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Let Xit i = 1, 2, 3, • • • be a sequence of independent and identically
distributed random variables and write So = 0, Sn = 2"=i -̂ i> n = *• Nn

is the number of positive terms in the sequence So, Slt S2, • • •, Sn, n ^ 0.
It has been shown by Spitzer [7] that the limiting distribution

lim Pr(Nn <: nx) = F(x), — oo < x < oo,
n-»co

exists if and only if

(1) lim
exists, and that F(a;) is then related to « by

F(a;) = Fa(x) = ^ - ^ f"«—i(l—*)—<«, if 0 < a < 1, 0 ^a ; ^ 1,
71 Jo

(2) F0(x) = 0 if x < 0, 1 if a; ̂  0,

F^a;) = 0 if x < 1, 1 if x ^ 1.

Special cases of this result had previously been obtained by quite a number
of authors (see Sparre Andersen [6]).

In his book [8], Spitzer gives local limit results for the probabilities
Pr(Nn = k) in the case where the Xt are symmetric or have zero mean and
finite variance (his results, however, actually go through for the case
^n"1[\—Pr{Sn > 0)] convergent). In this paper we shall generalize the
work of Spitzer to obtain local Hmit results for all cases in which the limit
in (1) exists. This provides an illuminating synthesis of the Limit behaviour;
it will be shown that the result (2) is an immediate byproduct of the local
limit results in the case 0 < a < 1.

Firstly, we shall need some results due to Sparre Andersen. These are
the following:
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456 C. C. Heyde [2]

(3) Pr{Nn = k) = Pr(Nk = k)Pr(Nn_k = 0), 0 ̂  h ^ n,

and for 0 ^ t < 1,

(4) f iV(tft = 0)** = exp ( 1 £ Pr(Sk < 0)),

(5) | Pr(Nk = £)** = exp f f ^ Pr(5, > 0))

((3) appeared in [5] and (4) and (5) in [6]; see also [8], 219).
Now let us suppose that

(6) l . i

n->oo tl

With this in view the obvious thing to do is to modify (5) to look at

(1-t)* | Pr(Nk = k)P = expf i^ [Pr(Sh > 0 ) -

However, as we shall see, the limit l i m m 2 ~ ilck~1[Pr{Sk > 0)—a] need not
exist under the condition (6) so we must delve further. Let us write

uk = Pr(Sk > 0)—a;

we shall examine the function

Put

e(x) = — J (l — —) «*, cc ̂  1.

We have

and

lim«(«)»lim - 2 1 - - JV(S.>0)--2(l--)

= lim (l-«/) | yk'1Pr{Sk > 0) -a
» t i I

= 0
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using Feller [2], Theorem 5, 423. It then follows from the Corollary, 274 of
[2] that

u > 1,

is a slowly varying function in the sense of Karamata. The upshot of this is,
of course, the existence of a class of functions of slow variation L having
the same asymptotic behaviour as that defined by (7) above and such that

(8) lim (1-tr \L ( - L ) l ' £ Pr{Nk = *)<* = 1.

Applying a Tauberian theorem, Theorem 5, 423 of [2] to (8) we see
that it is equivalent to the relation

(9) L

and furthermore, as Pr(Nk = k) is monotone decreasing in k, we have for
a > 0 that (9) is equivalent to

(10) Pr{Nn = n) ~ —— na~T-L{n) as n -> oo.
1 (a)

In order to calculate the asymptotic value for Pr(Nn = 0) we follow
exactly the same principles, working with (4) and rewriting (6) in the form

PrjS, ^ 0)+ • • • +Pr(Sn ^ 0)
lim = 1—a, 0 ^ a £L 1.

Then, with Z, as defined by (7),

o)-(l-a)]}

and we obtain, as before,

(11) 2Pr{N* 0 ) ,
fc=o •* ^—<*•) L[n)

which if a < 1 is equivalent to
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Let us now formalize our results. We have, in effect, established the follow-
ing theorem.

THEOREM 1. Let Xit i = 1, 2, 3, • • • be independent and identically
distributed random variables for which

Urn ~" v ~ 1 " "' ' " " v~" > 0 ) = a, 0 ^ a < 1.

