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Abstract. Magnetic fields can be created in stably stratified (non-convective)
layers in a differentially rotating star. A magnetic instability in the toroidal field
(wound up by differential rotation) replaces the role of convection in closing the
field amplification loop. A dynamo model is developed from these ingredients,
and applied to the problem of angular momentum transport in stellar interi-
ors. It produces a predominantly horizontal field. The process is found to be
more effective in transporting angular momentum than the known hydrodynamic
mechanisms, with the possible exception of transport by internal gravity waves.

1. Introduction

Angular momentum transport in stars (i.e. internal torques) has so far been
modeled almost exclusively with prescriptions inspired by hydrodynamical pro-
cesses such as rotation-induced circulation and shear instabilities. The physical
understanding of these processes under the conditions in the stably stratified in-
teriors of stars is well developed, mostly through Jean-Paul Zahn’s fundamental
contributions. The application to stellar evolution, by Maeder and others, yields
encouraging results for rapidly rotating massive stars, as described elsewhere in
this volume. In other cases, straightforward application (i.e. without gross tun-
ing of added parameters) still leaves large discrepancies with the observations.
The slow rotation of the solar interior is one of these, another the unrealistically
large rotation rates predicted for newly born neutron stars.

Magnetic fields are sensibly treated as a ‘last resort’, given that the relevant
purely hydrodynamic processes are already somewhat intricate. The high effi-
ciency of angular momentum transport indicated by at least some observations,
however, may well point to an important contribution from magnetic torques.
At the same time, the complication introduced by magnetic processes is not
quite as serious as might appear at first sight. The relevant processes have been
studied extensively over the past few decades, and by now are rather well un-
derstood. On the other hand, many of the complications are quite analogous
to the hydrodynamic case. The stabilizing effects of thermal and compositional
stratification and the effect of thermal diffusion are quite similar in both cases,
for example. In the following, I summarize a theory for transport of angular
momentum and mixing that builds on these insights. It has been described in
more detail in Spruit(1999, 2002).

Magnetic field generation by differential rotation is usually regarded as a
process operating in the convective zones of stars. Convection, or other imposed
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velocity fields like waves or shear turbulence, are not really necessary, however,
for a dynamo process to operate. An example of a magnetic field produced by
differential rotation without the assistance of an imposed small scale velocity
field is the field produced in accretion disks (Hawley et al. 1996). In this kind of
dynamo process, the differential rotation produces a small scale magnetic field
on its own: the role of an imposed velocity field in generating a new the poloidal
field component is replaced by an instability in the magnetic field itself. The
magnetic instability operates on the toroidal field that is produced by winding
up of the radial field component, distorts it, and creates new radial field com-
ponents. The instability can either be of the Velikhov-Chandrasekhar-Balbus-
Hawley type (hereafter BH instability, see Velikhov 1959; Chandrasekhar 1960;
Balbus & Hawley 1991), or a buoyancy-driven instability (Parker 1966), though
the properties of the resulting field may depend on which of these instabilities
is the most important.

In the same way, the generation of a magnetic field in a star requires only one
essential ingredient: a sufficiently powerful differential rotation. The recreation
of poloidal field components which is needed to close the ‘dynamo loop’ can be
achieved by an instability in the toroidal field, of which there exists a variety
including those (BH and buoyancy instabilities) that operate in disks. Such
instabilities do not require the presence of convection, and can take place also
in the stably stratified interior of a star.

The instabilities of a predominantly toroidal field in stably stratified regions
in a star have been summarized from the existing literature in a previous paper
(Spruit 1999, hereafter Paper I). I concluded there that the first instability likely
to set in is a pinch-type instability. The essential properties of this instability
in the stellar context were established by R.J. Tayler (Tayler 1973; Markey &
Tayler 1973, 1974; see also Tayler 1957; Goossens et al. 1981). What makes it of
particular importance are the absence of a threshold for instability (at least in
the absence of viscous damping and magnetic diffusion; more about this below),
and the short growth time, of the order of the Alfvén crossing time. It can can
operate under conditions where BH and buoyancy instabilities are suppressed
by the stable stratification.

