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FUNCTIONAL EQUATIONS OF DIRICHLET SERIES 
DERIVED FROM NON-ANALYTIC AUTOMORPHIC 

FORMS OF A CERTAIN TYPE 
BY 

V. VENUGOPAL RAO 

Let/(r) be a complex valued function, defined and analytic in the upper half 
of the complex r plane (r=x+iy, y>0), such that f(r+2.)= f(r) where X is a 
positive real number and/(— l/r)=y(—fa)kf(r), k being a complex number. The 
function (—fa)h is defined as exp(fclog(—fa) where log(—fa) has the real value 
when —fa is positive. Every such function is said to have signature (A, k, y) in 
the sense of E. Hecke [1] and has a Fourier expansion of the type/(r)=tf0+ 
^anQXp(27rinlÀ), ( « = 1 , 2 , . . .), if we further assume that f(r)=OQy\~c) as y 
tends to zero uniformly for all x, c being a positive number. Hecke, then considers 
the Dirichlet series (f>(s)=^ ann~s («=1,2 , . . .) which has a finite abscissa of 
absolute convergence and shows [1] that cf>(s) has an analytic continuation in the 
complex s plane and that it is analytic for all s except for a possible simple pole 
at s=k. Hecke further shows [1] that </>(s) satisfies the functional equation 

(1) (27rM)-T(s)^5) = y(27TlX)k-sT(k-s)<l)(k-s). 
It is well known that functions with signature (A, k, y) arise from various problems 
in number theory and in particular from the theory of integral, symmetric, positive 
definite quadratic forms and their associated theta series. The corresponding 
theory of integral, indefinite, quadratic forms has been considered by C. L. Siegel 
[7] and the "theta series" for an integral, indefinite quadratic form turns out to be 
a "non-analytic" automorphic form, when we exclude certain special types of 
indefinite quadratic forms. The non-analytic automorphic forms of the type 
occurring in the work of Siegel [7] have been characterized by H. Maass [2] who 
proved analogues of the above mentioned results of Hecke [1]. Maass obtains 
in particular a functional equation for the Dirichlet series formed from the "Fourier 
coefficients of the non-analytic automorphic form". The "non-analytic automorphic 
form" depends on two complex parameters a and /?, which we will call the "param
eters of the non-analytic automorphic form". (In particular we obtain a classical 
analytic automorphic form in the sense of Hecke whenever /?=0). The functional 
equation of Maass is a generalization of (1) and involves certain hypergeometric 
functions (depending on the parameters a and (3) instead of the gamma functions 
occurring in (1). Since the functional equation of a rational indefinite, quadratic 
form as defined by Siegel [6] involved only gamma functions, it is natural to ask if 
the hypergeometric functions occurring in the functional equation of Maass can 
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be expressed in terms of gamma functions only at least in some special cases, if 
not in all cases. In fact Maass [2] himself has pointed out three such cases corre
sponding to oc=0, /?=0 and oc=/?. In this paper we point out one more case and 
this we state as a 

T H E O R E M . Let the parameters of the non-analytic automorphic form a and ft be 
such that a—/? is a rational integer. Then the functional equation of the associated 
Dirichlet series can be expressed in terms of gamma functions. 

The statement of the above theorem needs clarification and we next define the 
non-analytic automorphic form and the associated Dirichlet series. 

Let z denote a complex variable, z=x+iy, x and y real and w=z=x—iy. 
We consider a pair of complex valued functionsf(z9 w) and g(z, w) defined in the 
upper half plane j > 0 which are solutions of the elliptic partial differential equation 

//-IN 2/3 2f , d2v\ , m . dv , , , m dv ^ 
(2) /te+a7)" (a^ ) l^+(a+^a7 = 0, 

a a n d /? being complex numbers and having the following proper t ies : 

n , / /(z+A,w+A) = ^ « y ( z > W ) , 
W \g(z+Kw+X) = e2^g(z9w\ 

A being a positive real number and 0<bf<l ( /= l , 2,); 

(4) g ( - 1/z, - 1/w) = y(-izy(iwYf(z, w). 

where y = ± l and (— lz)a, (iw)p are defined by their principal values; 

(f(z, w) = 0(yXl) and g(z, w) = 0(y**) as y -> oo 
^ \ / (z , w) = OO""1) and g(z, w) = OO""2) as j -> oo 

where ^ and /^ (/= 1,2) are positive constants and the estimates are uniform in 
— oo<x<co. 

