be satisfied it is sufficient that the extension
operator Eεk be uniformly bounded. The fact that ∂Ak(�

′) does not intersect with
∂Akε(�

′) is important, since otherwise the construction of such an extension operator
would have been an extremely nontrivial problem apparently unsolved in general; a
corresponding result in some planar domains can be found in [8].
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EXAMPLE 2. Let u(x)= |x |. Then u ∈ W 2
2 (B(0, R)) for all R > 0 and n ≥ 1.

We show that u has an approximate truncate in W 2
2 (B(0, r)) with r < R. Now

Ak(B(0, r))= K (0, k, r)= {x : k < |x |< r} and meas Ak(B(0, r)) 6= 0 for k < r .
Let ε0 = min{R − r, k}; then for all ε ∈ (0, ε0), Akε(B(0, r))= K (0, k − ε, r + ε)

⊂ B(0, R). Let us construct an extension vεk of (u − k) from W 2
2 (Ak(B(0, r))) into

W̊ 2
2 (Akε(B(0, r)))which satisfies the condition (1). We consider the well-known bump

function

ψε(x)=


1 if k ≤ |x | ≤ r,
0 if 0 ≤ |x |< k − ε and |x |> r + ε,

increases from 0 to 1 for k − ε < |x | ≤ k,
decreases from 1 to 0 for r ≤ |x | ≤ r + ε,

which can be found in numerous references, for example in [11, Lemma 1, Ch. 2,
Paragraph 8]. In fact ψε is the difference ψr,ε − ψk,ε where ψr,ε and ψk,ε are the
bump functions equal to 1 in the balls B(0, r) and B(0, k − ε) and equal to 0
outside B(0, r + ε) and B(0, k). Explicit expressions for ψr,ε and ψk,ε are given
in the reference quoted. We easily obtain that ψε is infinitely differentiable and
uniformly bounded together with its derivatives irrespective of ε. The function vεk (x)

= ψε(x)u(x) belongs to W̊ 2
2 (Akε(B(0, r))) and coincides with u on Ak(B(0, r)).

Simple calculations using the explicit expression of ψε show that the corresponding
extension operator Eεk is uniformly bounded and thus

lim
ε→0

‖vεk − |x | + k‖
W̊ 2

2 (K (0,k−ε,r+ε))
= 0.

Therefore u has an approximate truncate in W 2
2 (B(0, r)).

Toward the end of this paper we give an example of a function whose level sets
are extension domains but which does not admit an approximate truncate. The
postponement of the example is due to the fact that we shall rely on results that will be
derived in the next section.

3. A priori estimates for higher-order elliptic equations

We look for a function u defined in � and satisfying the equation∑
|α|=|β|=m

(−1)|α|Dα(aαβ(x)D
βu)= 0 in �, (2)

where aαβ are bounded measurable functions and satisfy the condition of ellipticity∑
|α|=|β|=m

aαβ(x)ξ
αξβ ≥ ν

∑
|α|=m

|ξα|2, (3)

for any ξ = (ξ1, . . . , ξn); here α is a multiindex (α1, . . . , αn), ξα = ξ
α1
1 · · · ξαn ,

Dα
= Dα1 · · · Dαn , Dαi = ∂αi /∂xαi .
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DEFINITION 3. We shall say that u ∈ W m
2,loc(�) is a local weak solution of

equation (2) if for any subdomain �̄′
⊂� and all functions ϕ ∈ C∞

o (�
′) the integral

identity ∑
|α|=|β|=m

∫
�′

aαβ(x)D
βu(x)Dαϕ(x) dx = 0 (4)

holds.

Our main result is the following theorem.

THEOREM 4. For 2m < n, let 0 ≤ u ∈ W m
2,loc(�) be a local weak solution of (2) and

let B(x0, R) be a ball inside � (B(x0, R)⊂�). If the function u has an approximate
truncate in W m

2 (B(x0, R)), then for any 0< ρ ≤ R and σ ∈ (0, 1) there exists a
constant K > 0 depending only on the data such that

ess sup
x∈B(x0,σρ)

u(x)≤ K

{
max

{
ρn/α,

1
(σρ)n

} ∫
B(x0,ρ)

u2(x) dx

}1/2

, (5)

where α is the positive root of the quadratic equation 2mα2
− n(α + 1)= 0.