1.1. Angular Momentum Transport

The main interest of a magnetic field generated in the stable layers lies in its
ability to exert internal torques. If such torques can operate on time scales short
compared with the spindown time scale or the stellar evolution time scale, re-
spectively (depending which of these processes is the main source of differential
rotation), they can strongly affect the degree of differential rotation that can
survive in a star. In some cases, they may maintain a state of nearly uniform
rotation. For example, the usual interpretation of the rotation of white dwarfs
and neutron stars as a remnant of the initial angular momentum of their main-
sequence progenitors would require a very large degree of differential rotation
between core and envelope of these stars during their evolution on the giant and
AGB branches. Spruit & Phinney (1998) have argued that, in the absence of
more detailed knowledge, angular momentum processes are more likely to be
either too ineffective or too effective, compared with the intermediate effective-
ness needed to explain the rotation rates of white dwarfs and neutron stars. If
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the process is ineffective, leading to evolution at approximate conservation of
angular momentum, the cores of stars on the AGB are very rapidly spinning,
and much too rapidly rotating white dwarfs and neutron stars are the result. On
the other hand, effective coupling leads to nearly uniform rotation and too slow
rotation of the remnants. In the latter case, other mechanisms must contribute
to the rotation of white dwarfs and neutron stars, such as birth kicks for neutron
stars (Spruit & Phinney 1998), and nonaxisymmetric mass loss on the AGB for
white dwarfs (Spruit 1998).

Microscopic viscosity is negligible in stars as a source of internal torque.
Hydrodynamic processes such as circulation (Zahn 1992; Maeder and Zahn 1998)
and hydrodynamic instabilities are potentially important. In practice, however,
the torques transmitted by most of these processes scale as (2/N)? (where
is the rotation rate and N the buoyancy frequency) and are most effective in
rapidly rotating stars. They cannot explain the low rotation rate of the solar core
(Spruit et al. 1983). An exception is angular momentum transport by internal
waves generated by pressure fluctuations in a nearby convective envelope (Zahn
et al. 1997), which scales as a lower power of 2. Even these waves, however,
appear insufficient to explain the near-uniform rotation observed in the solar
interior (Talon & Zahn 1998; Kumar et al. 1999, see however Talon 2004).

If only these non-magnetic angular momentum transport processes are in-
cluded, pre-supernova cores rotate much too fast to explain the majority of
supernovae (Heger et al. 2000), though they may rotate at the right rate for
the collapsar model of gamma-ray bursts (McFadyen, Woosley & Heger 2001
and references therein). [An exception may again be the transport by internal
waves, which is not yet included in standard evolution codes.]

1.2. Magnetic Torques, the Example of the Sun

Magnetic fields are quite effective at transporting angular momentum, even at
strengths much below the values observed at the surfaces of magnetically active
stars or the magnetic A stars (Mestel 1953). The Maxwell stresses transport
angular momentum in the radial direction at a rate proportional to B,By, and
in latitude at a rate proportional to BgBy. If the observed internal rotation
pattern in the solar core is due to magnetic stresses, the weak gradient in latitude
compared with the radial gradient then indicates that By > B, in the tachocline.
This fact, in combination with a sufficient amplitude of the magnetic field, are to
be explained by a prospective theory for magnetic angular momentum transport
that is applicable to the core of the Sun.

A differential rotation-driven dynamo operating with magnetic instabilities
can do just this (Paper II). In the following the processes involved are described
qualitatively. The evolution of massive stars including the torques exerted by
the small-scale field generated by this process have been included in calculations
by Heger (2004).

An important assumption in the following is that the initial magnetic field
is sufficiently weak, so that magnetic forces can be neglected initially. Thus, I
ignore the possibility that the star started with a strong magnetic field, such as
those of the magnetic A-stars or the magnetic white dwarfs. The nature and
origin of these is a separate issue, not fully understood at the moment. The
distinction between this case and the case of an initially weak field is illustrated
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Figure1l. Flow diagram for the evolution of a magnetic field in a differentially
rotating star, based on the known magnetohydrodynamic processes (cf. Paper
I). The text deals mostly with case of an initially weak field. Less is known
about the evolution when the star starts with a strong magnetic field (left

upper left part of the diagram).
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in the flow diagram in figure 1, which summarizes the currently known MHD
processes that are relevant for the evolution of magnetic fields in (radiative zones
of) stars. For a discussion of some of these processes see also Charbonneau
(2004).

