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Abstract

This paper studies the stability of large-scale impulsive delay differential systems and
impulsive neutral systems. By developing some impulsive delay differential inequalities and
a comparison principle, sufficient conditions are derived for the stability of both linear and
nonlinear large-scale impulsive delay differential systems and impulsive neutral systems.
Examples are given to illustrate the main results.

1. Introduction

Many evolution processes exhibit abrupt changes of their states at certain moments in
time, such as threshold phenomena in biology, bursting rhythm models in medicine,
optimal control models in economics, circuit networks and frequency modulated
systems, etc. These abrupt changes are of short-term duration and may be described
by impulsive differential equations. The theory of impulsive differential equations has
been significantly developed in the past two decades, see [2,5,9,11,12,15,16,20] and
references therein. However, the corresponding theory for impulsive delay differential
equations is less developed due to some theoretical and technical difficulties. Some
existence and uniqueness results have been developed recently in [3] for general
impulsive delay differential equations and some special classes were considered in
[1,4,8]. Some exponential stability results for linear delay impulsive differential
equations are obtained in [1,4] utilising fundamental matrices. Weakly exponential
stability is studied in [19]. Two criteria on asymptotic behaviour are given for a
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nonlinear neutral differential equation with an impulse in [14]. Impulsive integro-
differential questions are studied in a Banach space in [7]. The method of Lyapunov
is used to study the stability problem of impulsive delay differential equations in
[6,17,18]. However, how to construct a suitable Lyapunov function or functional for
a large-scale complex system remains a challenging issue. Recently, a new approach
has been proposed in [13] for studying the stability problem of large-scale dynamic
systems, where the study of a complicated large-scale system is converted to that of a
lower order linear system by using a comparison principle.

In this paper, we shall study stability problems for both linear and nonlinear large-
scale impulsive differential equations with a time delay in the spirit of [13]. We
shall first establish the comparison principle and some inequalities for impulsive
delay differential equations, and then derive some sufficient conditions to guarantee
stability of the nonlinear impulsive large-scale differential equations. These conditions
are simple and easy to verify. Examples are given to illustrate the main results.
The remainder of this paper is organised as follows. In Section 2, the comparison
principle and several inequalities for linear impulsive differential equations with delay
are proved, which are useful in studying the stability of large-scale impulsive delay
differential equations. Some stability criteria for both linear and nonlinear large-scale
impulsive delay differential equations are established in Section 3. In Section 4, the
stability problem for large-scale impulsive neutral differential systems is investigated.
Finally, the conclusion is given in Section 5.

2. Preliminaries

Let R be the set of real numbers, R" be the space of «-dimensional column vectors
x = col(xi,. . . , xn) with the norm ||*|| =£"=i W and let ||A|| =maxi<,<m £"=, \au\
denote the norm of an n x m matrix A = (a,-;).

Let / = {tk | /, < t2 < •• • , r, - / , _ , > a > 0, i = 1, 2 , . . . } , J = [t \ t > t0,
t0 € R], Jk = [t \ tk-X < t < tk] and A ( 0 = [k \ t0 < tk < t}. Without loss of
generality, let (0 < ' i , where t0 is the initial time of the IVP (initial value problem, see
Sections 3-4) and tt is the first instant of /.

For a,b e R,a < b, define

PC[[a, b], Rn] = {0 : [a, b] -+ R" \ <f>{t + 0) = </>(f), for all t € [a, b);

</»(r - 0) exists in R", for all t e (a, b] and <p(t - 0) = <f>(t)

for all but at most a finite number of points t € (a, b]}\

PC[[a, oo), Rn] = {</> : [a, oo) -> R" | for all b > a, <p e PC[[a, b], R"]}.

Let ||0,|| =sup,_r<«,<, ||</>(0)|| denote the norm of functions <pe PC[[t-t,t], Rttxm],
where r > 0 is a constant.

https://doi.org/10.1017/S1446181100009998 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009998


[3] A comparison principle and stability 205

Let A = (dij), B = (Jbjj) b e n x m matrices, denote A < B if a,y < i i ; for all
i = 1 , . . . , n; j = 1 , . . . , m. Denote by 0 the zero matrix, that is, all of the entries
of 0 are 0.

LEMMA 2.1. Assume that H € C[J, Rrxr], H = (hij(t))rxr, h^t) > 0, i ^ j ,
i,j = 1,2, . . . , r , / eC[J,Rr],Dk€RrxrandDk > 0. Letx, y € Cl[J\I, Rr] be
such that

dx(t)/dt < H(t)x(t) + f(t), t € 7 \ / ,

x(tk) < Dkx(tk-0), tkel,

x(t0) < x0

and

dy(t)/dt = H(t)y(t) + f(t), t 6

y(h) = Dky(tk - 0), tk e

y(to) = yo-

Thenxo < y0 implies x(t) < y(t)fort € J.

PROOF. It follows from the comparison principle in [10] that x(t) < y(t)fort € J\.
Since D, > 0 , we get x(tx) < >-(/,). Let ^(0 < y(t), t e [t0, tk), then x(tk) < y(tk)
since Dk > 0 . With [10], x(t) < y(t) for t 6 [tk, tk+i) and so x(t) < y(t) for
t e [t0, tk+i). By induction, x(t) < y(t), t € J. The proof is complete. •

LEMMA 2.2 (Comparison principle). Assume that H,G € C[J, Rrxr), H(t) =
( M ' » . M O > 0. i ?* j , GO) = (gij(t)). G > &, f 6 C[J, Rr] and that Dk > 0
are r x r matrices. Let x, y be the solutions of the following systems:

dx(t)/dt < H(t)x(t) + G(t)x(t -

x{tk) < Dkx(tk - 0),

x{Q) <

and

f(t), t € J\I,

tk e /,

t0 - r < 9 < t0

dy(t)/dt = H(t)y(t) + G(t)y(t - r) + f(t), t € J\I,

y(h) = Dky(tk - 0), /* 6 /,

y(6) = f(6), tQ-r <9 <t0,

respectively, where <f>, f € PC[[-z, 0], /?']. Then(j>(6) < \}r(8) implies x(t) < y(t).