When m = 1, the above theorem has been obtained in most of the works that we
refer to at the very beginning of this paper.

From now on we agree to denote by C , Ct all positive constants depending only on
the data.

Let σ ∈ (0, 1) and 0< ρ < R. We consider an infinitely differentiable function ψ
such that 0 ≤ ψ(x)≤ 1,

ψ(x)=

{
1 if |x − x0| ≤ (1 − σ)ρ,

0 if |x − x0| ≥ ρ,
|Dαψ | ≤

1
(σρ)|α|

.

Let Ak(B(x0, ρ))= {x ∈ B(x0, ρ) | u(x) > k} and let ε0 be a positive number
independent of k such that for all ε ∈ (0, ε0),

Akε = {x ∈ B(x0, R) | dist(∂Akε, Ak) < ε}.

We establish the following result.

LEMMA 5. Let the conditions of Theorem 4 be satisfied. Then∑
|α|=m

∫
Ak(B(x0,(1−σ)ρ))

|Dαu(x)|2 dx ≤ C max{1, (σρ)−2m
}

∫
Ak(B(x0,ρ))

(u − k)2 dx,

(6)
where C is a constant depending only on the data and independent of k.

PROOF. Since u has an approximate truncate in B(x0, R), there exists an extension
operator Eεk : W m

2 (Ak)→ W̊ m
2 (Akε) such that ukε(x)= Eεk uk and

lim
ε→0

‖ukε − uk‖W̊ m
2 (Akε)

= 0. (7)
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From this relation and the fact that

‖uk‖W̊ m
2 (Akε)

− ‖ukε − uk‖W̊ m
2 (Akε)

≤ ‖ukε‖W̊ m
2 (Akε)

≤ ‖ukε − uk‖W̊ m
2 (Akε)

+ ‖uk‖W̊ m
2 (Akε)

,

and limε→∞ meas(Akε\Ak)= 0, we get

lim
ε→0

‖ukε‖W̊ m
2 (Akε)

= lim
ε→0

‖uk‖W̊ m
2 (Akε)

= ‖uk‖W̊ m
2 (Ak)

, (8)

where we have used the absolute continuity of integrals.
In the integral identity (4), we substitute ϕ(x)= ukε(x)ψ l(x) for some l ≥ 2m. By

(3) we get∑
|α|=m

∫
Akε∩B(x0,ρ)

|Dαukε|
2ψ l dx

≤ C1

∑
|α|=m

∫
Akε∩B(x0,ρ)

|Dα(ukε − uk)|
2ψ l dx

+ C2

∑
|α|+|β|=2m,|α|≤m−1

∫
Akε∩B(x0,ρ)

|Dβu||Dαukε||D
βψ l

| dx . (9)

Owing to the fact that

|D jψ l(x)| ≤
C

(σρ) j ψ
l− j (x),

using Cauchy’s inequality, we estimate the second term in the right-hand side of (9)
(which we denote by I1) as

I1 ≤ ε′
∑

|β|=2m

∫
Akε∩B(x0,ρ)

|Dβu|
2ψ l dx

+ Cε′
m−1∑
j=0

1

(σρ)2(m− j)
|D j ukε|

2ψ l−2(m− j) dx, (10)

for any ε′ > 0. Let us denote the second integral in this inequality by H1 and show that
for all δ > 0,

m−1∑
j=0

1

(σρ)2(m− j)