It then follows from a result of Maass [2, Hilfassatz 8] that 

(6) AC*, y) = / (z , w) = a0w(j, a+j8) + 60 

+ 2 a W ^ ' > > ; a , / ? , s g n A 
*=É0.i=&i(mo<il) \ A / 

„2iritx/A 

and 

(7) giO, y) = g(z, w) = cQu(y, cc+fi)+d0 

2 btw{^y;*J,sgnt)e* 
=&2(modl) \ A J 

JL. y J; T T / I - " i - i R o r r r , / \„ZlTitxlk 

the series on the right of (6) and (7) being absolutely convergent in the upper half 
plane y > 0 , where 

\—y n =l HI 

(8) ÏFC; «, A «0 = r ^ ' ^ w ) / . . ^ - ! ) / ^ ) , (« = ± D . 
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W1%m being the Whittaker solution of the confluent hypergeometric differential 
equation in the reduced form [4, p. 296], and s g n f = ± l according as f>0 or 
t<0 respectively. 

We introduce the four Dirichlet series 

at xp a-t 

,QV t>0l t>0 l 

t>0t t>0 t 

where s is a complex variable and ts= e
( s log<) , with log t real. In view of the 

estimates (5), the four Dirichlet series in (8) have finite abscissa of absolute con
vergence. Further it is known that [2] they can be continued analytically into the 
entire complex s plane and the resulting functions are meromorphic. The functions 
defined by the Dirichlet series in (8) satisfy the following functional equation. 

Let 

(10) T(s; a, p) = (nW(y; a, ft l ) / " 1 dy 
Jo 

(11) Us) = ( y j V t a «, PMs) + r(s; ft a)^(s)} 

and 

Ç j {r(S + l ; a, £ ) -K«- /S ) r ( s ; a, / S ) } ^ ) 

Ç J { r ( s + l ; /?, «)+Ka-j8)r(s ; 18, a)}%(s), (i = 1, 2). 

Then 

(13) ^ (a+jS-s ) = y|2(s) and *?i(a+j8—s) = —yrç2(s). 

LEMMA 1. The function ^(s) has the functional equation 

2r(s)r(s + l - a - j8 )&(s ) 

= y(27rM)2s-a^{A(a5 ft S)&(a+i8-s)+/i(a, ft s ty 2 (a+£-*)} , 

(14) A(a,fts) = r ( 5 + l ; f t a ) r ( a + i 3 - 5 ; a 5 i S ) - r ( s ; f t a ) r ( a + ^ ~ 5 + l ; a , f t , 

(15) /*(a, ft 5) = r ( s + l ; ft a ) r ( a + j 8 - s ; ft a) + r(s; fta)r(a+j8--s+l; ft a) 

+ ( a - 0 ) r ( s ; ft a)r(a+iff-s; ft a). 

Proof. This is the same as lemma 3 of [5]. We remark that lemma 3 of [5] 
itself is based on a result of Maass [3, p. 300]. 
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LEMMA 2. With W(u; a, /?, 1) as defined in (8) and W(r)(u; a, /?, 1) denoting the 
rth derivative of W with respect to u and W(0)= W, 

| ( " V " " * ^ a> A !) = (-mP)n2n/2W(u; a, 0+n , 1), 

wAere Ç) denotes the usual binomial coefficient and 

(0)„ = <S(/M-i)---G9+»-i). 