PROOF. We first prove that x(t) < y(t) for t € [t0 - r, /,).
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Consider the system

\dY(t)/dt = H(t)Y(t) + G(t)Y(t -t) + f{t) + e, te [to, r,),

[Y(9) = f{9) + e, to-T<6<to.

We claim that \j/{6) > (f>(9) implies that Y(t) > x(t) for t e [tQ - r, tt).
In fact, if this is not true, then there exists a t0 < t* < tx and some / such that

x,(f) = W) and

X j ( t ) < Y j ( t ) , te[to-t,r], j £ i .

Thus Y!(t*) < x'^n. On the other hand,

g>j(OYj(t* - r) + MO + e
j=\

WW) + Yt&J^Xjit* - r) + /,(/•) + €

This contradiction indicates that Y(t) > x(t) for tt > t > t0 — t. Let e -* 0, then
y(t) -> K(r) and hence _y(f) > jc(r) for/i > t > t0 - r.

Since D, > 0, x(t,) = D,x(r, - 0) < D,y(t, - 0) = )>(/,). Let x(t) < y(t) for
f € [t0 — r, ft), then x(tk) = Dkx(tk - 0) < Dky(tk - 0) = ^(f*). Similar to the
previous process, we have x(t) < y(r) when t e[tQ — r, rt+i). By induction, it follows
that x(t) < y(t), t € [r0 - r, oo). The proof is complete. D

LEMMA 2.3. Let A, B € C[[f0, oo), Rnxn], <t>(r, f0) fee the fundamental matrix of
dx/dt = A(t)x and x(t) = *(/, r0, <f>) be the solution of the system

\dx/dt = A(t)x(t) + B{t)x(t - T)

\ 6 [ t t )

where <p € PC[[t0 — r, t0], /?"]. Assume that there exist positive numbers y > 0
and M > 0such that \\<t>(t, to)\\ < Me"1"'-'0' andy > Msup,>,0 ||B(OI|. Then there
exists an a > 0 such that \\x(t)\\ < M||x,o||e-a('-'o).

PROOF. Since y > M sup,>,0 ||fl(f )||, there exists an a > 0 such that

y -a-Msup\\B{t)\\eaT > 0.
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Weclaimthat, forthisa, ||JC(OII < M\\xn>\\e~al'-"). In fact, by the method of variation
of parameters, the solution of (2.1) is given by

x(t) = 4>(f, to)x(to) + I <t>(/, s)B(s)x{s - z) ds,

and

IWOII < ll*(?^o)lllk('o)ll + / \\<t>(t,s)\\\\B(s)\\\\x(s-T)\\ds

Me-r(-s)\\B(s)\\\\x(s-T)\\ds.

Let Q(t) = e^'-'^Me-^-^WxJ + ft Me-y('-s)\\B(s)\\\\x(s - r)|| ds], t > t0 and
G(0 = IK| | , / € [to - r, to]. Then

Q(t) > | | jc(O| |e° ( ' -*\ t>-to-x (2.2)

and

Q\t) = oe"('-*> rMe-^'-'^II^JI + 5 J Me-r°-s)\\B(s)\\ \\x(s - r)\\ ds\

yMe-y('-''>)\\xJ - y f'Me-^-s)\\B(s)\\\\x(s - r)\\ds]

+ MeaU-")\\B(t)\\\\x(t-r)\\

= <xQ(t) - yQ(t) + Mea('-"*||5(0ll\\x(t -

in view of (2.2).
For any K > 1, we claim that Q(t) < K\\Ql0\\ =: L, L > 0, t > t0 - t. If this

is not true, then there exists t* > t0 such that Q(t*) = L, Q(t) < L,t0 — r <t < t*
and Q'(t*) > 0. On the other hand,

QXS) < (o - y)Q(n + M\\B(nUQ(t* - r)\\e°*

< (a - y + M\\B(O\\ear)L < 0.

This contradiction implies Q(t) < L. Let K -*• 1, then Q(t) < \\Qla\\ and

I|JC(OII < Q(t)e-a('-'0) < liejk"°""'0 ) = MlljcJIe-"1'-'"', / > tQ - t. (2.3)

The proof is complete. •
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LEMMA 2.4. Let A, B € C[[t0, oo), Rrxr] and <t>(t, t0) be the fundamental matrix
ofdx/dt = A(t)x(t). Assume that

(1) there exist positive numbers y > OandM > 0 such that \\<t>(t, to)\\ < Me"y(l"'o)

andy > Msup,2,0 ||fl(O||;
(2) x(t, t0, <t>) is the solution of the IVP

dx{t)/dt = A(t)x(t) + B(t)x(t - r), t € J\I,

x(tt) = Dkx(tk - 0), tk € /, (2.4)

to-r<9<to,

where <f> € PC[[t0 - r, t0], Rn] andtk+] -tk>r.

Then there exists an a > 0 such that

\\x{t)\\ < |K | | Y\ Mk+lmax{\\Dj\\,e'"}e-a('-'°\ tk < t < tk+l.

PROOF. From Lemma 2.3, it follows that for any it, we have

\\x(t)\\ < M\\xJe-ai-"\ t€[tk,tk+l).

Since x(tk) = Dkx(tk - 0), it follows that

IK | |= sup ||;c(0||

< max | sup

< max I sup

<max( sup

We-"^-^ max[ea\\\Dk\\).

Using a similar argument, we have \\xlt_,\\ < M||x/1.J||e-or(''-'-"-!)max{ear,
and so on. Thus we get

< < K H f ] M * + l m a x d l D . H , e " 1 } ^ " " - " " , h < t < tk+l.
>£A(/)

The proof is complete. •
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3. Stability of large-scale impulsive delay systems

Consider the large-scale impulsive delay differential equations

= AH(r)x(0 + J2 Aij(t)xj(t) + £ B,j(t)xj{t - r), r e 7\7,

"" i=i (3.1)
xt(tk) = J^ DijkXj(tk - 0), tke I;

where x, = (*{, . . . ,jrj )T € R"1, Au,B,j e C[J, RniXn<], Dijk e R"1*"', i, j =
1 r,Jt = 1,2,._.. and ^ . , Bj, = n.

In this section and in the following section, we always assume that tk — f*-i > T,
A: = 1 ,2 , . . . .