∫
Akε∩B(x0,ρ)

|D j ukε|
2ψ l−2(m− j) dx

≤ δ
∑

|α|=2m

∫
Akε∩B(x0,ρ)

|Dαukε|
2ψ l dx

+ Cδ max{1, (σρ)−2m
}

∫
Akε∩B(x0,ρ)

u2
kεψ

l−2m dx . (11)
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We start by showing by induction that, for any j = 1, . . . , m − 1,∫
Akε∩B(x0,ρ)

|D j ukε|
2ψ l−2(m− j) dx ≤ δ j

∫
Akε∩B(x0,ρ)

|D j+1ukε|
2ψ l−2(m− j−1) dx

+ C j max{1, (σρ)−2
}

j
∫
�

u2
kεψ

l−2m dx,

(12)

with δ j > 0 sufficiently small.
Let j = 1. By an integration by parts,

H1 =

∫
Akε∩B(x0,ρ)

|Dukε|
2ψ l−2(m−1) dx

=

∫
Akε∩B(x0,ρ)

DukεDukεψ
l−2(m−1) dx

=

∫
Akε∩B(x0,ρ)

ukεD(Dukεψ
l−2(m−1)) dx

≤

∫
Akε∩B(x0,ρ)

|ukε||D
2ukε|ψ

l−2(m−1) dx

+ (l − 2(m − 1))
∫

Akε∩B(x0,ρ)

|ukε||Dukε| ψ
l−2(m−1)−1

|Dψ | dx .

Applying Cauchy’s inequality to the integrands in the last inequality, we get, for
some δ1 > 0,

H1 ≤ Cδ1

∫
Akε∩B(x0,ρ)

u2
kεψ

l−2m dx + δ1

∫
Akε∩B(x0,ρ)

|D2ukε|
2ψ l−2(m−2) dx

+ Cδ1

∫
Akε∩B(x0,ρ)

u2
kε|Dψ |

2ψ l−2m dx

+ δ1

∫
Akε∩B(x0,ρ)

|Dukε|
2ψ l−2(m−1) dx .

Thus for δ1 sufficiently small, we see that

H1 ≤ δ1

∫
Akε∩B(x0,ρ)

|D2ukε|
2ψ l−2(m−2) dx

+ Cδ1 max{1, (σρ)−2
}

∫
Akε∩B(x0,ρ)

u2
kεψ

l−2m dx .

This proves (12) when j = 1.
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Suppose that (12) is true for j = r , that is,

∫
Akε∩B(x0,ρ)

|Dr ukε|
2ψ l−2(m−r) dx

≤ δr

∫
Akε∩B(x0,ρ)

|Dr+1ukε|
2ψ l−2(m−r−1) dx

+ Cδr max{1, (σρ)−2
}
r
∫

Akε∩B(x0,ρ)

u2
kεψ

l−2m dx . (13)

We show that (12) is true for j = r + 1. By integration by parts, and later using
Cauchy’s inequality, we get

∫
Akε∩B(x0,ρ)

|Dr+1ukε|
2ψ l−2(m−r−1) dx

=

∫
Akε∩B(x0,ρ)

DDr ukεDr+1ukεψ
l−2(m−r−1) dx

≤

∫
Akε∩B(x0,ρ)

|Dr ukε||D
r+2ukε|ψ

l−2(m−r−1) dx

+ (l − 2(m − k − 1))
∫

Akε∩B(x0,ρ)

|Dr ukε||D
r+1ukε| ψ

l−2(m−r−1)−1
|Dψ | dx

≤ Cδr+1

∫
Akε∩B(x0,ρ)

|Dr ukε|
2ψ l−2(m−r) dx

+ δr+1

∫
Akε∩B(x0,ρ)

|Dr+2ukε|
2ψ l−2(m−r−1) dx

+ Cδr+1

∫
Akε∩B(x0,ρ)

|Dr ukε|
2 ψ l−2(m−r)

|Dψ |
2 dx

+ δr+1

∫
Akε∩B(x0,ρ)

|Dr+1ukε|ψ
l−2(m−r−1) dx,

where δr+1 is a controllable constant.