Proof. We start with the known formula [4, p. 301] 

- £ [^ / 2 Z-"- 1 / 2 ^, M ( z ) ] = ( - l ) " ( | + i « - ' c ) n ^ / 2
Z - ' ' - ( " / 2 ) - 1 / 2 ^ - n / 2 . , + I , / 2 ( z ) 

in which we set K=J(OC—/?), /^=|(a+jS—1), z = j and use the definition (8). We 
then obtain 

dn 

(16) — 

= ( " l ) W ( i 8 ) n ^ V ( W / 2 ) - ( a ^ , / 2 ^ ( a ^ ) / 2 - n / 2 . ( a ^ - l ) / 2 + n / 2 ( 2 j ) 

The left side of (16) is 

2-<*+*>/2 J; ^ V v ^ ^ * " ^ ; a, ft l W ^ , 

and the right side of (16), by the use of (8) is 

(^l)^)ne
v/22-in/z)-{a+p)/2wU ; a, fi+n, 1Y 

Writing y=2u, we get lemma 2. 

LEMMA 3. 

W{r\u; a, ft 1) = 0(y-ne{p)e-y), for y -> oo (y r^a/), 

T F ( f W , i M ) = Ofr"*'), for y-*0(yreal), 
with 

Kr > Re K a + j S + r H R e | i ( a + j 8 + r ) | - l . 

Proof. It is known [2, p. 247] that 

W(y; a, ft a) ~ 2
( a^ ) e / 2 j ; - { ( a^ ) + (^ a ) e } /V î / , 

as j->oo. Further, from the power series expansion of the Whittaker function, it 
follows that 

W(y;*,p9l) = 0(y-K)9 for real j - > 0 , 

with i£>Re£( a +/? )+I l e |J(a+j8)| —1. Lemma 3 then follows by using lemma 2 
and the induction argument. 
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LEMMA 4. Let T(s; a, ft) be as defined in (10) and k, a non-negative integer. Then 

u r ' 
Js=r±l_ p\ 

(17) T(s; P+k, ft = 2-'-<*/2T(s) I (k\ V 2 / 
' r r ~ r + l 

r / s - r + l \ 

(18) T(S; ft ^+fc) = 2-"-a /2) r ( / ? ) r(s) T (-l)"Yfc\-^—^ . 

^ p ro5+fc) KJ£r J\r) r /5-r+i\ 

Proof. If fc^O is an integer, it is known [2, p. 251] that 

W(y;P+k,0,8) 

= (_ l f 2u-„/V 1 / 2
 r^) e« £ (e-/

/2-%_1/2(y)), 
\ ^ ) 

where K^x) denotes the usual Bessel function of imaginary argument. Choosing 
k=0 in (19), it follows that 

(20) W(y; ft ft e) = ^ j J 1 / 2 "^_ 1 / 2 (J) . 

From (19) and (20), we obtain 

(21) W(y; p+K ft s) = (-l)fc2~fc/2 ^ ^-^(<r£ îW0>; ft ft e)). 

We have 

(22) T(s; £+fc, ft = f"y'-'Wiy; p+k, ft 1) dy, 
Jo 

where the integral on the right of (22) converges for Re s>K09 with K0 as in 
lemma 3. We first consider the case fc>0. It follows from (21) that the integral 
on the right of (22) is 

( - Î J ^ J V V f-k (e~«W(y; ft ft 1)) <*y 

= (-l)*2-* /2JoV1!^(-D'Ç)^^(y; ft ft 1)J dy. 
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Now 

Jo 

= [y'-W-r-'Xy; p, p, l )K°-(s- l ) ry>-2W{k-r-"(y; /S, /J, 1) dy 
Jo 

= - ( s - 1 ) f V-V< f t—»(y; p, p, 1) dy, 
Jo 

in the half plane Re s> l +Kk_r_l9 in view of lemma 3 

= ( _ i ) ^ ( s _ i ) ( s _ 2 ) • • • (s-k+r) f V f c + r - V ( 0 ) ( j ; ft ft 1), 
Jo 

by induction 

= (-l) f c- '(S-l)(s-2) • • • (s-k+r)r(s-k+r; p, P). 