It is always possible to find a function of slow variation L such that

lim w1-* [L{n)]^Pr{Nn = n) = — - , 1 ^ a > 0,

(13)
lim [L^)]-1 2 Pr(Nk = k) = 1, a = 0,
n-»oo %=0

Um n"L{n)Pr{Nn = 0) = — , 1 > a ^ 0,

(14)
lim L(M) J ^ ( ^ = 0) = 1, a = 1.

Furthermore, the existence of a limit of the form (13) or (14) implies the
existence of the other.

The function L of the theorem has the same asymptotic behaviour as that
defined by (7).

It is plain to see that in the case a = 0, L(n) must be bounded away
from zero while in the case a == 1, L(n) most be bounded above.

We proceed immediately to the next theorem.

THEOREM 2. Under the conditions of Theorem 1 we have for 0 < a < 1,

(a) * - ( » - * ) - ^ 1 Pr(Nn = k) = ™ +o(k, n)

where o(k, n) tends to zero uniformly in k and n as min(&, n—k) -> oo.
(b) For 0 ^ x ^ 1,

lim Pr(Nn ^ nx) = ^ ^ f V - ^ l - *
n->oo ^ Jo

PROOF. In view of (3) and the results of Theorem 1 we have for
0 < a < 1,
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L{k)
Pr{Nk -.

1 r, Ih

sin no.
+o(k,

]][r
n)

(»-

( 1 -

kf

a.)

L(n-k)Pr(Nn_k == 0)

n

where o(k, n) has the required property, namely that given any e > 0
there is |some N = N(e) such that o(k, n) < e when k > N and n—k > N.

In order to obtain (b) from (a) we write

Pr(Nn ^ nz) = Pr{Nn ^ [nx])

We shall interpret the limit of this as the approximation to a Riemann
integral. For arbitrarily small s > 0,

sinrox ^ / A \ " 1 + a / k\~a L{n(\— kjn)}
. kln}

in view of the properties of slowly varying functions. We then let e -»• 0 and
note that as the integral exists the error term must go to zero and the proof
is complete. The result is a natural generalization of T2, 226-227, of [8].

3. Remarks

As regards the applicability of the above results, we should make the
following comments although the substance of them is well-known. If
Mn = max (0, Slt S2, • • •, Sn), then Nn has the same distribution as
Tn = min [k | 0 ^ k :S n; Sk = Mn]. This follows as

Pr(Tn = 0) = Pr(S1 ^ 0, 52 ^ 0, • • •, Sn ^ 0) = Pr(Nn = 0),

Pr(Tn = k) = Pr(Sk > 0 , Sk > Slf • • •, Sk > Sk_t, Sk ^ Sk+1, • • ; S k ^ Sn)

= Pr(% Xf > 0, 2 X,. > 0, • • -, Xk > 0, Zft+1 ^ 0, • • -, £ X, ^ 0)
1 2 *+l

= Pr(Nk = k)Pr(Nn_k = 0)

M = A), ft > 0,
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in view of (3) and using the fact that the Xt are independent and identically
distributed. Further, we readily see that

Pr(Nn = 0) = Pr(Mn = 0).

The quantity Pr(Mn = 0) is of some interest, for example, in the theory
of the GIjGjl queue where it has the interpretation as the probability that
the «-th arriving customer finds the queue empty and receives immediate
service.

4. Examples

Since comparatively little is known about the behaviour of sequences
of probabilities {Pr(Sn < 0), n = 1, 2, 3, • • •} upon which the results of
the paper depend, it seems necessary to give some examples. What we shall
do is elucidate the relation between

(15,
n-»oo W

and

(16) | I [Pr(Sn < 0 ) -«]
n=l n

for a special class of random variables. We note that the well-known result
Pr(Sn = 0) 5S c\y/n for some c independent of n (see [4] for example)
takes care of the Sn = 0 case; it is useful to incorporate this in the interests of
symmetry.

Firstly, let us go over what is known. It has been shown ([8], 228-230)
that any a, 0 ^ a ^ 1 is realizable as a limit in (15). Further, ([8], 199),
if EXt = 0, EX\ < oo then (16) with <x = \ converges. (This convergence
has been further elucidated in [4], [1], [3] but these additional results are
not pertinent to the present discussion).

As a source of examples we shall follow Spitzer and look at the random
variables Xf whose distribution is carried by the integers such that

= j)=pt, / = 0, ± 1 , ±2, . . .
satisfies

pi = 0 for / < —1, p_j_ > 0.