2. The Dynamo Process

I assume that the star’s rotation rate is a function of the radial coordinate r
only (‘shellular’ rotation, cf. Zahn 1992). This is done for convenience only.

On account of its assumed weakness, the radial component B, of the field
is wound up by differential rotation. After only a few differential turns, the
resulting field is predominantly azimuthal, By > B;, and its strength increases
linearly with time, until it becomes unstable.

2.1. Instabilities

As long as the magnetic field is weak, the energy to be gained from the field
by any instability is small, and instability is possible only for displacements
that avoid doing work against powerful restoring forces: the gas pressure and
the buoyancy force. The first instability to set in (for a review of the relevant
instabilities see Paper I) is a nonaxisymmetric (typically m = 1) interchange
in which the displacements are nearly incompressive (div§ < £/r, thus avoid-
ing work against the gas pressure), and nearly horizontal (along equipotential
surfaces), avoiding work against the buoyancy force.

In the absence of diffusive damping effects, such as magnetic diffusion and
viscosity, an arbitrarily weak azimuthal field is unstable (Tayler 1973; Pitts &
Tayler 1986). The form of the instability is related to kink instabilities in a
linear pinch. For a purely azimuthal field, the instability is a local one: unstable
displacements exist as soon as a local instability condition is satisfied at any
point in the star (Tayler 1973). I refer to the instability, in the form it takes
in the stably stratified conditions of a stellar interior as ‘Tayler instability’ for
short.

2.2. Instability without Thermal Diffusion

In this subsection, I ignore the thermal diffusion, but take into account the
diffusion of the magnetic field by Ohmic resistivity. The growth rate of the
instability in the absence of constraints like rotation is of the order o ~ Qp
[where Q4 is the Alfven frequency]. Thus, the kinetic energy released by an
unstable displacement of amplitude £ is %Q}‘;g? (per unit of mass). This energy
is supplied by the field configuration. In order to avoid wasting this energy by
doing work against the stable stratification, the unstable displacements must
be nearly along equipotential surfaces, §&, < &, where &, = [(£9,&4)| is the
horizontal displacement. If [, and I}, are the radial and horizontal length scales
of the displacement, the condition that £ be nearly incompressive implies that
In/lr =~ &,/& > 1. For such displacements, the work done against the buoyancy
force is (per unit mass) %§2N 2(1,/1y)%. Hence the unstable displacements have
to satisfy I/l < Qa/N.
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In a star, the largest length scale available is of order r, so we must have
Ih < r. So the radial length scale has to satisfy

l, <TQa/N. (1)

On the other hand, if the radial length scale is too small, field perturbations
cannot grow because the magnetic diffusivity smoothes them out too fast. The
corresponding limit is found by equating the magnetic diffusion time scale t4 on
the length scale I, to the growth time scale o~! of the instability. In presence of
a strong Coriolis force, 2 > Q4, the intrinsic growth rate of the instability (in
the absence of stratification and magnetic diffusion) is o ~ Q% /9. Hence the
radial length scale has to satisfy

12 >nQ/0%. (2)
Combining the two limits yields
7N N 172/ M \1/4
q > () lsg) 3)

This is, for the case when thermal diffusion can be neglected, and up to a
numerical factor of order unity, the correct instability condition as derived from
Acheson’s (1978) dispersion relation for azimuthal magnetic fields (Paper I).

2.3. Effect of Thermal Diffusion

As in the case of hydrodynamic mechanisms, thermal diffusion has a major
effect by removing stabilizing buoyancy effects on small length scales. It must
be included in a realistic treatment of magnetic instabilities as well.