Assume that there exist positive numbers a, > 0, c, > 0, / = 1 , . . . , r such that
the fundamental solution matrix /?,-(*, t0) of the isolated subsystem

dxi(t)/dt = A,,(t)x,(f)

satisfies || /?,-(*, ro)|| < c(g-°i('-'o) and

< ay(r) < +oo, i, j = 1, 2 , . . . , r, i / y,

II 5,7(0II < &y (0 < +oo, i, j = 1, 2 , . . . , r and

II Aytll < 4y*. i,j = 1,2,...,r, k = l,2

Denote by A(t) = ((1 - S,v)c,a,,(0)rXr, 5(0 = (c,fe,y(0)rxr and D* = (dijk)rxr,
where

We are ready to state and prove our first result.

THEOREM 3.1. Assume that - a , + £(3 ty c,a,7(0 < -y < 0, y = 1 , . . . , r, -y +
sup,>,0 ||fi(/)ll < 0 and a > 0 is the solution of y - sup,>,o ||B(r)||ear - a > 0.

(1) l imsup,^ (UJeM) max{||D;||, e
aT})/ea{'-'a) < oo implies system (3.1) « sta-

ble;
(2) limsup,^0o(nyeA(,)max{||Dy||,e''r})/e<"'"'0) = 0 implies system (3.1) w as-

ymptotically stable;

https://doi.org/10.1017/S1446181100009998 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009998


210 Xinzhi Liu, Xuemin Shen and Yi Zhang [8]

(3) if there exists a positive number f), such that f} < a and

n ; 6 A ( ( ) { | l , | | , }
hm sup —-——— < oo,

then system (3.1) is exponentially stable.

PROOF. From (3.1), we have, for t € Jk+i,

[ R,(t, s) J2 A,j(s)Xj(.s) + R,(t, s) J2 Bu(s)xj(s -r)\ds
Jlt L j# 7-1 J

and

(5 - T>|| rf5 =: P,(0-

Then ||x,(/)|| < P,(r), / € 7*+,, and

PUD < -a,P,(t)

Let P = col(P P,), P(tk) = DkP{tk - 0), tk e / , then ||x,(r)| < ft(r), r € J.
Consider the comparison system

J P'(t) < diag(-«, -otr)P(t) + A(t)P(t) + B(t)P(t - T), te J\I,

\P(tk)= DkP(tk-0), tk el-

and

U'(0=diag(-a, -or)f(/) + A(0$(0 + B(0?a - r), r6 7\/.

where £(r) = col(^,(0 f,(0)- Since -a,- + X!,/y c,-a,v(0 < -y < 0, we claim
that the solution ?j(r) of the system

t)'(t) = diag(-a -«,)»?(/) + A(0»>(0 (3-3)

satisfies |rj(/)| < ||r?Oo)lk~>'"~'o> and hence the fundamental matrix <t>(f, /0) of (3.3)
satisfies ||O(r, fo)ll < e-K('"'o), where rj = col(»j r)r).
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[9] A comparison principle and stability 211

In fact, let Q{t) = £ ? = 1 |i,,(OI, t > t0, then Q(t0) = J T = I |i,,(ro)| and

n n P n H

0+Q(O = £ D + M O I < £ -««!»?.• (01 + 2>ay(OI>»,(OI

n / n

(

(
7=1 V •#> / 7=1

Thus

and so | |$(r, ro)ll < e"y('~'o), r > f0, since O(f, /0) is the fundamental matrix.
From Lemma 2.4 and the condition — y + sup/>(0 ||B(f)ll < 0, it follows that there

exists an a > 0 such that the solutions of system (3.2) satisfy

. to, £,0)ll < HU I ! max {ll^ll- ear\e-ai-"). (3.4)

It follows from Lemma 2.2 that ||JC,-(/)|| < P,(r) < ^,(0, i = 1 , . . . , r, and from (3.4)
that statements (1M3) of Theorem 3.1 are true. The proof is complete. •

COROLLARY 3.2. Assume that the conditions of Theorem 3.1 hold and there exist
positive numbers r) > r and M > 0 such that tk — tk-\ = r? for all k = 1 ,2 , . . .
a/u/max{sup{||D*||}, ear] < M. Then M < e0"1 implies system (3.1) is exponentially
stable.

PROOF. In this case

max [||D,||, eax J = eZ^>in™m£>>le°'] < eklnM, t e [tk, tM)

and so

Y\jeMl)max{\\Dj\\,e'"} < eklnM_a(l_lo) < ^nM_ka,
gor(f-fo) — "~ '

which implies the required result. •
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COROLLARY 3.3. Assume that the conditions of Theorem 3.1 hold and there exist
positive numbers M > 0 and p > 0 such that max{sup{||Dt||}, eax} < M and

= p,

where rj(t0, t) denotes the number of impulses in the time interval [t0, t).
Then M < ea/p- implies that system (3.1) is exponentially stable.

PROOF. From the condition, it follows that for any e > 0, there exists T > 0 and
M = M(t0) > 0, such that when t >to+T,

max{||D;||, ear) =

(3.5)

D

and so

ea(t-to)

Since e can be chosen arbitrarily small, (3.5) implies the required results.

EXAMPLE 1. Consider the large-scale impulsive delay system

dXi(t)/dt = An(t)Xl(t) + Ai2(t)x2(t)

+Bn(t)xdt - r) + Bi2(t)x2(t - r), i = 1, 2, / e J\I, (3,6)

Xi(tk) = A,(/*)*i(** - 0) + Di2(h)x2(tt - 0), i = 1, 2, r4 € /,

where x,, x2 e /?2, A,;, fl,,, D,; e /?2x2, /, 7 = 1,2.
Let /(, = 0, r = 1,

^
0

Choose Al2(t), A2l(t) and S(/) = (Bu(t)) such that ||A12(r)|| < 1 - (4e2)~\
\\A2l(t)\\ < 1 - (4e2)-' and ||fl(r)|| < e~l. Then a, = - 3 , c, = 1, i = 1,2.
Choose y > 2, a = 1 and so y - sup,^,o \\B(t)\\eaT - a > 0. Let

e - 3 / 2 - 1 / 2 0 1
1 0 0 0
0 1 0 - 1
0 1/2 0 0 _

then || D* || = =e- 1/2 and if
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(1) fc-fc-i > r =

(2) h - rt_, > T + 1/k, then liml^00((n>6AW max{||D,||, e<"})/e<" = 0,

(3) h - fc-i > r + rj, rj > 0, then fll,^,,, max{||D,||, e " 1 } ) / ^ 1 ^ < 1.