(Spitzer calls the associated random walks left continuous in this case).
In view of the comments above we shall interest ourselves solely in the case
EXi = 0, EX? = oo. Now the apparatus for studying whether (15) is
true has been set up in [8] (particularly 227-230) and we shall make the
necessary additions to look at (16) in the same light. We extract the fol-
lowing information:
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(17) l-r(0=exp{-|~Pr(Ss<O)J, 0 5S t < 1,

where r(t) is the unique positive solution (less than one) of the equation

(18) y>{r(t)] = t~\

Here,

(19) V(*) = £(**«) = I A ^ , 1*1 < 1,
3 = - l

and we have the obvious properties

V»(l) = 1, v'(l) = 0, / ' ( I ) = oo,

together with the property r = r(t) -»• 1 as £ -> 1. The relation (15) holds
if and only if

— 1 w(r) — l
20) lim — = a.

Now let us look at the question of the convergence of (16). We have

(1-0"
l - r ( O

and (16) will converge if and only if

0 < lim < oo,
tti I1—r(t)

or equivalently, from (18).

(21) 0 < lim ^-^~ < oo.
r t i ! — r

The behaviour of y>(r) and ^ ' (r) near r = 1 is best determined by partial
summation. Put

(22) *n

then npn = un_1—un, w_2 = 0 and

V'{r) = f (u._x-«.)r» = 1 V + i -
( 2 3 ) " = - X M =-2

 oo
l

= -(l-r)|«
n = - l

Similarly, putting

we have
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V(r) = 1 K-i-*>>" = r-x-(l-r) I vnr\
n=—1 n=—1

Let us further introduce

(24) »« = 2>. = Z 2 ^ = 2 (/-»)&. » 2> -1-
m^n n^m i>m i>n

We have
"-I = 2 (/+i)^ = 2 (/+!)A- = i

and
oo oo

2 W.r" = 2 K-W.+l)'"

= 2 W-»*- 2 '̂n''"-1

«=0

so that

oo

n=O

From (20), (23) and (25), we then have
(26)

and
Fw(r) — l ] a f °° "l

(27) lim 2m = lim (l-r)
2-V« J ze;nr«-i

r t l 1—y r t l L n=0 J

Clearly,

n=0 n=0 i>n j=l
oo oo o:

\[ W = ^ ^ yj—fljpt = T
n=0 n=0 i>n i=\ &

and both are infinite it (and only if) EX\ = oo.
As a simple example take

pn = -S— for n > N (0 < y ^ 1, c > 0).

Then, for n > N,
„ c 1 c

C 1 C

un—wn = n y <

https://doi.org/10.1017/S1446788700004390 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004390


[9] Some local limit results in fluctuation theory 463

SO that

and (26) holds with a = 1/1+y. Further, making use of Theorem 5, 423 of
Feller [2], we see that for y < 1 the limit in (27) is finite and positive. If
y = 1, on the other hand (so that « = | ) , the limit in (27) becomes

lim
Ln=O J

which is infinite since wn ~ c/2«. In this particular case it is not difficult to
show that the Xt belong to the domain of attraction of the normal distribu-
tion with norming constants proportional to (n log n)i (see [2], 303-304).
This is rather interesting as it shows that the convergence result of Spitzer
cited previously does not extend from the domain of normal attraction of
the normal distribution to its entire domain of attraction. For y < 1, on
the other hand, the X{ belong to the domain of normal attraction of a stable
law with index 1+y. It seems reasonable to conjecture that the series (16)
will converge in all such cases.

As another example, take

A f o r n > N (0 < y < 1, O 0)1log n

Then, for n > N, using Theorem 1, 273 of Feller [2], we have

i>n j 1 + 7 log / y« r log n

_ c c

i>n J2+r log / (l+y)w^ log n
so that

IS) j - 11

" y{l+y)nr log n 1+y "'

and again (26) holds with a = 1/1+y. The limit in (27) is no longer finite;
we have instead, using Theorem 5, 423 of [2],

0 < lim ((l-r)2-v« flog ( - i - ) l 1 wnr
n~lX < oo.

r f l I L \1 — rlA n=0 )

It is, however, not easy to extract the explicit function of slow variation
which will arise in our Theorem 1. We note in passing that the X( here
belong to the domain of attraction (but not that of normal attraction) of
a stable law with index 1+y. The norming constants in this case are
proportional to (w/log n)1la+T>.
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