Since heat is transported by photons, while viscosity and magnetic fields
diffuse by Coulomb interactions, the Prandtl number Pr= v/k and the diffusivity
ratio s = n/k are very small in a stellar interior (of the order 1076-10~*). Here
v is the viscosity, k = 160T3/(3kgrp%c,) is the thermal diffusivity, and 71 the
magnetic diffusivity. The viscosity is of the same order but somewhat smaller
than 7 so that the main mechanism damping the instability is magnetic diffusion.
I ignore viscous damping in the following, and also assume that gradients in
composition (u-gradients) can be neglected, so the stabilizing stratification is
due entirely to the entropy gradient. In general, both have to be included; this
is discussed briefly below. The effect of the u-gradients on the end-result of
evolution calculations (Heger et al. 2004).

If unstable displacements take place on a length scale [, and time scale T,
their temperature fluctuations diffuse away on the time scale 71 = I2/k. On the
time scale 7 they are therefore reduced by a factor f = (7/7r + 1). This can be
taken into account by introducing an effective thermal buoyancy frequency Ne:

Ne=N/f'? (4)
The stabilizing effect of the stratification is thus reduced by thermal diffusion,

and instabilities take place more readily. This has apparently been realized first
by Townsend (1958), who used the argument in the context of shear flows in a
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stratified atmosphere. It has been extended to the astrophysical case by Zahn
(1974, 1983).

Applying the argument to the present case of Tayler instability, where the
stratification also plays a dominant role, we repeat the heuristic argument in
the preceding section by substituting N for N in (4). We simplify the algebra
by assuming 7r < 7 (this can be checked afterwards). The minimum radial
wavenumber k. at which the instability can take place is then

(kr)e = (2, ®)

The corresponding length scale I. = k;! is the largest radial length scale on
which the instability can take place. Note that it is now independent of the
strength of the azimuthal field, contrary to the case when thermal diffusion is
neglected (eq 4). The instability condition becomes, by the same derivation as
before: Q N

A S (22 B yiya 2

> ()2 g2, (©)
This is the condition derived in Paper I'. The conditions for validity are

QA <K Nk, N <K K, (7)

and the buoyancy due to composition gradients has to be negligible.

The instability condition is approximate and ignores multiplying factors of
order unity. More exact conditions can be derived from Acheson’s dispersion
relation (see Appendix in Paper I).

2.4. Composition Gradients

Since the diffusion of particles is much slower than that of photons, the buoyancy
due to stabilizing composition gradients is not reduced on small scales. If the
stabilization is dominated by the u-gradient, the instability condition reverts
to (3), with the adiabatic buoyancy frequency N replaced by the compositional
buoyancy frequency N, = (gdIn p/dr)1/2. The instability is much weaker in
zones with substantial y-gradients, and a large gradient in rotation rate is needed
to wind up the field to amplitudes sufficient for instability.

2.5. Field Generation

The Field-Amplification Loop Consider the dynamo process as starting with
the Tayler instability of an azimuthal field, which itself is produced by the
winding-up of a seed field. The instability generates a new field component
whose length scale in the radial direction is small because of the strong effect
of the stratification (cf Eq. 5). This instability-generated, small scale field has
zero average. The differential rotation acts on this field, winding it up into a
new contribution to the azimuthal field. This again is unstable, thus closing the
dynamo loop. Once the dynamo process has built up, the original seed field is

!Note that there is a typo in Eq. (49) of that paper. The last occurrence of N should be an €.
The correct result is given in the appendix of that paper in Eq. (A29).
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unimportant. All three magnetic field components then have small length scales
in the r-direction, but much larger scales in the horizontal directions.

The energy for the dynamo process is fed in by differential rotation only,
and the small scale field is generated by instability of the azimuthal field compo-
nent itself. This is fundamentally different from a dynamo driven by an imposed
small scale velocity field such as convection.

The process of field generation can be broken down into two conceptual
steps. In the first step, we ask ourselves at what level the Tayler instability will
saturate, if the strength of the initial azimuthal field is given. This level deter-
mines the amplitude of the small scale processes generated by the instability.
These in turn determine the rate of decay of a given azimuthal field by these
processes.

In the second step, we ask how fast the azimuthal field is regenerated by
the differential rotation. The process here is simply the stretching of the small
scale magnetic field by the differential rotation. The argument is then wrapped
up by requiring the regeneration rate to match the decay rate. This yields the
equilibrium field strength of the dynamo process.