Thus we can conclude that system (3.6) is: stable if tk — tk-\ > z = 1; asymptotically
stable if tk — tk-{ > r + 1/k; and exponentially stable if tk - tk_x > r + JJ, r; > 0.

REMARK. This example illustrates that Theorem 3.1 is simple and easily verified. It
is very interesting to notice that, from the example, even if at every impulsive point tk,
||£>t|| > 1, which implies that the norm of solutions is increased at impulsive points,
that the system may still be stable or exponentially stable.

Consider the nonlinear impulsive delay differential system

lix/dt = diag(A,,(O, • . . , Arr(t))x{t) + F{t, x(t), x(t - r)), t e J\I,

\x(tk) = Dkx(tk - 0), tk 6 / ,

where F € C[I x R" x R", Rn], F(t, 0, 0) = 0, x = (*, , . . . , xr)
T € R", x, e /?"',

Aa(t) are n, x n, matrices, Dk = (DiJk) are n x n matrices, Dijk are /J, x ny matrices,
i, j = 1, 2 , . . . , r, X ^ = 1 n t = n,k = 1,2, Rewriting (3.7) by components,

idxi/dt = Aii(t)xi(t) + Fi(t,x(t),x(t-T)), t€J\I,

[Xi(tk) = Y.U'DtjkXjitt - 0), tk € / , i = 1, 2 , . . . , r.

THEOREM 3.4. / /

(1) there exist scalar functions ltj, ktj e C[J, R], such that

, y)\\ <

(2) there exist constants c,- and scalar functions /?,- 6 C[7, R], such that the fun-
damental solution matrix Rn(t,t0) of the isolated subsystem dxj/dt = Au(t)Xi(t)
satisfies \\R»(t, to)\\ < c ,e-^A ( f )* . i = 1 , . . . , r,

then the stability, uniform stability, global asymptotic stability, global uniform as-
ymptotic stability, global exponential stability, the Lagrange stability of all solutions,
uniform Lagrange stability of the trivial solution of the lower dimension linear equa-
tions

clk,j(t)l)j(t - T), / 6 7\/ ,

' " ' ; = l (3.9)

= £ \\DiJk\\Tjj(tk - 0), tk e I,

/=•
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where i = 1 , . . . , r, imply the stability, uniform stability, global asymptotic stability,
global uniform asymptotic stability, global exponential stability, the Lagrange sta-
bility of all solutions, uniform Lagrange stability of the high dimension nonlinear
system (3.7), respectively.

PROOF. Let x(t) = x(t, t0, (f>) be the solution of (3.7) satisfying the initial condition
x(t) = <j>(t), t0 — r < t < t0. Then we have, for / = 1 , . . . , r and t 6 Jk+l,

i(t) = Ri(t,tk)xi(tk) + I Ri(t,s)Fi(s,x(s),x(s-r))ds,

and

r ri

-kijisnXjis-T^ds,

Dijk\\\\xj(tk-O)\\.

L e t for / = 1 , . . . , / • a n d t e y* + i ,

then ||jt,-(OII < 1,(0, / = 1 , . . . , r, and

- r ) ,

With the comparison system for / = 1 , . . . , r and t € /t+i,

c,*,7(O/j;(r - r ) ,

and from Lemma 2.2, we have ||JC,(/)|| < ^(t) < rj,-(/), r > /0. ' = 1 , . . : , r. The
inequality implies the results of the theorem. The proof is complete. D

https://doi.org/10.1017/S1446181100009998 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009998


[13] A comparison principle and stability 215

EXAMPLE 2. Consider the nonlinear impulsive delay differential system

-5 + e~' ln(l+r2)] |sin/|
dt ~ l~ln(l+t2) -4 J*1 2^(1 + ||JC2||)*

2

(1 + sin/2)sin2(j:1
rjc

dx2 _ [-6 + sin/ t
~dt~\_ -t -7 + 2cos2r

4V2e2

V2 (3.10)
7*1

- 0 ) , * = 1,2,

where J: = (x\, x*)T € /?4, JC,,X2 € R2, Dk = (Dijk) € fl4x4 and Dijk € fl2x2,
», 7 = 1, 2.

Using the notation of Theorem 3.4, we have

" lnO+'2)l A _ r - 6 + sinr t 1
,2) -4 J ' A22~[ -t -7 + 2cos2rJ'

I sinf | (l + sin»2)sin2(jc,rjc2)
, + , l ( r - l ) and

+

By choosing c, = v ^ , A = 4, /„(*) = /22(O = *I2(/) = *21(r) = 0, ZI2(r) = ^ 2 / 4 ,
/21(r) = \ / 2 / 3 , Jtn = (l-Jle2)'1 and Jt22(f) = (2v^e 2 )" ' , the comparison system is

^ =-41.(0+ 5»h(0 + ^ . ( r - l ) ,

i 7 = 1 * . * - i , . . . , ( 3 U )

- 0 ) , i = 1,2, k = 1 , . . . .

For system (3.11), using the notation of Theorem 3.1,

" - 4 1/21 „ \BU BI2"| r(2e2)- ' 0, [ ] [ ] R \ ] f
L * A J - [ 2 / 3 4 j ' " " L B B \ - [ 0

and

[0 1/2] - _ [(2e
2)

- [ 2 / 3 o j * B - B = [ 0
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= (2e2)- ' , r = 1,By choosing c, = 1, a, = 4, i = 1,2, ||S|| = (2e2)-\ y = 3,
a = 2, then ||fl,(f, /0)|| < c,*-":('-'°), i = 1, 2, and y - ||B||e"r - a > 0. Let

e - 3 / 2 0 1 1/2"
1 0 0 1/2
0 1 1 / 2 0
0 - 1 0 0

then \\Dk\\ = \\Dk\\ =e-\/2 and if

(1) h - / * _ , > 2 > r, then (e-21 ft.^ max{||D,||, e°'}) < 1,

(2) r* - /*-, >2+l/k, then l im^c (e"2' ny6A(l) max{||Dy||, *"}) = 0,
(3) h - fc_, > 2 + »,, IJ > 0, then (e-|/(2+II)ny6A(,, max{||D,||, O ) < 1.