We therefore have 

(23) 2W2r(s; p+k, p) = 2 (*)(*-l) • • • (s-fc+r)r(s-fc+r; /?, /?) 

= io(t)(s-i)---(s-'-)r(s-'-^./s) 

Since 
r f o W T(s-r) F 'HJ 

(24) IXs; «, «) = n-1'*?—lT ( i ) r ( ^ - « ) , 

r(s) = 7r-1/22s-1r^)r(^, 

r ( .=* i_ , ) 

and 

it follows that 

(25) 
r ( s - r ; j8, fl _ ;_g 

r ( s - r ) r / s - r \ 

Inserting (25) in (23), we obtain (17), valid in some half plane. By analytic con
tinuation (17) remains valid in the domain of regularity of T(s; p+k, P). 

For the proof of (18) we observe that 

W(y;*,p,l) = W(y,p,K,-l), 
and obtain 

(26) r(s; p, p+k) = f ° V V 0 > ; p+k, p, - 1 ) dy. 
Jo 
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We then use (19) with s= — 1 and deduce for the right side of (25) 

i-ifi-*'*^}^ fVv*-£(eVw(y,P, P, i)dy 
Jo dv T(p+k) Jo dyk 

= (-Vk2~m^^Â ( r ) ^ 1 ^ 5 " 1 ) ' ' ' (s-k+r)T(s-k+r; p, /?) 

= 2-*/*J±ë).__$(k\, „ r r(s) I {k\(-iy-^-r(s-r; p, P). 
r=o w IYs—r) r(p+k)£bvr r(s-r) 

We then obtain (18) by a procedure similar to the proof of (17). So far k>0. If 
fc=0, the lemma follows from (24). 

THEOREM. If /?=oc±&, w/zere fc>0 is an integer, the functional equation of <j>x(s) 
can be expressed in terms of gamma functions. 

Proof. In view of lemma 4, the functions À(oc, ft s) and ^(a, ft s), defined by 
(14) and (15) can be expressed in terms of gamma functions whenever /?=<x±fc, 
and k>0. If k=09 we derive the same conclusion by using (25). Hence by lemma 1, 
the functional equation of ^(s) can be expressed in terms of gamma functions. 

REMARKS. 

1. The expressions (17) and (18) for T(s; a, ft) and T(s; ft a) respectively in 
the case /3=cx.+k strongly suggest that they can be further simplified when /? 
is an integer. This fact has already been confirmed by Satz 6 of Maass [2]. 

2. The functional equations (13) yield functional equations for </>i(s), ip^s), 
(f)2(s) and y>2(s). Lemma 1 relates (f)x(s) with ^(vL+fi—s) and ip2(y.+f}—s). There 
exists an analogous relation between y)x(s) and faia+p—s), ip2(&+(i—s). This 
can be derived in a manner similar to the functional equation of ^(s) as stated by 
lemma 1, which turns out to be 

2 r ( s ) r ( s + l - a - i % 1 ( s ) = A(a, ft s)&(a+j8-s)+B(a, ft s)Va(a+j8-s), 

where 

A(a9 ft s) = r ( a+ j8 -5 ; a, ftT(s+l; a, ft+T(s; a, ftr(a+/?-s+l; a, 0). 

and 

B(a, ft 5) = r ( a + | 8 - s ; ft a ) r ( s + l ; a, ft-r(s; a, ^ ( a + j S - s + l ; ft a) 

+0S-a ) r ( s ; a, 0 ) r ( a + | 8 - s ; a, ft. 

In view of lemma 4, 4̂ (a, ft.?) and i?(oc, ft ,s) can be expressed once again in terms 
of gamma functions when j3=a±k, where k>0 is an integer. 
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