Analogy: Convection in a Stellar Envelope These steps can be illustrated with
the analogy of stellar convection. The Rayleigh number is Ra = gH3(V -
Va)/(vk), where v and k are the viscosity and thermal diffusivity as before, and
g the acceleration of gravity. Instability sets in when Ra reaches the critical value
Ra.. The typical convective velocity and length scale v. and I, can be thought of
as acting like an effective diffusivity ve ~ vcl.. For Ra > Rac, we now estimate
the amplitude of convection by assuming that the effective diffusivity ve = ke
is just so large that Ra = Ra., when the effective diffusivities are used in the
expression for Ra. In other words, the diffusivity becomes so large that the
effective Rayleigh number is just the critical value for onset of instability. With
a typical length scale [ = H, one verifies that this yields a convective energy
flux of F, = p(gH)3/2(V —V,)3/2. Up to a numerical factor of order unity, this is
the mixing length expression for the convective flux. This well-known ‘effective
Rayleigh number’ argument is thus equivalent to a mixing length estimate.

While the previous argument yields the convective flux when the entropy
gradient V —V, is given, this flux is usually fixed by other factors. Requiring the
flux to equal the value that follows from the star’s luminosity then determines
the value of V — V,, as well as the convective velocity amplitude v..

The analogous steps can be applied to the magnetic dynamo process. In
this analogy, the differential rotation plays the role of the energy flux (assumed
to be imposed). The azimuthal magnetic field strength produced by winding-up
drives the instability and corresponds to the entropy gradient, while the other
magnetic field components produced by Tayler instability play the role of the
convective velocity field.

The analysis is given in Paper II, I here summarize only the net results.
The magnetic field produced has a small length scale in the radial direction. In
this limit, the torques exerted by the field are local (in r), and can be expressed
in terms of an effective viscosity ve. If the effect of u-gradients dominates, it is
given by q

4
¥ ®)

Veo = 720%(
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On the other hand, if y-gradients can be neglected, the result is
Q K
v = PG A () 2 ©)

In these expressions, N, is the buoyancy frequency for isothermal displacements,
i.e. on sufficiently small scales that thermal diffusion is effective so only the u-
gradient contributes to the buoyancy. The thermal buoyancy frequency Nt
is given by N = N? — N2, where N is the total buoyancy frequency (i.e.
for adiabatic displacements), and ¢ is the logarithmic differential rotation ¢ =
dinQ/dInr.

The field strengths resulting from the process and the mixing effect associ-
ated with the field generation process are given in Paper II.

3. Discussion

3.1. Comparison with Hydrodynamic Torques

The dependence on 2 is steeper than in most purely hydrodynamic transport
mechanisms. On the other hand, the scale of the effective viscosity multiplying
this dependence, of the order r2Qq?, is much larger. Under conditions when both
hydrodynamic turbulence according to Zahn’s estimate and the dynamo process
operate, the effective viscosity of the dynamo process turns out to be larger.
This reflects the intrinsically high effectivity of Maxwell stresses at transporting
angular momentum. The small mixing effect associated with the field generation
process does not appear to have much effect on the compostion, in practical
calculations (Heger, private communication).

The high effectiveness of the dynamo process in the abserice of composition
gradients removes most of the differential rotation in compositionally homoge-
neous layers of a star. The gradients concentrate into the inhomogeneous layers.
Jumps in composition thus also tend to shield different zones somewhat from
each other in terms of their rotation rates. This is the main effect that was
ignored in the estimates made in Spruit and Phinney (1998); it allows evolved
cores to continue rotating at significant rates for evolutionary siginificant peri-
ods of time (at least for the massive stars for which the calculations have been
done so far).

The steep dependence on §2 causes a certain ‘convergence’: somewhat in-
dependent of other factors influencing the rotation, there will be a tendency
for /N, to evolve into a limited range. This also makes the result somewhat
independent of uncertainties in the theory.

Since the dynamo process produces its own ‘turbulent diffusion’, it enhances
the decay of an initial field. Thus the process also enhances the distinction be-
tween two regimes: an initially weak field serves as a seed field but is eliminated
by the action of the dynamo process, while a stronger initial field will prevent
the field amplification cycle from operating altogether.
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