Thus we can conclude that system (3.10) is: stable in case (1), asymptotically stable
in case (2), and exponentially stable in case (3).

4. A large-scale impulsive neutral system

In this section, we consider the large-scale impulsive neutral system

3ij(t)Xj(t - r)

x'j(t - r), t e J\I, i = \ r,

r

*i(tk) = Y^ DijkXj(tk —0), tk € /,

dt

(4.1)

where Au, Bu e C[J, R-"-'], Dijk e R"'*"', xj = (x'j, . . . , < ) e R-, Cu e

Cl[J, /?"'""']. i, ; = 1, • •., r, and £;„,/!, = n.
If «, = rtj = 1 and D = (Diyt) = £ in the system (4.1), where E is an identity

matrix, it means that the system does not have an impulse at the point rk. Then the
system becomes

dxjf)
dt

= A(t)x(t) + B(t)x(t - r) + C{t)x'(t - x). (4.2)

Denote by R(t, to) the fundamental matrix of dx/dt = A(t)x andbyjt(f) = x(t, t0, <p)
the solution of (4.2) with initial condition x(t) = <f>(l), t € [t0 — r, /0]-
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LEMMA 4.1. Assume that

(1) ||C(r)|| is a decreasing function;
(2) there exist y e C[R, R+], M > 0 such that \\R(t, to)\\ < Me'f:oyU)ds;
(3) there exists I > 0 such that e£-<yis)ds < I.

Then the solution x(t) = x(t,to,4>) of (4.2) satisfies

\\x(t)\\ < [M(l + ||C(ro)l|) + \\C(t0 - t)\\l]

(f \l(^\

where L{t) = ||A(OIII|C(/)II + I|C'(O|| + I|B(OII.

x\\xjexp(f \l(^\\C(s)\\ + ML(s)\-y(s)\dsY (4.3)

PROOF. By the method of variation of parameters, the solution of (4.2) is given by

x(t) = R(t,to)x(to)+ R(t,s)B(s)x(s -z)ds
Jto

+ JR(t, s)C(s)x'(s - r) ds. (4.4)

/ :

Integrating by parts, the third term on the right-hand side is

R(t,s)C(s)x'(s -z)ds

= f R(t,s)C(s)dx(s-z)
Jlo

= R(t, t)C(t)x(t - z) - R(t, to)C(to)x(to - z)

- f [R's(t, s)C(s) + R(t, s)C'(s)]x(s - r) ds
Jlo

= C(t)x(t - r) - R(t, to)C(to)x(to - z)

- I [-R(t, s) A(s)C(s) + R(t, s)C'(s)]x(s - r) ds
Jlo

since R(t, t) = E. So

*(O = R(t, to)x(to) + I R(t, s)B(s)x(s -z)ds + C(t)x(t - r)

Thus

- R(t, to)C(to)x(to - r) + / R(t, s)[A(s)C(s) - C\s)]x(s - r) ds.
Jlo

f
Jin
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(/ - r)|| + \\R(t,

- x)\\ds

+ f
Jto

= Me-f-'°Y(x)ds\\xJ(l

\\B(s)\\]\\x(s-r)\\ds

J'*rM"\\xJi+ f

+ I Me-f'y(r>)d"L(s)\\x(s-T)\\ds.
Jto

Multiplying both sides by e^ Y(s)d\ we have

f Mef:oy(n)dr>L(s)\\x(s - r)\\ds.
Jto

Let
y(t)= sup e

Then y(t) > e^"Y{s)ds\\x(t)\\, t > tQ — T, y(t) is a nondecreasing function and

+ f MeX-rWe1*"ylnUllL(s)\\x(s - T)1H ds
Jto

f
Jto

< M\\xJ(\ + ||C(/o)||) + l|C(r)||/y(/ - r) + f MlL(s)y(s - z)ds
J

< M\\x,J(l + ||C(fo)||) + - f \\C(s)\\y(s)ds
^ J l — T

Jio
MlL(s)y(s -r)ds,
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in view of the fact that ||C(/)|| is nonincreasing and y(t) is nondecreasing. Thus

ef«yis)ds\\x(t)\\<M\\x,0\\(l + \\C(t0)\\) + f° -\\C(s)\\y(s)ds
Jto-r r

+ f -\\C(s)\\y(s)ds + I MlL{s)y(s)ds
Jio T Jto

\\C(to)\\) + l\\C(to -

f' -\\C{s)\\y(s)ds + f MlL(s)y(s)ds

f l\-
||C(ro)||)M + ||C(r0 -

\\C(s)\\ + ML(s)\y(s)ds.
J

The right-hand side of the last inequality is nondecreasing and it yields that

y(t) < IKII[(1 + l|C(*o)||)M + \\C(t0 - z)\\l]

\\C(s)\\+ML(s)]y(s)ds.l\^\

The Gronwall-Bellman inequality implies

y(t) < ll^llld + l|C(ro)||)M +

and so (4.3) holds. The proof is complete. •

LEMMA 4.2. Assume that conditions (2)-(3) of Lemma 4.1 hold and there exists
C > 0 such that \\C(t)\\ < C < 1//. Then the solution x(t) of (4.2) satisfies

(4.5)
1 — C/

where L(t) = ||A(r)||||C(OII + ||C'(OII +

PROOF. From the first part of the proof of Lemma 4.1, it follows that

+ I MeK-'y(r>)d«ef«'Y(n)dl>L(s)\\x(s - r)\\ds
Jio

< Af IKIK1 + ||C(/o)||) + l|C(r)ll/y(/ - T)
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+ I MlL(s)y(s -z)ds
Jio