For δr+1 < 1, we deduce that

∫
Akε∩B(x0,ρ)

|Dr+1ukε|
2ψ l−2(m−r−1) dx

≤ δr+1

∫
Akε∩B(x0,ρ)

|Dr+2ukε|
2ψ l−2(m−r−1) dx

+ Cδr+1 max{1, (σρ)−2
}

∫
Akε∩B(x0,ρ)

|Dr ukε|
2ψ l−2(m−r) dx
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≤ δr+1

∫
Akε∩B(x0,ρ)

|Dr+2ukε|
2ψ l−2(m−r−1) dx

+ Cδr+1 max{1, (σρ)−2
}δr

∫
Akε∩B(x0,ρ)

|Dr+1ukε|
2ψ l−2(m−r−1) dx

+ Cδr+1Cδr max{1, (σρ)−2
}
r+1

∫
Akε∩B(x0,ρ)

ukεψ
l−2m dx,

where we have used the hypothesis of induction (13). Requiring further that δr satisfies
the inequality Cδr+1 max{1, (σρ)−2

}δr < 1, we can easily see that inequality (12)
holds for j = r + 1. Hence, by induction, (12) is established.

Inequality (11) will follow from the summation of the inequalities (12) for
j = 1, . . . , m − 1 with both sides multiplied by (σρ)2( j−m). The terms on the right-
hand side of the resulting inequality, involving derivatives of ukε of order between
1 and m − 1, will be taken to the left-hand side by choosing the constants δ j small
enough. Inequality (11) is thus proved.

Choosing ε′ and δ sufficiently small in (10) and (11) respectively, we get from (9)
that ∑

|α|=m

∫
Akε∩B(x0,(1−σ)ρ)

|Dαukε|
2 dx

≤ C1

∑
|α|=m

∫
Akε∩B(x0,ρ)

|Dα(ukε − uk)|
2 dx

+ C2 max{1, (σρ)−2m
}

∫
Akε∩B(x0,ρ)

u2
kε dx . (14)

Lemma 5 follows by passing to the limit in this inequality and using (7) and (8). 2

3.1. Proof of Theorem 4 By Hölder’s inequality,∫
Ak(B(x0,(1−σ)ρ))

(u − k)2 dx ≤ C[meas(Ak(B(x0, (1 − σ)ρ)))]2m/n

×

( ∫
Ak(B(x0,(1−σ)ρ))

(u − k)2n/(n−2m) dx

)2n/(n−2m)

.

Thus by the Sobolev embedding theorem, W m
2 (�) ↪→ L2n/(n−2m)(�), and inequality

(6), we get ∫
Ak(B(x0,(1−σ)ρ))

(u − k)2 dx

≤ C[meas(Ak(B(x0, (1 − σ)ρ)))]2m/n

× max{1, (σρ)−2m
}

∫
Ak(B(x0,ρ))

(u − k)2 dx . (15)
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For h > k,

(h − k)2 meas(Ah(B(x0, ρ))) =

∫
Ah(B(x0,ρ))

(h − k)2 dx

≤

∫
Ak(B(x0,ρ))

(u − k)2 dx . (16)

Thus setting

a(h, r)= meas(Ah(B(x0, r))), u(h, r)=

∫
Ah(B(x0,r))

(u − h)2 dx,

and assuming that (σρ)−2m
≥ 1, we obtain from (15) and (16) that

uα(h, (1 − σ)ρ)a(h, (1 − σ)ρ)≤ C
(σρ)−2mα

(h − k)2
[u(k, ρ)]α+1

[a(k, ρ)]2mα/n. (17)

Let
8(l, r)= uα(l, r)a(l, r),

and let α be the positive solution of the quadratic equation 2mα2
− n(α + 1)= 0.

Then (17) becomes

8(h, (1 − σ)ρ)≤
C

(σρ)2mα(h − k)2
[8(k, ρ)]1+1/α. (18)

By [15, Lemma 5.1] or [5, Proposition 5.1] we get that for any k0 ≥ 0,

8(d + k0, σρ)= 0, (19)

with

d2
=

C2

(σρ)2mα
[8(k0, ρ)]

1/α.

Analogously for (σρ)−2m
≤ 1, we get (19) with

d2
= C2

[8(k0, ρ)]
1/α.

Inequality (5) therefore follows from these relations by choosing k0 = 0. This complete
the proof of the main theorem.