< M\\xJ(l + ||C(ro)||) + C/y(O+ I MlL(s)y(s)ds,
Jio

where y(t) > e^i>ris)d"\\x(t)\\, t > t0 — r, is a nondecreasing function. Furthermore,
since the right-hand side of the last inequality is nondecreasing, it follows that

y(t) < A*K||(1 + ||C(fo)||) + Cly(t) + I MlL(s)y(s)ds,

thus
1

y(t) < = 1 — / MlL(s)y(s)ds.
1 — Cl 1 — Cl Ji0

The Gronwall-Bellman inequality implies

\\x,JeJ

1 ""~ v^ I

and so (4.5) holds. The proof is complete. •

THEOREM4.3. Assume that the conditions of LemmaAA holdandx(t) = x(t, to,<p)
is the solution of the system

dx/dt = A(t)x(t) + B(t)x(t - T) + C(t)x'(t - T), t* tk,

x(tk) = Dkx(tk - 0), (4.6)

Then for tk <t< tk+u

\\x(t)\\ < \\x,JM0 f l Mj max sup
is — i ^ i * • • ' /

wherea(t) = l(\\\C(s)\\ + ML(s)) - y(s), Mk = M{\ + \\C(tk)\)) + \\C(tk - r)||/,

L(t) = ||A(/)||||C(f)|| + ||C'(OII + IIBCOII andl > e^-.y^, t > tQ.

PROOF. From Lemma 4.1, for any k= 1 , . . . , we have

||AT(OII ^ A t̂ll-*/, \\e '»°J J , / 6 ['t,'t+i)-

Since x(/4) = Dkx(tk - 0), it follows that

| |x j |= sup ||x(r)|| = max [ sup ||x(r)||. ||xfe)||
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<maxj sup
[lk-T<Ktk

< max I sup Mt_, K _ , ||^-,"U)ds, M*_,\\Dk|| II*,,., \\eS'^ a(s)ds

[ lt-T<t<lt

<Mt_,|K_,| |max( sup e^)d\\\

Using a similar argument, we have that

K_, II < M,_2K_21| max I sup e^

and so on. Thus we get, for tk < t < tk+i,

\\x(t)\\ <

< MkMk_A\xlk_{ || max j sup A"("<", | |Dk | | ] e$-> °{s)dse^a(s)dx

l

sup e><a»'", \\Dt

<•••< WxJMo f ] MJmax sup ef:'aU)"s, \\Dj\\ e^"""" .

The proof is complete. D

THEOREM 4.4. Assume that the conditions of Lemma 4.2 hold and that x(t) is the
solution of (4.6). Then for tk <t < tk+\,

\\x(0\\ < \\xJMo p j Mj max sup J';aWi', ||D;|| ^>(v)"v,

= MlL(s)/(\ - Cl) - y(s), Mk = W(l + ||C(r*)||)/(l - Cl). L(t) =
and I > / / r y(5)rfi.

PROOF. The proof is similar to that of Theorem 4.3, and we therefore omit it. •

It is easy to obtain the following result from Theorems 4.3 and 4.4.

COROLLARY 4.5. Assume that the conditions ofTheorems 4.3 or 4.4 hold. Then

(1) limsup,..,,,, (^•w*n>6 A,, ,Wy max {||Dy.||,sup,._r£,£Ij/>"'*""}) <oo
implies system (4.6) is stable;
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(2) limsup,^ («£"w"rUA,,, Mj max {||D,||, sup,y_r^ ^ " w * } ) = 0 i
system (4.6) JS asymptotically stable,

where Mj and a(t) are as in Theorem 4.3 or Theorem 4.4 respectively according to
which conditions hold.

COROLLARY 4.6. Assume that the conditions of Theorems 4.3 or 4.4 hold and
a(t) = —a = constant. Furthermore, there exist a constant TJ > r and M > 0 such
that tk - /*_, = t) and Mj max{^ar, \\Dj\\) < M. Then

(1) M < ean implies system (4.6) is stable;
(2) A/ < eai) implies system (4.6) is exponentially stable.

Next, we will consider a large-scale impulsive neutral system (4.1). Assume that
Rn(t, s) satisfies /?,,(/, t) = E and

3 *" a
( / ' 5 ) = Au(t)R,t(t, s), t e J\l, i = l r.

THEOREM 4.7.

(1) //iere exist a scalar function a € C[J, R] and constant A/, > 1 such that

(2) ||C,y(OII are nonincreasing functions;
(3) f/iere ejrwr N > 0, / > 0 anrf a scalar function fi 6 C[/ , R] such that

I > s\ipl>loef'-als)ds and the fundamental matrix solution Q(t,t0) of the ordinary
differential equations

~[f = ^2vu(0rij, i = \ r,

satisfies \\Q(t, to)\\ < Nef:°fi(s)ds, where

vu = (1 - <5,,)M,|| Au(s)\\ + MilL(s) + ^||C,7(5)|| and

L(t) = ||fl,,(

ifM = max,<;<r Mi, Mk = N[M + (M + l)\\C,k ||], then

(1) system (4.1) is stable if

n^^maxlllDJ.sup^^/i""-"1")
lim sup -, < oo;
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(2) system (4.1) is asymptotically stable if

n,€AW M, max j || Dj \\, sup,,_r,,<0. el"«-«>* I
lim sup J—T, = 0;

(3) if there exists a positive number /x such that

lim sup =—-; = 0

then system (4.1) is exponentially stable.

PROOF. Using the method of variation of parameters, the solution of system (4.1)
can be written as

Xj(t) = Ru(t, to)xi(to) + I Ru(t, s)^^ Aij(s)jCj(s) ds

C ' C '

Since

I Rii{t,s)YdCij{s)x'j(s-x)ds
'" 7 = 1

ij(t)Xj(t - T) - R,,(t, t0)
j=\ j=\

- / Ru(f,s)y£tC'ti
J'° 7=17=1

?,,(/, s)Au(s) ^~] Cij(s)Xj(s — T) ds,

then

Xj(t) = Ra(t, to)Xi(to) + I Rn(t, s) ^ Aij(s)Xj(s) ds
J'o iM

R,,(t,s)J2Bij(s)xj(s-
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r r

Cu(t)Xj(t - r) - R,,(t, t0) 5 3 Cij(.to)xj(to - r)

y=i

Thus we have

E / (1 -WMi
. _ l • ' ' 0

"w<" 5 3 ||Cy(ro)||||jc7(ro -

+

fIIA«(5)11 > ||Cy(5)||| |^(5 -r)\\ds

and

iix^nds
7

e£«">* 5 3 ncy(/)iiiijcya - r)ii + M, 5 3 iicy

/" A/,^oa(f)rff ^ IICyWIM* - r)|| ds
J'o j=\

f^ Cy(*)||||*7(s - r)|| ds
7 = 1
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MiWxiJ+Mi^WQjitoMXjJ

+ T1 f M,e^o(f)rf?[||B,7(j)|H-||C;.(s)||

Let y,-(O = max,0_r<£<, \\xi(^)\\e^aU)ds, then y,-(r) is a nondecreasing function,
/ = l , . . . , r . As y,(O is nondecreasing, ||C,;(r)|| is nonincreasing, and because
/ > sup,>,0 ei'-<aU)ds, we have

< - ' r
/=1

12 [

<^2- f \\Cu(s)\\yj(s)ds
; = 1 T '~r

[ \\j)\\yj J2J2 ^ \\Cu(s)\\yj(s)ds

l f< Yl - f II c<>
y=. T J*

Thus

f M,lL(snyj(s)ds

7-1
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r

= A/,||JC,J| + J^ [Af,||Cy(«b)|| +/||C,y(/0

+ £ / [(1 ~ SijWiHAuWW + M,IL(3) + -||Cy(*)||l yj{s)ds.
j=\ •''o L . T J

The right-hand side of the last inequality is increasing and hence

+l\\Qj(t0 -

M,lL(s) + -| |C0(5)||l yj(s)ds

< M,\\X,J + (A/,

>='

M,lL(s) + -||C,7(5)||1 yj(s)ds
T J

< Af ||jc/Jb | |+ (Af+ /) 5^|| C
yib

J2 f \(l - SU)M,\\AIJ(S)\\ + M,lL(s) + -||C,,(s)||1 yj(s)ds

— ' C
= Mi + J2 VlJ(.s)yj(s)ds.

j=\ J'o

Let P,(/) = M, + £ ;= , j'la vij(s)yJ(s)ds. Then P,(t) > y,(O, fl(/o) = A7, and

Consider the system

Jrfft/rfr =_E>=I vy(j)5>(*), t € [r0, /,), g

| * to>) = A7,

where ^(5) = col(^, (5) , . . . , ?r(s)) and M = col(Afi,..., Mr). It is obvious that

https://doi.org/10.1017/S1446181100009998 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009998


[25] A comparison principle and stability 227

and thus ||£(r)|| > \\x(t)\\ei'l°aU)''s. Furthermore, from condition (3), it follows that
the solution £(r) of (4.8) satisfies ||£(r)|| < N\\^{to)\\e^mds on [tQ, t{) and

i=i i=i L
||CyJ

Thus

\\x(t)\\ < \mt)\\e-f«aMd' < N[M + (M + l)\\Cj]\\xJer*u>w-aM}".

Using the same argument, it is easy to get that

x(t) < N[M + (M + l)\\C,t\\]\\xli\\e
f:'ms)-aU)lds, t € [/*_,, tk).

Furthermore,

K l l = ( sup<( | | jc(OII=maxJ||jc(r t) | | f j sup ^ ||jc(r)||

< max I ||Dt||||jc(/;t — 0)||, sup Mk_\\\x{t)\

< max | M*_i||Dt||||J:,,_,\\e^-i(fi{s)~aU))ds, sup

max ! | |D t | | , sup ^
I <»-t<(«»

Thus when r € U*, /*+i),

, sup e'
h-t<KI,

< . . . < Mo

The inequality implies all of the results of Theorem 4.7. The proof is complete. •
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THEOREM 4.8. Assume that conditions (1H2) of Theorem 4.7 hold. Let

C(t) = (||Cy(/)||), A(t) = ((1 - «y)||Ayw||), L(t) = (Ly

M = maxM,, Mk =

--«*><" < +oo and Ltj(t) = \\Bu{f)\\ + ||Cy(OII + l|AH(OIII|Cy(OI|.
i>to

Then

(1) system (4.1) is stable if

n , , A ( / ) Mj m a x { , , ^ , / )
lim sup *—-, < oo;

(2) system (4.1) is asymptotically stable if

r W w W> rnax JUDJ, s u p , ^ ^ . ^ « • « - « ' * J
lim sup s —T = 0;

(3) if there exists a positive number /z such that

j . M , j max j || Dj ||, supo_r5(</y / i W i ) - " ( J » " )
lim sup *—-. = 0

then system (4.1) is exponentially stable.

PROOF. By the first part of the proof of Theorem 4.7, we have (4.7). Let

y,(t)= max | | * , ^ > > «

then y,(/) is a nondecreasing function, i = l , . . . , r . As >>,(r) is nondecreasing,
||Cj,-(/)|| is nonincreasing, and because/ = sup,>/0e-''-'o(J)''J < +oo, we have

j=\

Thus from (4.7), we can get the following estimate:

< MAM + M^WGjltoiWWXjJ + J^ HCy(OI|/yy(O
j=\ 7=1
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(i-SijmwAijisnyjWds
Jio

MilLij(s)yj(s)ds

since y(t) is increasing and ||Cy (f)ll is decreasing. It is easy to see that the right-hand
side of the last inequality is increasing and hence

y,(t) < M,|kJ| + M,

r f
) ds.

Thus

E[EII^('O)H1KJI

• - S i

h "' \yjt

/•' ' r ' '
"> ; = l L « - = l <= l

J | + /" M[||A(s)|| + /||L(s)||]||;y(s)||</5

Since ||C(f)ll is nondecreasing,

f
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and thus

p{s)\\y{s)\\ds.