4. A function with no approximate truncate

In this section we give the example of a function which does not possess an
approximate truncate; in particular, we show that unbounded functions might not have
approximate truncates in domains containing their singularity. For that purpose, we
shall need the following result on sharp estimates of extension operators for Sobolev
spaces in small domains obtained in [8, p. 157].
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THEOREM 6. Let �⊂ Rn be an extension domain for W l
p and let G ⊂ Rn such

that � and G contain the origin. Let �σ = σ�= {x | x/σ ∈�}, σ ∈ (0, 1/2)
and let �̄σ ⊂ Gρ where Gρ = ρG, ρ ∈ (0,∞). Then for any extension operator

E : W l
p(�σ )→ W̊ l

p(Gρ),

c‖E‖ ≥ σ−l if pl < n. (20)

We consider the functions u(x)= |x |
λ with (4 − n)/2< λ < 0 in W 2

2 (B(0, R)) for
0< R <∞. We use an indirect argument based upon the fact that u is a weak solution
of a fourth-order linear elliptic equation∑

|α|+|β|≤4

Dα(aαβ(x)D
βu(x))= 0, (21)

with bounded measurable coefficients satisfying (3) in any bounded region in Rn

containing the origin; the explicit expressions for the functions aαβ can be found in
[4, pp. 55–56]. Therefore u is a solution of (21) in the ball B(0, R). An extension

operator Ekε : W 2
2 (Ak(B(0, ρ)))→ W̊ 2

2 (Akε(B(0, ρ))) exists where Ak(B(0, ρ))=

B(0, k1/λ)\{0}, 0< ρ < R, ε ∈ (0, ε0) such that Akε(B(0, ρ))⊂ B(0, R). Arguing
as in the proof of Lemma 5, we get∑

|α|=2

∫
Akε∩B(0,(1−σ)ρ)

|Dαukε|
2 dx ≤ C1

∑
|α|=2

∫
Akε∩B(0,ρ)

|Dα(ukε − uk)|
2 dx

+ C2 max{1, (σρ)−4
}

∫
Akε∩B(0,ρ)

u2
kε dx,

(22)

where uk(x)= u(x)− k, ukε(x)= Ekεuk(x) and C1 and C2 are constants independent
of k. It is clear that there exists a k0 > 0 such that for all k ≥ k0, k1/λ

∈ (0, 1/2) and
Akε ⊂ B(0, (1 − σ)ρ). Thus Akε∩ B(0, (1 − σ)ρ)= Akε. From Theorem 6,

‖Ekεukε‖W̊ 2
2 (Akε)

≥ ck−2/λ
‖uk‖W 2

2 (Ak)
,

with the constant c independent of ε. Therefore we derive from (22) that

ck−2/λ
‖uk‖ o

W 2
2 (Ak)

≤ C1

∑
|α|=2

∫
Akε

|Dα(ukε − uk)|
2 dx + C2

∫
Akε

u2
kε dx .

Let us assume that u has an approximate truncate in W 2
2 (B(0, ρ)). Then passing to the

limit on the right-hand side of this inequality as ε→ 0 we get

k−2/λ
‖uk‖W 2

2 (Ak)
≤ C‖uk‖L2(Ak).

Explicit calculations show that for sufficiently large k, there exists a positive number
µ such that

kµ ≤ C0,
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where C0 is a constant independent of k. Since meas Ak 6= 0 for all k > 0, we can pass
to the limit in this inequality as k → ∞. This leads to a contradiction since the left-
hand side becomes unbounded while the right-hand side is bounded. Therefore u does
not have an approximate truncate in W 2

2 (B(0, R)) for all 0< R <∞.
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Mem. Accad. Sci. Torino 3 (1957), 25–43.

[2] , ‘Un esempio di estremali discontinue per un problema variazionale di tipo elliptico’, Boll.
Unione Mat. Ital., ser. IV 1 (1968), 135–137.

[3] J. Frehse, ‘On the boundedness of weak solutions of higher-order nonlinear elliptic partial
differential equations’, Boll. Unione Mat. Ital., ser. IV 3 (1970), 607–627.

[4] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,
Annals of Mathematics Studies, 105 (Princeton University Press, Princeton, NJ, 1983).

[5] , Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lecture in Mathematics,
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