The Gronwall-Bellman inequality implies \\y{t)\\ < M0\\xl0\\e^PU)ds. In view of the
relations

\\y{t)\\ = J2 SUP \M
, = i s-'

we obtain

\\x(t)\\ < M0\\xl0\\e^(s)-ais)]d\ t€[to,h)

Using the same argument, it is easy to get that

II*(OII < Af*||*j|/»I/ 'W-O(f)1*> t e [tk,

Furthermore,

\\xj < M^.maxlllD.H, sup ^
\

T h u s w h e n t € [tk, tk+x),

sup

UDjh sup J

The inequality implies all of the results of Theorem 4.8. The proof is complete. D

THEOREM 4.9. Assume that

(1) there exist I > 0, M > 1 and a € C[fl, R] such that e^'-'ais)ds < I and, for

(2) r/iere exist c-,, > 0 JMC/I that ||ClV(f)|| < c,v, /, j = 1 r;
(3) we denote by C = (cu), A(t) = (||AO(OII), L(t) = (Ly(0), Lu(t) =

\\Bu(tn + \\C'u(t)\\ + WAuiOMQjini M = M(\ + | |C||)/(1 - IICII) and P(t) =
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Then

(1) system (4.1) is stable if

r U ( / ) M* max (|| Dj ||, sup,y_r£I<,, A<"»-«»*)
lim sup -— < oo;

f^Ms)-tKs))ds

(2) system (4.1) is asymptotically stable if

W W > m a x j j ( ; £ 0 j
lim sup -—-. = 0;

foa(s)-i)(s))ds

(3) if there exists a positive number fi such that

rU( / ) Mk max [\\Dj\l sup, , ,^ e ^ " " ^ * }
lim sup =—; = 0,

then system (4.1) is exponentially stable.

PROOF. The proof is similar to that of Theorem 4.8 and thus we omit it here. •

THEOREM 4.10. Assume that

(SI) there exist scalar functions a, € C[I, R+] and constants cit A/, > 1, such that

and J^ ||Cy(OII <

(S2) 5y(r) = -Sua,(t) + (1 - SlV)M,||A

bu(f) = Af, || By (Oil + M|| A,, (Oil ||C,V (OH + M,||C;;.(0ll,
then the stability properties of the system

y(» - T). t € y\/ , j = 1 r,

( ya* - 0), h € / ,

imply the corresponding stability properties of (4.1).

PROOF. Using the same argument of Theorem 4.7, for t € Jk+l, we have
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+ £ /"' A#1-*--G"'W*||fly($)||||*,($ " T)|| di;
7 = 1 • ' "

+ M,e~ i:> aMdsci K || + c,«"£ " w * \\xn ||

J2 f Af,e-^"'w*||AH
, = . • 'ft

,=

Then |U,(r)|| < P,(t), t e Jk+l. Let P,(tt) = E-= 1 I IDy^l l^ fe - 0), h € / , then
II*.(Oil < ^ ( 0 . ' > ô- Furthermore,

i=\

< -ct,(t)P,(t) + J2(l - «y)MJAy(OII W + 5 3 A#,||By(r)||Py(/ - r)
y = l j=\

i=\ j=\

Pj(t - T)

- r ) , t e Jk+{.

Let P(t) = col(P,(0 Pr(t)), P,(tk) = Z'j-i \\Du(tk)\\Pj(h -0 ) , then
Pi(t),t € 7. Consider the comparison system

; > y(/ - r ) , /t e

P,(tk) = E 7 = 1 IIDu(tk)\\ Pj(tk - 0), »» € /;

U/(O = Ey-i «i,(OS,(O + Ey=, ̂ (O^C - r), te J\I,

fc(fc) = £ , = 1 IIA,*IIS,C* " 0), /* € /.

Lemma 2.2 and ||*(OII < 11^(011 imply that \\x(t)\\ < \\l-(t)\\, which implies that the
conclusions of the theorem are true. The proof is complete. D
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EXAMPLE 3. Consider the neutral impulsive system

233

Al2(t)x2(t) + Bu(t)xt(t -

+ Cl2(t)x'2(t - 1),

= A21(O*.(O + A22(t)x2(t) + B22(t)x2(t -

dt

*2^ ' — A..(t\r.(t\ -L A~(t\v.(t\ J. n-Ct\r.(i _ \ \ (4")

dt

x(tk) = Dkx(tk-O), it = 1,2

where r0 > 0, x = (xux2)
T e «4, xux2 e R2, Dk = (DiJk) € R4x\ Dijk € R2*2,

i, j = 1, 2 and

"4
_(!+,2)-
1/4 0

- 4
(cos2r)/2 1/6
(sin20/2 (cos2r)/4
-4-cos 2 r sin2

]•

0
C

= [(4,)-' 0 J'
f(4^")-' 0]

2l(0 ~ [(9e
3('+1>)-' Oj'f

0

Then the fundamental matrix solutions Ru(t,to) and R22(t,t0) of systems *j(0 =
Au(t)xi(t) and^(r) = A22(t)x2(t) satisfy

\\Ru(t, fo)ll < ), \\R22(t,

and

l|A,i(f)|| < 5, ||A22(OII < 5, ||AI2(OU = 1/2, ||A21(OII < 1/3,

IIBII(Oil < (4e)-', 11*22(011 < (4e)-', ||C,2(r)|| < e~Ml+l)/2,

I|C2,(/)|| < e"4('+1) and ||SI2|| = ||B2I|| = ||C,,|| = ||C22|| = 0.

Using the notation of Theorem 4.10 and a simple argument, we have

tk=k, r = l, a, = 4 , a2 = 3, M, = M2 = V2,

fl2i(0 = M2||A21(OII < V^/3, 522(O = - o 2 = - 3 ,

*i2(0 < 1/^. ^2i(0 < (2c)~' and
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Let the comparison system be

(4.10)

From(4.10), using the notation ofTheorem3.1, we haveai = 4,a2 = 3,ci = c 2 = 1,
y = 2 . 1 , ||fl|| = « - ' , r = 1 and a = 1. Let

*

e-3/2 0 0 0'
1/2 0 0 0
0 1 1 / 2 0
0 0 0 1

then ||Dt|| = ||Dt|| = e - 1 and

(1) iff* -fc_, > r = l,thene-'

(2) iff* - fc_, > T + 1/*, then lim^oo (e-'n^Aw "««{ll^ll. e"r)) = 0,
(3) if/, - fc_, > r + ^, >; > 0, then e-'/(1+">ny£A(0 max{||D,||, *") < e.

By Theorem 4.4, system (4.9) is stable in case (1); asymptotically stable in case (2);
and exponentially stable in case (3).

5. Conclusion

In this paper, we have studied the stability issue for both linear and nonlinear
impulsive functional systems with delay. Our approach has utilised the comparison
principle and an inequality for the establishment of stability criteria. Although only a
single delay has been considered in this paper, the study can be extended to the case
with multiple delays.
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